
ADVCOMP 2013

The Seventh International Conference on Advanced Engineering Computing and

Applications in Sciences

ISBN: 978-1-61208-290-5

September 29 - October 3, 2013

Porto, Portugal

ADVCOMP 2013 Editors

Sigeru Omatu, Osaka Institute of Technology, Japan

 1 / 98

ADVCOMP 2013

Foreword

The Seventh International Conference on Advanced Engineering Computing and Applications in
Sciences (ADVCOMP 2013), held between September 29 and October 3, 2013 in Porto, Portugal,
continued a series of events that brought together researchers from the academia and practitioners
from the industry in order to address fundamentals of advanced scientific computing and specific
mechanisms and algorithms for particular sciences. The conference provided a forum where researchers
were able to present recent research results and new research problems and directions related to them.
The conference included contributions presenting novel research in all aspects of new scientific methods
for computing and hybrid methods for computing optimization, as well as advanced algorithms and
computational procedures, software and hardware solutions dealing with specific domains of science.

With the advent of high performance computing environments, virtualization, distributed and
parallel computing, as well as the increasing memory, storage and computational power, processing
particularly complex scientific applications and voluminous data is more affordable. With the current
computing software, hardware and distributed platforms effective use of advanced computing
techniques is more achievable.

We take here the opportunity to warmly thank all the members of the ADVCOMP 2013
Technical Program Committee, as well as the numerous reviewers. The creation of such a broad and
high quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to ADVCOMP
2013. We truly believe that, thanks to all these efforts, the final conference program consisted of top
quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ADVCOMP 2013 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that ADVCOMP 2013 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the field of advanced
engineering computing and applications.

We are convinced that the participants found the event useful and communications very open.
We hope that Porto, Portugal, provided a pleasant environment during the conference and everyone
saved some time to enjoy the charm of the city.

ADVCOMP 2013 Chairs:

ADVCOMP Advisory Chairs

Chih-Cheng Hung, Southern Polytechnic State University, USA
Juha Röning, Oulu University, Finland
Sigeru Omatu, Osaka Institute of Technology, Japan
Erich Schweighofer, University of Vienna, Austria

ADVCOMP 2013 Research/Industry Chair

 2 / 98

Jorge Ejarque Artigas, Barcelona Supercomputing Center (BSC-CNS), Spain
Helmut Reiser, Leibniz Supercomputing Centre (LRZ)-Garching, Germany

 3 / 98

ADVCOMP 2013

Committee

ADVCOMP Advisory Chairs

Chih-Cheng Hung, Southern Polytechnic State University, USA
Juha Röning, Oulu University, Finland
Sigeru Omatu, Osaka Institute of Technology, Japan
Erich Schweighofer, University of Vienna, Austria

ADVCOMP 2013 Research/Industry Chair

Jorge Ejarque Artigas, Barcelona Supercomputing Center (BSC-CNS), Spain
Helmut Reiser, Leibniz Supercomputing Centre (LRZ)-Garching, Germany

ADVCOMP 2013 Technical Program Committee

Witold Abramowicz, University of Economics - Poznań, Poland
H. Metin Aktulga, Lawrence Berkeley National Lab, USA
Sónia Maria Almeida da Luz, Polytechnic Institute of Leiria, Portugal / University of Extremadura, Spain
Renato Amorim, University of London- Birkbeck, UK
Gabriel Amorós, Universitat de València, Spain
Sulieman Bani-Ahmad, Al-Balqa Applied University, Jordan
Roberto Beraldi, "La Sapienza" University of Rome, Italy
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Mario Marcelo Berón, National University of San Luis, Argentina
Rudolf Berrendorf, Bonn-Rhein-Sieg University, Germany
Ateet Bhalla, Oriental Institute of Science and Technology, India
Muhammad Naufal bin Mansor, University Malaysia Perlis, Malaysia
Pierre Borne, Ecole Centrale de Lille - Villeneuve d'Ascq, France
Kenneth P. Camilleri, University of Malta - Msida, Malta
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Yeh-Ching Chung, National Tsing Hua University, Taiwan
Marisa da Silva Maximiano, Escola Superior de Tecnologia e Gestão - Instituto Politécnico de Leiria,
Portugal
Vieri del Bianco, Università dell'Insubria, Italy
Javier Diaz, Rutgers University, USA
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Jorge Ejarque Artigas, Barcelona Supercomputing Center (BSC-CNS), Spain
Sameh Elnikety, Microsoft Research, USA
Javier Fabra, University of Zaragoza, Spain
Simon G. Fabri, University of Malta - Msida, Malta
Umar Farooq, Amazon.com - Seattle, USA
Mehdi Farshbaf-Sahih-Sorkhabi, Azad University - Tehran / Fanavaran co., Tehran, Iran

 4 / 98

Dmitry Fedosov, Forschungszentrum Juelich GmbH, Germany
Mohammad-Reza Feizi-Derakhshi, University of Tabriz, Iran
Dan Feldman, MIT, USA
Bin Fu, University of Texas - Pan American, USA
Cheng Fu, Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
Rodrigo García Carmona, Universidad Politécnica de Madrid, Spain
Felix Jesus Garcia Clemente, University of Murcia, Spain
Leonardo Garrido, Tecnológico de Monterrey, Mexico
Wolfgang Gentzsch, HPC Consultant, Germany
Paul Gibson, Telecom & Management SudParis, France
Filippo Gioachin, Hewlett-Packard Laboratories, Singapore
Luis Gomes, Universidade Nova de Lisboa, Portugal
Teofilo Gonzalez, University of California - Santa Barbara, USA
Santiago Gonzalez de la Hoz, IFIC - Universitat de Valencia, Spain
Bernard Grabot, ENIT, France
Vic Grout, Glyndwr University, U.K.
Yi-Ke Guo, Imperial College London, U.K.
Maki K. Habib The American University in Cairo, Egypt
Jameleddine Hassine, King Fahd University of Petroleum & Mineral (KFUPM), Saudi Arabia
Marcin Hojny, AGH University of Science and Technology - Krakow, Poland
Wladyslaw Homenda, Warsaw University of Technology, Poland
Wolfgang Hommel, Leibniz Supercomputing Centre, Germany
Ming Yu Hsieh, Sandia National Labs, USA
Eduardo Huedo Cuesta, Universidad Complutense de Madrid, Spain
Paul Humphreys, University of Ulster, U.K.
Chih-Cheng Hung, Southern Polytechnic State University, USA
Patrick Janssen, National University of Singapore, Singapore
Jinlei Jiang, Tsinghua University, China
Myoungsoo Jung, Pennsylvania State University, U.S.A.
Alexander Jungmann, University of Paderborn, Germany
Vasileios Karyotis, National Technical University of Athens, Greece
Mazen Kharbutli, Jordan University of Science and Technology, Jordan
Shadi Khawandi, Lebanese University - University Institute of Technology, Lebanon
Youngjae Kim, Oak Ridge National Laboratory, USA
William Knottenbelt, Imperial College London, UK
Alice Koniges, Lawrence Berkeley Laboratory/NERSC, U.S.A.
Evangelos Kranakis, Carleton University, Canada
Danny Krizanc, Wesleyan University, USA
Markus Kunde, German Aerospace Center & Helmholtz Association - Cologne, Germany
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Clement Leung, Hong Kong Baptist University, Hong Kong
Cheng-Xian (Charlie) Lin, Florida International University - Miami, USA
Juan Pablo López-Grao, University of Zaragoza, Spain
Hatem Ltaief, KAUST Supercomputing Laboratory, SA
Emilio Luque, University Autonoma of Barcelona (UAB), Spain
Lau Cheuk Lung, INE/UFSC, Brazil
Anthony A. Maciejewski, Colorado State University - Fort Collins, USA
Shikharesh Majumdar, Carleton University - Ottawa, Canada

 5 / 98

Ming Mao, University of Virginia, USA
Marcin Markowski, Wroclaw University of Technology, Poland
Víctor Méndez Muñoz, Port d'Informació Científica (PIC), Universitat Autònoma de Barcelona and IFAE,
Spain
Jose Merseguer, Universidad de Zaragoza, Spain
Mohamed A. Mohandes, King Fahd University of Petroleum and Minerals, SA
Peter Müller, IBM Zurich Research Laboratory- Rüschlikon, Switzerland
Camelia Muñoz-Caro, Universidad de Castilla-La Mancha, Spain
Adrian Muscat, University of Malta, Malta
Álvaro Navas, Universidad Politecnica de Madrid, Spain
Toan Nguyen, INRIA, France
Sigeru Omatu, Osaka Institute of Technology, Japan
Sascha Opletal, University of Stuttgart, Germany
Flavio Oquendo, European University of Brittany - UBS/VALORIA, France
Mathias Pacher, Leibniz Universität Hannover, Germany
Zornitza Petrova, Technical University of Sofia, Bulgaria
Meikel Poess, Oracle, USA
Radu-Emil Precup, "Politehnica" University of Timisoara, Romania
Luciana Rech, Universidade Federal de Santa Catarina, Brazil
Helmut Reiser, LRZ, Germany
Laurent Réveillère, Bordeaux Institute of Technology, France
Dolores Rexachs, Universidad Autónoma de Barcelona (UAB), Spain
Ivan Rodero, Rutgers University - Piscataway, USA
Juha Röning, Oulu University, Finland
Jose Francisco Salt Cairols, Universitat de Valencia-CSIC, Spain
Kenneth Scerri, University of Malta, Malta
Rainer Schmidt, Austrian Institute of Technology, Austria
Bruno Schulze, National Laboratory for Scientific Computing - LNCC -Petropolis - RJ, Brasil
Erich Schweighofer, Vienna University, Austria
Kewei Sha, Oklahoma City University, USA
Ali Shawkat, CQ University of Australia - North Rockhampton, Australia
George Spanoudakis, City University London, UK
Saïd Tazi, INSA - Toulouse, France
Jerry Trahan, Louisiana State University, U.S.A.
Simon Tsang, Applied Communication Sciences - Piscataway, USA
José Valente de Oliveira, Universidade do Algarve, Portugal
Doru Vatau, University "Politehnica" of Timisoara, Romania
Vladimir Vlassov, KTH Royal Institute of Technology, Sweden
Dean Vučinić, Vrije Universiteit Brussel (VUB), Belgium
Zhonglei Wanf, KIT, Germany
Zhi Wang, North Carolina State University - Raleigh, USA
Tse-Chen Yeh, Academia Sinica, China
Shucheng Yum, University of Arkansas at Little Rock, USA
Marek Zaremba, Université du Québec en Outaouais, Canada
Wenbing Zhao, Cleveland State University, U.S.A
Wenbo Zhu, Google Inc., U.S.A.

Alcínia Zita Sampaio, Technical University of Lisbon, IST/ICIST, Portugal

 6 / 98

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 98

Table of Contents

Semantics and Accuracy of Gene Expression Threshold Computations. A Case Study
Jaime Seguel and Marie Lluberes

1

Simulation of Precipitation in an Aluminum Scandium Alloy using Kinetic Monte Carlo and Density-based
Clustering with Noise Algorithms
Alfredo Moura and Antonio Esteves

7

A CADx Scheme in Mammography: Considerations on a Novel Approach
Bruno Matheus and Homero Schiabel

15

Rice-Planted Area Extraction by RADARSAT Data Using Learning Vector Quantization Algorithm
Sigeru Omatu

19

A UsiXML Proposal for a Pattern-Oriented and Model-Driven Architecture for Interactive Systems
Mohamed Taleb, Ahmed Seffah, and Alain Abran

24

A MapReduce Implementation of the Genetic-Based ANN Classifier for Diagnosing Students with Learning
Disabilities
Tung-Kuang Wu, Shian-Chang Huang, Ying-Ru Meng, Hsiu-Ting Kao, and Hsu Chang

30

Principles and State-of-the-Art of Engineering Optimization Techniques
Ning Xiong and Miguel Leon Ortiz

36

Improving the Performance of Particle Swarm Optimization Algorithm With a Dynamic Search Space
Benoit Vallade and Tomoharu Nakashima

43

Reliable Outer Bounds for the Dual Simplex Algorithm with Interval Right-hand Side
Christoph Fuenfzig, Dominique Michelucci, and Sebti Foufou

49

Implementing a Generalized Cobb Model for Production Functions
Alina Andreica and Florina Covaci

55

Trading Redundant Work Against Atomic Operations On Large Shared Memory Parallel Systems
Rudolf Berrendorf

61

Proactive Automated Dependable Resource Management in Cloud Environments
Anna Schwanengel, Gerald Kaefer, and Claudia Linnhoff-Popien

67

How to Run Scientific Applications with DIRAC in Federated Hybrid Clouds
Victor Me?ndez Mun?oz, Adria Casaju?s Ramo, Ricardo Graciani Diaz, and Victor Fernandez Albor

73

 1 / 2 8 / 98

GraphTool - a new system of graph generation
Iwona Ryszka and Ewa Grabska

79

Supporting Coding Activity by Associating Web Bookmarks With Source Code Features
Ken Nakayama, Eko Sakai, and Yoshihisa Nitta

84

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 98

Semantics and Accuracy of Gene Expression Threshold Computations
A Case Study

Jaime Seguel
Electrical and Computer Engineering Department

University of Puerto Rico at Mayaguez
Mayaguez, Puerto Rico

e-mail: jaime.seguel@upr.edu

Marie Lluberes
Doctoral Program in CISE

University of Puerto Rico at Mayaguez
Mayaguez, Puerto Rico

e-mail: marie.lluberes@upr.edu

Abstract— The precise inner workings of cellular mechanisms
remain largely unknown and, therefore, their modeling is
usually based on conjectures. The availability of large amounts
of genetic data, and the lack of abstract mathematical models,
makes computer algorithms the only tool available for
searching for these hypothetical realities. We call the
conjectured algorithmic-independent reality that underlies the
method design and intention, the semantics of the algorithm.
This article is a brief semantics analysis exercise performed
with four binary quantization algorithms for time series of
gene expression data.

Keywords- binary quantization; gene expression; quantitative
semantics

I. INTRODUCTION
The post genomic era has brought a myriad of computer

methods for modeling cellular mechanisms [1]. As the
precise inner workings of these mechanisms is still unknown,
several of these methods are based on an implicit model of
the phenomenon under scrutiny, and its hypothetical
manifestations in the data. This is a departure from standard
scientific computing practices where algorithms are designed
on the basis of well-defined mathematical models, which
capture the essence of the phenomenon in abstract terms.
Explicit mathematical models also guide the design of
numerical simulations, and are often used to test their
accuracy. The lack of an algorithmic-independent explicit
model obscures the essence of the phenomenon simulated by
the computer algorithm, as well as the interpretation of its
results. Furthermore, taking the implicit model for granted
may determine how the phenomenon is perceived and
interpreted in further analyses or modeling endeavors [2].

In the absence of a standard term, we call semantics of a
computer method the algorithmic-independent meaning of
the problem that the method is designed to solve. In
particular, we study the semantics of four binary quantization
algorithms designed to separate expressed from non-
expressed gene states, in a time series of gene expression
measurements. Underlying the selected methods is the
implicit model of a numeric value, or threshold, which
separates the state expressions of the gene, in the time
interval of the series. Such separation is called binary
quantization, and the algorithms for splitting the time series

data points in expressed and non-expressed states, binary
quantization algorithms.

Two different ways of computing the threshold are
manifested in the four methods. For two of the methods, the
threshold is in fact, an explicit numerical value computed
before the classification of the data. The other two methods
do not compute a threshold, explicitly. Instead, they use
statistics to separate the data into expressed and non-
expressed states. The threshold is thus, a consequence of the
classification of the data points. The semantic question that
arises here is what is the algorithmic-independent nature of
the threshold. We assume as a working hypothesis that the
threshold is a numerical value and attempt to unveil its
independent nature through computational experiments
performed with the four binary quantization algorithms. The
experiments assess the degree of consistency between the
computed results and the effects of threshold variations in
the simulation of gene regulatory networks (GRN) [3]. The
ultimate purpose of a binary quantization is the construction
of a probabilistic Boolean network representation (PBN) of a
GRN [4]. A PBN is normally derived from prior knowledge
of gene interconnections and statistical analyses performed
on an array representation of the quantized gene expressions,
usually called binary expression matrix. Most binary
quantization methods are validated on the basis of the quality
of the PBN representations derived from them. In order to
eliminate the influence of the prior knowledge embedded in
the PBN representation, we measure the variations in the
binary expression matrices themselves.

The rest of this article is organized as follows: Section II
discusses the concept of threshold. Section III is a brief
summary of the binary quantization algorithms under
consideration. Section IV describes the experiments
conducted; and Section V analyses their results. Finally,
Section VI summarizes some conclusions of the study.

II. NATURAL THRESHOLD, CONVERGENCE THRESHOLD
AND COMPUTATION

Gene expressions are the result of a cascade of processes
that are stochastic in nature. However, by the Law of Large
Numbers, a smooth non-negative real valued function can
approximate the average expression behavior of a
significantly large number of cells, in an interval of time [5].
Provided that the variations in this function are large enough,

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 10 / 98

the lowest and highest values can be associated with
expressed and non-expressed gene states, respectively.
Hypothetically, someplace within the function range, there
should be the point in which Nature separates the two states.
We call this hypothetical point Natural Threshold (NT). We
plan to answer the semantics question by investigating to
what extent the result of the methods reveal a NT.

In all the methods considered, the threshold varies with
the number of input data points. In order to bound these
variations, we compute the Convergence Threshold (CT).
This threshold is obtained by iterative refinements of the
method’s thresholds, up until the values fall within a
predetermined error tolerance. The data for the iterative
refinements is taken from a cubic spline interpolation of the
input time series.

The CT is also used to assess the accuracy of the
methods. We do this by comparing the method’s CT with the
threshold of the original time series. We also compare the
binary expression matrices derived from these thresholds.

III. THRESHOLD COMPUTATION METHODS
We classify the four methods considered in this study [6],

[7], [8], and [9], according to their approach to the search for
a threshold. This renders what we call jump-based and
cluster-based methods.

A. Jump-based Methods
It is a frequent practice to use data variations —or

jumps—, between data points, as a reference for the
determination of a threshold value. This approach is taken in
[6] and [7]. We refer to these methods as Algorithm 1 and
Algorithm 2, respectively. Algorithm 1 computes first the
average jump of a sorted version of the input data set, and
sets the smallest point in the sorted data that exceeds this
value, as the threshold. Fig. 1 shows the pseudo code of
Algorithm 1.

Figure 1. Algorithm 1. Binarize.

In this description, each Gi = (Gi,1,…, Gi,k) is the k-point
time series expression of the i-th gene, in a gene set. Thus,
variable i is fixed in the routine, but runs in the main
program. The main program, in turn, calls Algorithm 1 and
receives its output Bij; which is the i-th row in the binary
expression matrix. For our purposes, however, the output is

S i,m+1 , as this is the value that separates expressed and non-
expressed states.

Algorithm 2, in turn, uses a multi-scale approach for
detecting different jumps at different resolution levels. The
method scores the jumps before deciding which one is the
threshold. An a-posteriori analysis assesses the reliability of
this choice. The algorithm consists of several processes. In
general, the method finds step functions with different
number of steps, which are also the best approximations to
the sorted version of the input data. At each approach, the
point where the highest jump occurs is identified for further
analysis. A relation between the highest jump and the
approximation error incurred by the step function is then
computed. A high value for this ratio indicates a strong
discontinuity in the sorted data, and therefore, a potential
threshold candidate. Step functions are computed with a
dynamic programming algorithm that returns a sequence of
step functions of minimal Euclidian distance to the original
data. With each step function approximation, a cost and
break point index is calculated and stored. The cost of a step
of the function is the distance to the mean of the approached
data segment. The cost of the step function, in turn, is the
sum of the costs of its steps. Both, the costs and break point
indices are computed using the algorithm whose pseudo code
is presented below. As in Algorithm 1, the first step is sorting
the points in the time series. Fig. 2 shows the pseudo code of
Algorithm 2.

Figure 2. Algorithm 2. Optimal step functions.

Algorithm 3, shown in Fig. 3, reconstructs the break
points from the array Ind, computed with the Algorithm 2.

Figure 3. Algorithm 3. Break points of optimal step functions.

Break points are used to compute the jump size h. The
error of approximation e is the Euclidean distance of the step

Algorithm 1. Binarize: INPUT Gi, OUTPUT Bi
Si ← sort(Gi,1,…, Gi,k)
for j=1 to k-1 do

Di,j ← (Si,j+1 - Si,j)
endfor

t ← (Si,k - Si,1)/(k – 1)
m = min{j: Di,j> t}

for j=1 to k do
if Gi,j ≥ S i,m+1 then

Bi,j ← 1
else

Bi,j ← 0
endif

endfor

Algorithm 2. Calculation of optimal step functions
Initialization:
Ci(0) = ciN, i = 1,…, N
Iteration:
for j = 1 to N -2 do

for i =1 to N - j do
Ci(j) ← mind=i...N – j(cid + Cd+1(j - 1))
Indi(j) ← argmind=i...N – j(cid + Cd+1(j - 1))

endfor
endfor

Algorithm 3. Compute the break points of all optimal
step functions
for j = 1 to N - 2 do

z = j
P1(j) = Ind1(z)
if j > 1 then

z ← z - 1
for i = 2 to j do

Pi(j) ← IndPi - 1(j) + 1(z)
z ← z – 1

endfor
endif

endfor

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 11 / 98

function to the sorted input data set. The maximum of the
radios q = h/e, determines the strongest discontinuity.

We refer the reader to [7] for further details on this
method.

B. Cluster-based Methods
Cluster-based methods partition the input data set into a

predetermined number k of disjoint data subsets, referred as
clusters. The partition is made on the basis of the nearest
center of each cluster. Here, we compare the well-known k-
means method, for k =2, and Algorithm 4, which is a variant,
proposed by the authors, that replaces the mean with the
median. We provide no pseudo code for 2-means, but recall
that, in this method, data centers are initialized randomly. In
contrast, in Algorithm 4, no random initialization is
necessary, as shown in its pseudo code in Fig. 4.

Figure 4. Algorithm 4. Median Separation.

Algorithm 4 sorts first the m input data points, and for
each value j, 1 ≤ j ≤ m; computes the median of the first j
points and that of the last m – j – 1 data points. Then, it finds
the pair of medians that are farther apart and returns their
average as the threshold. In both, Algorithm 4 and 2-means,
two points, an upper and a lower value, determine the binary
quantization. Therefore, if there is a threshold, this is most

probably given by their average.

IV. METHODS AND EXPERIMENTS
We designed two experiments. The first uses the

threshold computed by each method. The second uses the CT
of each method, instead. Both experiments were performed
with two different data sets. The first data set [10], which
corresponds to the mitotic cell cycle of yeast, is taken from
[11]. We took the 17-point time series of four genes, namely
cdc24, cdc19, cdc15, and cdc27. The second data set is a 6 x
8 randomly generated matrix of real values between 0 and 1,
mimicking an eight point time series of six genes.

All experiments were run in Matlab 7.0.12.635 (R2011a)
for Mac.

V. ANALYSIS OF RESULTS
Next is a brief analysis of the experimental results.

A. Numerical Variations of the Thresholds
Fig. 5 shows the thresholds obtained in the first

experiment. Algorithms 2 and 2-means exhibit the closest
numerical values, while the thresholds returned by Algorithm
1 and Algorithm 4 are significantly farther apart. All
threshold values are shown in Tables 2 and 3. In order to
quantify these observations, we compute the ratio dmax/range,
where dmax is the largest distance between thresholds for a
given time series, and range is the difference between the
largest and smallest values in the time series.

The results of these computations are depicted in Fig. 6.
For a more algorithmic-centered classification, we define

the distance between methods as the Euclidian distance
between the vectors formed by the thresholds of each time
series of genes. Table 1 shows the distances between each
pair of methods.

The shortest and largest distances are highlighted, as
well. In both experiments and with the cdc data, the distance
from Algorithm 1 to 2-means is the largest. In turn, 2-means

Figure 5. Thresholds plots of the four methods on Experiment 1. Here, Jb1 is Algorithm 1, Jb2 is Algorithm 2, Cb1 is 2-means and Cb2, Algorithm 4.

Algorithm 4. Median separation. INPUT Gi, OUTPUT T
S ← sort(Gi,1,…, Gi,m)
for j = 1 to m - 1 do
 lmj ← median (S1,…, Sj)
 umj ← median(Sj + 1,…, Sm)
 Aj |← umj - lmj |
endfor
Ind ← argmaxd=1... m (A)
lmMax ← lmInd
umMax ← umInd
T ←(umMax + lmMax) / 2

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 12 / 98

TABLE I. DISTANCES BETWEEN ALL METHODS EXPRESSED AS HAMMING DISTANCE. LOWEST AND HIGHEST SCORES ARE HIGHLIGHTED.

and Algorithm 4 are separated by the shortest distance,
followed closely by algorithms 1 and 4. We also compared
the variations of each algorithm with respect to the input data
sets. The results are reported in Table 4. Table 5 shows the
Euclidean distance between the two experiments, for each of
the four methods. Among the methods, Algorithm 1 turned
out to be the less stable as it has both the shortest and largest
distances between data sets.

B. Variations in the Binary Quantization
The Hamming distances divided by the number of data

points measure the differences between the binary
quantizations derived with each threshold on the same time
series. Fig. 7 shows the results for the cdc data set. The
highlighted rows are pairs of different methods whose binary
quantizations coincide. The methods with the largest number
of coincidences are Algorithm 2 and 2-means.

Table 1 shows the Hamming distances between the
binary quantization computed with the convergence
threshold of each method. The closest methods are again,
Algorithm 2 and 2-means. In turn, the distances between
algorithms 1 and 4, and algorithms 1 and 2 are the largest.

Figure 6. Relations between maximal distance between threshold and data
range.

VI. CONCLUSIONS
The results show that the thresholds computed by the

four methods are significantly different. This is a clear
rejection of the hypothesis that the methods compute the
algorithmic-independent value, referred in this article as
Natural Threshold. As expected, convergence threshold
differs from thresholds. This sensitivity to the sample size is
also a negative answer to the question of the accuracy of the
methods. Also, the convergence thresholds produced binary
expression matrices that are also significantly different to the
ones obtained by the thresholds of each method. An
important implication that can be drawn from these
observations is that the models of gene regulatory networks,
whose construction uses a binary quantization as a first step,
are biased by the choice of the binary quantization method.
The success of some PBN representations of GRNs suggests
that this bias is being corrected, in part, with the
incorporation of prior gene interconnection knowledge, and
expected results.

Figure 7. Comparison between binary quantization matrices between
same methods using thresholds obtained from both experiments. Matching

binarizations are highlighted. Cdc data set.

Hamming Distance
Original Convergence

	
 	
 Jb2 Cb1 Cb2 Jb2 Cb1 Cb2
 cdc data

Jb1 0.23529 0.25 0.32353 Jb1 0.45588 0.47059 0.13235
Jb2 — 0.014706 0.088235 Jb2 — 0.014706 0.38235
Cb1 — — 0.073529 Cb1 — — 0.39706

 Random data
Jb1 0.3125 0.22917 0.3125 Jb1 0.4375 0.41667 0.10417
Jb2 — 0.083333 0 Jb2 — 0.020833 0.33333
Cb1 — — 0.083333 Cb1 — — 0.3125

!

Original	
 vs.	
 Convergence	
 Binary	
 Quantization	
 Matrices	
 -­‐cdc	

Original	
 	
 Convergence	

Jb1	

1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

1	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 0	
 	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Jb2	

0	
 0	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 0	
 0	
 	
 1	
 0	
 0	
 0	
 1	
 0	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 0	
 0	

0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

1	
 0	
 0	
 1	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 	
 1	
 0	
 0	
 1	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	

0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 1	
 0	
 	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 1	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Cb1	

0	
 0	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 0	
 0	
 	
 1	
 0	
 0	
 0	
 1	
 0	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 0	
 0	

0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

1	
 0	
 0	
 1	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 	
 1	
 0	
 0	
 1	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	

0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Cb2	

0	
 0	
 0	
 0	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

1	
 0	
 0	
 0	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 0	
 	
 1	
 0	
 0	
 0	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 0	

0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 1	
 0	

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 13 / 98

TABLE II. THRESHOLD VALUES FOR RANDOM GENERATED DATA. HIGHLIGHTED VALUES ARE MATCHING VALUES ON BOTH EXPERIMENTS.

TABLE III. THRESHOLD VALUES FOR CDC DATA. HIGHLIGHTED VALUES ARE MATCHING VALUES ON BOTH EXPERIMENTS.

TABLE IV. EUCLIDEAN DISTANCE BETWEEN DIFFERENT METHODS ON SAME EXPERIMENT.

TABLE V. EUCLIDEAN DISTANCE BETWEEN SAME METHODS ON DIFFERENT EXPERIMENT

The difficulties in determining a numerical threshold may
arise from the intrinsic nature of gene expressions. Both
assumptions, jumps in the data or statistical separation in two
groups may be too strict, in some sense, as data may have
some natural perturbation or noise. It may be the case that on
average, expressed and not expressed gene states are
separated in nature by an interval, not a point. In the interval
model, expressed states will correspond to values above the
interval’s upper limit while non-expressed states, to values
below its lower limit. And these expression values that fall
within the interval shall be declared noisy data-points.
Threshold intervals in gene expression time series may be
investigated by adding filters that eliminate expression
values that are too close to the threshold points returned by
the previous methods.

Threshold computation is not a large-scale problem, at
least not with the amount of data compilation currently
available. However, this may change as models evolve and
parameters, such as time, are incorporated. In such cases,
parallel and distributed computing versions of the algorithms
will be a necessary algorithmic development. Most probably,
because of the strong interdependence of data expression,

these methods will be mostly implemented in shared
memory systems.

This paper suggests a line of research that may be worth
pursuing. Its ultimate aim should be a mathematical
framework for validating implicit models from their different
algorithmic approaches. This validation might eventually
lead to, or replace an explicit abstract mathematical
representation of the reality behind by the implicit model.
The development of such a framework will support current
tendencies of using multi-algorithmic approaches to data
based computational modeling.

ACKNOWLEDGMENT
This research was supported in part by grants NIH-

MARC 5T36GM095335-02 and NIH-R25GM088023 from
the National Institute of General Medical Sciences.

REFERENCES
[1] H. Kitano, “Systems Biology: a brief overview,” vol. 295, no. 5560,

Science, March 2002, pp. 1662-1664.
[2] Y. Kim, S. Han, S. Choi, and D. Hwang, “Inference of dynamic

networks using time-course data,” Briefings in Bioinformatics, May
2013, doi:10.1093/bib/bbt028.

Experiment 1 Experiment 2
Jb1 Jb2 Cb1 Cb2 Jb1 Jb2 Cb1 Cb2
0.28072 0.54384 0.50574 0.45214 0.28072 0.48069 0.4671 0.18751
0.2805 0.4284 0.45131 0.41986 0.2805 0.37147 0.40742 0.23781
0.34758 0.45847 0.49741 0.44159 0.34758 0.77806 0.70254 0.37476
0.40338 0.50213 0.51927 0.47716 0.32267 0.50211 0.51097 0.47145
0.51041 0.71765 0.66833 0.64514 0.34708 0.67214 0.64782 0.32805
0.13834 0.60205 0.30395 0.61079 0.13834 0.50511 0.52622 0.15539

Experiment 1 Experiment 2
Jb1 Jb2 Cb1 Cb2 Jb1 Jb2 Cb1 Cb2
0.1981 0.27476 0.27286 0.30952 0.18095 0.25524 0.25531 0.19169
5.6067 4.1914 3.7892 3.8212 0.85382 3.2098 3.3162 0.89969
0.057143 0.080952 0.082453 0.087976 0.057143 0.080952 0.082453 0.087976
0.11143 0.1181 0.12625 0.125 0.11143 0.11976 0.12571 0.1196

 Jb1—Jb2 Jb2—Cb1 Cb1—Cb2 Jb1—Cb1 Jb2—Cb2 Jb1—Cb2

Exp. 1
cdc 1.41759 0.40229 0.04899 1.81927 0.37196 1.78929

random 0.60920 0.30835 0.32162 0.40995 0.12134 0.55177

Exp. 2
cdc 2.35729 0.10658 2.41736 2.46367 2.31099 0.05689

random 0.71131 0.09108 0.67506 0.67320 0.71282 0.18449

 Jb1—Jb1 Jb2—Jb2 Cb1—Cb1 Cb2—Cb2

Exp1 vs Exp2
cdc 4.75291 0.98180 0.47333 2.92389

random 0.18218 0.34761 0.30885 0.64467

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 14 / 98

[3] C. Needham, I. Manfield, A. Bulpitt, P. Gilmartin, and D. Westhead,
“From gene expression to gene regulatory networks in Arabioposis
thaliana,” BMC Systems Biology, 3:85, Sept. 2009,
doi:10.1186/1752-0509-3-85.

[4] I. Shmulevich and E. Dougherty, “Probabilisitic Boolean networks:
the modeling and control of gene regulatory networks,” SIAM, 2010.

[5] L. B. Klebanov and A.Y. Yakovlev, “A nitty-gritty aspect of
correlation and network inference from gene expression data,”
Biology Direct, vol.3, Aug. 2008.

[6] I. Shmulevich and W. Zhang, “Binary analysis and optimization-
based normalization of gene expression data,” Bioinformatics, vol.
18, no. 4, April 2002, pp. 555–565.

[7] M. Hopfensitz, et al., “Multiscale Binarization of Gene Expression
Data for Reconstructing Boolean Networks,” IEEE/ACM transactions

on computational biology and bioinformatics, vol. 9, no. 2, March
2011, pp. 487–498.

[8] X. Zhou, X. Wang, and E. R. Dougherty, “Binarization of microarray
data on the basis of a mixture model,” Molecular cancer therapeutics,
vol. 2, no. 7, July 2003, pp. 679–84.

[9] K. Hakamada, T. Hanai, H. Honda, and T. Kobayashi, “A
preprocessing method for inferring genetic interaction from gene
expression data using Boolean algorithm,” Journal of bioscience and
bioengineering, vol. 98, no. 6, Jan. 2004, pp. 457–63.

[10] R. J. Cho, et al., “A genome-wide transcriptional analysis of the
mitotic cell cycle,” Molecular Cell, vol. 2, 1998, pp. 65–73.

[11] http//:arep.med.hsrvsrd.edu/ExpressDB/EDS16/EDS16data.txt.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 15 / 98

Simulation of Precipitation in an Aluminum Scandium Alloy using Kinetic Monte
Carlo and Density-based Clustering with Noise Algorithms

Alfredo de Moura
IPC – Institute of Polymers and Composites

University of Minho
Guimarães, Portugal

alfredo.moura@gmail.com

Antonio Esteves
Computer Science and Technology Center

Informatics Department
University of Minho

Braga, Portugal
esteves@di.uminho.pt

Abstract: The present paper reports the precipitation process
of Al3Sc structures in an aluminum scandium alloy, which has
been simulated with a kinetic Monte Carlo (kMC) method. The
kMC implementation is based on the vacancy diffusion
mechanism. To filter the raw data generated by the kMC
simulation, the density-based clustering with noise (DBSCAN)
method was employed. kMC and DBSCAN algorithms were
implemented in the C language. The undertaken simulations
were conducted in the SeARCH cluster at the University of
Minho. The study covers temperatures, concentrations, and
dimensions, ranging from 578K to 873K, 0.25% to 5%, and
50x50x50 to 100x100x100. The Al3Sc precipitation was
successfully simulated at the atomistic scale. DBSCAN revealed
to be a valorous aid to identify the precipitates. The achieved
results are in good agreement with those reported in the
literature, but we went deeper in the evaluation of the
influence of all the simulation and analysis parameters. A
parallel version of the kMC algorithm using OpenMP was
evaluated, which has not proved advantageous compared to
the optimized sequential implementation.

Keywords - Al3Sc precipitation; kinetic Monte Carlo; cluster
analysis; DBSCAN; OpenMP.

I. INTRODUCTION

Precipitate structures play a fundamental role in the
material science due to the capacity of representing strong
obstacles for dislocations movements within the material
structure.

This paper focuses on the elaboration and application of
mechanical statistics knowledge, namely the kinetic Monte
Carlo method [1], on the study and prediction of the
phenomenon of precipitation in an aluminum alloy. The
alloy under analysis is the aluminum scandium alloy [2]. The
work that will be documented inhere tackles subjects such as
computational mechanics, mechanical statistics (the kinetic
Monte Carlo method), material science, the precipitation
phenomenon, the diffusion phenomenon, what influences
this phenomenon and how to control it and also predict it, as
well as data mining (namely clustering) the vital information.

OpenMP [3] is an API that allows shared memory
parallelization on multi-core machines. It is based on
compiler directives, library routines and environmental
variables. OpenMP uses multithreading and is based on the

fork-join model of parallel execution. It is through directives,
added by the programmer to the code, that the compiler adds
parallelism to an application. Since the most promising
parallelization strategy for the kMC algorithm uses shared
memory, OpenMP is a natural choice. Only if the OpenMP
implementation of the KMC algorithm accelerates the
sequential version in a scalable manner, we will try a
distributed memory parallelization strategy, such as Message
Passing Interface (MPI) [4].

The outcome of the work undertaken is a set of software
applications that allows us (i) to perform Monte Carlo (MC)
simulations with and without OpenMP, (ii) to analyze the
results using the Density Based Spatial Clustering of
Applications with Noise (DBSCAN) technique [5], and (iii)
to compare the simulation results with the classical
nucleation theory. Practical results obtained with these
applications are (i) reports about the simulation, the analysis
of clusters and precipitates with DBSCAN algorithm, and the
application of the classical nucleation theory; (ii) files for 3D
visualization of the simulation (at various stages over time);
and (iii) files for 3D visualization of the precipitates.

The rest of the paper is organized as it follows. Section
II presents the related work. Section III summarizes the
theory behind the simulation of precipitation with kinetic
Monte Carlo. Section IV describes the implementation of
the simulation and cluster analysis. Section V presents the
results of the simulation and analysis. Finally, Section VI
points out some conclusions and areas for future research.

II. RELATED WORK

As computation extends its capacities increasingly, so
has the scientific field of nucleation and precipitation
modeling. The process of modeling nucleation and
precipitation has been achieved at different scales, each one
having its own advantages and disadvantages. It has
increased the number of publications and studies related with
the subject of modeling the precipitation kinetics at the
atomistic level [6]. At the atomistic level, the simulation
model includes (i) the individual atoms, which are organized
in a lattice, and (ii) the interactions among atoms,
represented by the number of atomic bonds and several
energies. The main materials subjected to such studies are
alloy materials, such as Fe-Cu, Fe-P-C, Fe-Cu-Ni-Si, Al-Cu.

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 16 / 98

Aluminum alloys have also their share of studies by which
we would like to outline and focus on the Al-Sc alloy.

Binkele and Schmauder studied the precipitation in the
Fe-Cu binary system via atomistic Monte Carlo simulations
[7][8]. The Fe-Cu system has a BCC structure and the
percentages of Fe and Cu used were 90% and 10%,
respectively. In our work we have simulated the Al-Sc alloy,
which has a FCC structure and a lower supersaturation: the
percentage of scandium varied in the range of 0.25% to 5%.
Under these conditions, the precipitation is more difficult to
observe. We believe that the formula we used to calculate the
real-time in simulation is more accurate than the one
mentioned in [7]. In [7][8] is not presented a comparison
between kMC simulation results and Classical Nucleation
Theory (CNT) [9][10], as was done in the present work.

Bombac and Kuglar also simulated a Fe-Cu alloy with
MC. The simulation was based on a residence time
algorithm, used a BCC rigid lattice structure and applied a
temperature of 873K. The outputs of their study are only the
number of precipitates and their dimension [11]. They did
not compare the simulation results with theory, and several
parameters that influence simulation results were not
evaluated.

The work by Lae et al. documents a study in which
cluster dynamics simulation is applied to Al-Sc and Al-Zr
alloys. The achieved results are compared with MC
simulation results and they found a good agreement between
both simulations results [12]. Comparing with our work,
kMC is employed in [12] just as a comparison tool and no
details are given about the kMC simulations.

Clouet et al. have published studies of atomistic Monte
Carlo simulations not just based on a binary Al-Sc alloy but
also on ternary systems [13]. The results of the Al-Sc alloy
simulations were compared with the classical nucleation
theory. The simulation applied a residence time algorithm
using an FCC rigid lattice. Our approach was inspired by
Clouet et al. [13] but we evaluated the influence of all the
parameters involved in simulation: lattice size, temperature,
Sc concentration, and the number of MC steps.

Clouet and Soisson have published a summary of recent
applications of the atomistic diffusion model and of the
kinetic Monte Carlo method [14]. The summary covers
homogeneous and heterogeneous precipitation caused by
thermal aging as well as phase transformation caused under
irradiation. To conclude this publication the authors mention
that atomistic kinetic Monte Carlo simulations provide a
convenient way to simulate and model precipitation kinetics
in alloys.

Monte Carlo simulations have also been used on the
study of other phenomena. Grain growth, abnormal grain
growth, thin film deposition and growth, sintering for nuclear
fuel aging, bubble formation in nuclear fuels are just some of
those phenomena [15].

The three main contributions of the present work to the
reviewed literature are (i) the exhaustive evaluation of all the
parameters involved in kMC simulation, (ii) the application
of a robust and automatic clustering technique, and (iii) the
attempt of accelerating the simulation through the
parallelization of kMC with OpenMP.

III. THEORETICAL BACKGROUND FOR KMC SIMULATION

This section summarizes the theory, as a set of equations,
behind the simulation of Al3Sc precipitation with kinetic
Monte Carlo.

Transition rate for an aluminum atom is calculated by (1)
[8].

 exp
AlV

AlV Al

E
v

kT


   (1)

As for (2), it describes the transition rate for a scandium
atom [8].

 exp
ScV

ScV Sc

E
v

kT


   (2)

The aluminum activation energy is obtained by (3) [8].

           

           

1 1 1 1 2 2

2 2 1 1 1 1

AlV spAl AlAl AlAl AlSc AlSc AlAl AlAl

AlSc AlSc AlV AlV ScV ScV

E E n n n

n n n

  

  

    

  
 (3)

Equations (4), (5), and (6) describe relations among the
number of bonds and the size of the first and second
neighborhoods, for an FCC structure [8].

   1 1

1
1

AlAl AlSc
n n Z   (4)

   2 2

2AlAl AlSc
n n Z  (5)

   1 1

1AlV ScV
n n Z  (6)

where
 1

AlAl
n and

 2

AlAl
n are the number of aluminum-

aluminum bonds regarding the first and second

neighborhood, respectively.
 1

AlSc
n and

 2

AlSc
n are the number of

aluminum- scandium bonds regarding the first and second

neighborhood.
 1

AlV
n is the number of aluminum-vacancy

bonds and
 1

ScV
n is the number of scandium-vacancy bonds,

regarding the first neighborhood. Z1 and Z2 are the size of the
first and second neighborhoods, respectively.

The scandium activation energy is obtained by (7) [8].
           

           

1 1 1 1 2 2

2 2 1 1 1 1

ScV spSc AlSc AlSc ScSc ScSc AlSc AlSc

ScSc ScSc AlV AlV ScV ScV

E E n n n

n n n

  

  

    

  
 (7)

Analogously, (8), (9), and (10) describe the number of
scandium-scandium bonds, number of aluminum-scandium
bonds, number of aluminum-vacancy bonds, number of
scandium-vacancy bonds, regarding the first and second
neighborhood [8].

   1 1

1
1

ScSc AlSc
n n Z   (8)

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 17 / 98

   2 2

2ScSc AlSc
n n Z  (9)

   1 1

1AlV ScV
n n Z  (10)

As a vacancy site is surrounded by twelve nearest
neighbors, twelve jump rates are calculated. They are the
jump frequency Γ1, Γ2, until, Γ12. In the next step of a kMC
algorithm, one of these 12 frequencies is selected, based on
their values and on a random number: the vacancy will jump
to the position of atom n that verifies (11) (Figure 1).

Equation (12) describes the computation of the real time
of simulation. It is composed by the averaged residence time,
multiplied by a factor that takes into account the difference
between the simulated vacancy concentration and the real
vacancy concentration. Equation (13), which traduces
analytically the graphical data vacancy concentration versus
temperature obtained in [16], calculates the real vacancy
concentration in this kMC algorithm.

Figure 1. Random selection of the jump frequency.

1

1 1

_
n n

i i

i i

random number


 

     (11)

 
112

1

sim sim

real simV V

MC i MCreal real
i

V V

C C
t t

C C





    
   
   
   

 (12)

5

7 2 10 3

13 4 16 5

0.005792301654 5.281432466

1.916781695 3.466630615

3.132467044 1.135950846

Vreal
C e T

e T e T

e T e T



 

 

   

   

   

 (13)

IV. IMPLEMENTATION OF SIMULATION AND ANALYSIS

A. Simulation with Kinetic Monte Carlo

The pseudo-code presented in Figure 2 summarizes the
implemented kinetic Monte Carlo algorithm in C language.
This code enhances the steps that are of upper importance in
a kMC simulation: the activation energy calculation, the
vacancy exchange frequency calculation, the step time
calculation, the swap of positions between the vacancy and
the selected first nearest neighbor. Additionally, the code
enhances the step of the data input as well as the step of
saving the simulated data.

The correspondent C code is portable, in the sense that it
can be compiled and run in any system having gcc installed:
Linux, Windows or other operating system. As so, the
submitted simulations were undertaken in the SeARCH
cluster. The SeARCH cluster has the advantage that it can be

used to accelerate simulations in three ways: (i) running
multiple sequential simulations at same time, with different
parameters, (ii) running a parallel simulation on the same
machine using OpenMP, or (iii) running a parallel simulation
on several machines using MPI. The last option was not
implemented since the second alternative was implemented
and did not succeed on accelerating the sequential version.

Figure 2. kMC algorithm.

B. Clustering Analysis with DBSCAN

The main goal of clustering analysis is dividing data into
groups, or clusters, which share certain characteristics.
Clustering is used in the present work to identify Al3Sc
precipitates in a 3D matrix, containing the position of all Sc
atoms, generated by the kMC simulation. The implemented
clustering algorithm is designated by DBSCAN [5].
CLARANS [17], DBCLASD [18], and OPTICS [19] are
other clustering algorithms, adequate for dealing with large
spatial datasets.

As a member of the density-based clustering approaches,
DBSCAN identifies regions of high density agglomerations
in an immense low density surrounding. Its major advantages
are (i) it identifies objects with arbitrary shape and (ii) it does
not require that the number of clusters to be identified is
provided as input, like k-means method does. DBSCAN
introduces the notion of noise, used to label atoms that are in
low dense regions, which revealed to be an adequate feature
in our case. In DBSCAN, for each cluster identified, a point
of that cluster is a core point if it has in its neighborhood
(with a predefined radius eps) a predefined minimum

main:
 Read the configuration file
 Compute the coordinates of all FCC lattice sites
 Compute average step time and rejection step time →

→ avgStepTime, rejectStepTime
 Initialize the simulated time → timeSim=0
 while (mcs < TOTAL_MCS) do
 Calculate the activation energy → Eact
 Calculate the vacancy exchange frequency and the real time of
 this MCS → vEF, ts
 ts = ts*tsCorrection // corrected simulated time for
 // current MCS
 if (ts > rejectStepTime) then // step time exceeds a threshold
 // that is considered a
 // computation error
 Increment errorSteps
 ts = avgStepTime // replace computed step time by
 // average step time
 endIf
 timeSim = timeSim + ts // accumulated simulated time
 Select a 1st nearest neighbor for the new position of vacancy
 Swap the vacancy with the selected neighbor

 if (mcs = snapshots[numSnap]) then // if it is a snapshot point
 Save simulation data to VTK | PDB | XYZ file(s)
 snapshotTime[numSnap-1] =timeSim // save snapshot time
 Increment numSnap
 endIf
 Increment mcs
 endWhile
 Write a simulation report to file
end main

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 18 / 98

number of points (minPts). DBSCAN classifies points as
being: (i) core point - a point in the interior of the density
based cluster, (ii) border point - a point that belongs to the
border of the density based cluster, and (iii) noise point - a
point that is neither a core point nor a border point.

Figure 3. Main function of the DBSCAN algorithm.

Figure 4. ExpandCluster function used by the DBSCAN algorithm.

The pseudo-code included in Figures 3 and 4 presents the
main functionalities of DBSCAN, which was implemented
in C language. The code follows the main sequence of steps
defined by the authors of the algorithm [5].

To save the atoms belonging to each group was used a
data structure that varies dynamically, because the clusters
are of variable and unknown size. The used data structure
was inspired by the Java ArrayList class. After applying
DBSCAN, the clusters that are split in several parts are
merged in a single spatial region per cluster. This is required
because we use periodic boundary conditions (PBC) and
aims to improve the 3D visualization of clusters [2].

To permit the visualization of the lattice configurations
generated by the kinetic Monte Carlo simulations and by the
clustering analysis, these configurations are saved to files in
a format that can be read and rendered by available
visualization tools. The developed code allows us to save
data in one of the following formats: pdb, xyz, and vtk. All
these data formats can be visualized with the ParaView tool,
which is an open-source application adequate to the
visualization and analysis of multidimensional data.

Beyond the visualization files with precipitates, the
analysis carried out by DBSCAN produces other results,
such as, the size and radius of the precipitates, the average
size and radius among all precipitates, the percentage of Sc
atoms in precipitates and in Al solid solution, and the
number of small clusters with the same size.

The main inputs necessary to undergo a simulation and
posterior cluster analysis, which are supplied in a
configuration file, are: the aluminum lattice constant
(Angstrom), the number of unit cells in the x/y/z direction,
scandium percentage, simulation Monte Carlo steps,
simulation temperature (Kelvin), material parameters, the
radius used to define the neighborhood of each atom (eps in
DBSCAN algorithm), and minimum number of neighbors
that makes an atom to be a core atom of a cluster (minPts in
DBSCAN).

The material parameters that supported the previous
equations and therefore, the simulations are, first and second
nearest-neighbor pair effective energies, saddle point

energies and attempt frequencies [13]:
 1

AlAl
 = -0.56 eV;

 1

ScSc
 = -0.65 eV;

 1

AlSc
 =-0.759+21.0x10-6T eV;

 1

VV
 = -0.084

eV;
 2

AlSc
 = 0.113 -33.4x 10-6T eV;

 1

AlV
 =-0.222 eV;

 1

ScV
 = -

0.757 eV;
sp

Al
e =-8.219 eV;

sp

Sc
e = -9.434 eV;

Al
 = 1.36x1014

Hz;
Sc

 = 4x1015 Hz.

C. Implementation of kMC with OpenMP

Figure 5 presents the algorithm of the main function used
to implement the kinetic Monte Carlo simulation with
multiple threads of execution, through the OpenMP library.
The lines starting with #pragma omp specify OpenMP
directives, for example to create the parallel threads or to
synchronize threads. After the initial steps, which are the
same as in the sequential code, it is specified the number of
threads to create. The core of the algorithm is a loop that
iterates over the number of MC steps. Within this cycle we
create parallel threads, each with a private copy of the

DBSCAN (atoms[], nAtoms, eps, minPts)
 cid = 0 // current cluster ID
 pid = 0 // atom position on the array of atoms

 while (pid < nAtoms) do // cycle over all atoms
 if (atom ‘pid’ was not yet visited) then
 Mark atom ‘pid’ as visited
 Get the size of neighborhood of atom ‘pid’  sizeN
 if (sizeN<minPts) then
 Classify atom ‘pid’ as NOISE
 else
 resBool = ExpandCluster (atoms, nAtoms, visited, N,
 pid, cid, eps, minPts)
 if (resBool = TRUE) then
 Increment cid
 endIf
 endIf
 endIf
 Increment pid
 endWhile
end DBSCAN

ExpandCluster (atoms[], nAtoms, visited[], N[], pid, cid, eps,
 minPts)
 Get the size of neighborhood of atom ‘pid’  sizeN
 Count unclustered neighbors of atom ‘pid’  sizeUnclustered
 if (sizeUnclustered < minPts) then
 Mark atom 'pid' as NOISE
 return FALSE
 else
 Add atom 'pid' to cluster 'cid'
 for (i in [0:sizeN[) do
 nid = neighbor i-th of atom 'pid'
 if (atom 'nid' was not yet visited) then
 Mark atom 'nid' as visited
 Get size of neighborhood of atom ‘nid’  sizeNN
 if (sizeNN >= minPts) then
 for (j in [0:sizeNN[) do
 nnid = neighbor j-th of atom 'nid'
 Add atom 'nnid' to neighborhood of atom 'pid'
 Increment sizeN
 endFor
 endIf
 endIf
 if (atom ‘nid’ is not yet member of any cluster) then
 Add atom 'nid' to cluster 'cid'
 endIf
 endFor
 endIf
 return TRUE
end ExpandCluster

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 19 / 98

specified variables. With the aid of the thread ID (idT) and
the number of threads (nT), each thread can execute only a
subset of the calculations.

Figure 5. kMC algorithm with OpenMP.

For example, each thread calculates a subset of the
activation energies (Eact[]) associated with the 12 neighbors

of a vacancy. If it is necessary that all threads reach a certain
position in the code, at the same time, it is inserted a
synchronization barrier. The condition "idT=0" is used to
force the calculations to be carried out only by thread 0.

V. RESULTS

Figure 6 illustrates the time evolution of the precipitation
phenomenon. The initial random configuration applied to the
simulation is shown in Figure 6 (a). The sequence of figures
report a simulation that undertook the conditions of 873K,
1%Sc, and over 5x1011

 MCS in a 50x50x50 lattice box (5x105
atoms). The Sc atoms in raw configurations produced by the
simulation are presented in the left part of each figure. The
right configuration of each figure demonstrates the
application of the DBSCAN algorithm, where the scandium
atoms that do not belong to precipitate structures are labeled
NOISE and do not appear.

The sequence of graphics from Figure 7 summarizes the
analysis undertaken over the simulation outputs. Figure 7 (a)
represents the evolution of precipitates dimension in terms of
radius measure. Figure 7 (b) acknowledges the evolution of
the presence of scandium atoms distributed in the aluminum
solid solution. As with Figure 7 (c), it is possible to
acknowledge the evolution of the presentage of scandium
atoms in precipitate structures. Figure 7 (d) is one of the
most important interpretations that is conducted regarding
simulation of the nucleation of precipitates as it allows one to
undertake comparison analyses with the CNT [9][10]. Two
measures are used to efectively compare kMC with CNT: the
steady-state nucleation rate (Jst), which represents the
number of supercritical nuclei formed per unit time in a unit
volume and the cluster size distribution (CnSc), which defines
the probability to encounter a cluster with a dimension of n
atoms in a solid solution [2].

The simulations were run on the SeARCH cluster,
located at the University of Minho. Table I contains the
technical specifications of the SeARCH cluster nodes where
we run the kinetic Monte Carlo simulations.

The computation time mainly depends on the number of
MC steps. Simulations duration is also influenced by the
technical specifications of the machines where the
simulations were run. On a compute-311-X node of the
SeARCH cluster, a simulation with 5x1011 took around 8
days, and 12 days on a less performing compute-201-X
node. Computation time does not depend significantly on the
scandium percentage, the lattice size or any other parameter
of the simulations.

main_OMP

[…] // Initial steps are the same as in non OMP code
// Specify the number of threads to be created
 omp_set_num_threads(numThreads)
Initialize the MC step (mcs) to zero

while (mcs<numberMCStoSimulate) do
 if (idT = 0) then // This section is run by thread with id=0 only
 Count the number of vacancy's first neighbors of Al and Sc type
 endIf

// Create multiple threads
#pragma omp parallel private
 (idT, i, j, nPos, nType, nnPos, nnType, n_AlAl_1, n_AlSc_1,
 n_ScSc_1, n_AlV_1a, n_ScV_1a, n_AlAl_2, n_AlSc_2,
 n_ScSc_2, expoent)
{
 idT = omp_get_thread_num() // ID of each thread
 nT = omp_get_num_threads() // Number of threads
 i = idT
 while (i < NUMBER_1ST_NEIGHBORS) do
 Compute Eact[i] associated with i-th vacancy neighbor
 i = i + nT
 endWhile
 Compute absolute vacancy exchange freq. with its 12 1-st neighbors
 #pragma omp barrier
 if (idT = 0) then
 Compute the sum of all 1-st neighbors absolute exchange freq.
 endIf
 #pragma omp barrier
 Compute relative vacancy exchange freq. with its 1-st neighbors
} // (end of) multiple threads

 if (idT = 0) then
 Sum of all relative vacancy exchange freq. with 1-st neighbors
 totalT = totalT + 1/sumAbsoluteVef
 Select randomly a 1-st nearest neighbor for new vacancy
 Swap the vacancy with the selected neighbor
 if (mcs = snapshots[numSnap]) then
 Save simulation data to file at snapshot
 Increment the number of the current snapshot
 endIf
 Increment the MC step (mcs)
 endIf
endWhile // (end of) cycle relative to the number of MCS

[…] // Final steps are the same as in non OMP code
end main_OMP

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 20 / 98

Table II summarizes the computation time needed by a
kMC simulation with different number of threads. The
number of MC steps simulated was 107, the lattice included
10*10*10*4 atoms and we used C code with OpenMP. As
we can see from Table II, the utilization of an increasing
number of threads is counterproductive. The poor
performance achieved by the presented parallel
implementation results from 3 facts: (i) the problem we are
dealing with is not inherently parallel, since the MC
simulation has only one vacancy, (ii) the work assigned to
each thread is small and does not compensate the
computation overhead introduced by the threads, and (iii)
there are several parts of the code that have to be executed
by one thread only.

(a)

(b)

(c)

(d)

Figure 7. Simulation metrics: (a) precipitates mean radius; (b) percentage
of Sc in Al solid solution; (c) percentage of Sc in precipitates; (d) number

of precipitates normalized by the number of lattice sites.

(a)

(b)

(c)

(d)

Figure 6. Evolution of simulation: (a) initial configuration; (b) t=1.55ms;
(c) t=3.03ms; (d) t=4.945ms (left/right  before/after applying DBSCAN).

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 21 / 98

TABLE I. TECHNICAL SPECIFICATIONS OF THE SEARCH NODES USED BY
THE KMC SIMULATIONS.

Nodes Processors
CPUs

Number
L2

Cache
Operating

System
311–X
nodes

Intel Xeon
E5420

8
12

MB
Linux

x86_64
201–X
nodes

Intel Xeon 5130 4 4 MB
Linux

x86_64
101–X
nodes

Intel Xeon 4 2 MB
Linux

x86_64

TABLE II. COMPUTATION TIME, NEEDED BY A MC SIMULATION, AS A

FUNCTION OF THE NUMBER OF THREADS.

Number of threads Average computation time (s)
1 25
2 46
4 52
8 62
12 70

VI. CONCLUSIONS AND FUTURE WORK

kMC simulation of Al3Sc precipitation on a
supersaturated Al solid solution was successfully achieved.
This proves that the equations used to model Al3Sc
precipitation are correct. The results from kMC simulations
were further improved by the application of DBSCAN,
which proved to be a valorous aid to identify the Al3Sc
precipitates, by eliminating the unclustered Sc atoms. The
DBSCAN algorithm reveals adequate in the role of
identifying, visualizing and measuring (size, radius, and
shape) of the precipitates embedded in the Monte Carlo
output data. By simulating with various Sc percentages, as
well as temperatures, the capacity of clustering Al3Sc
precipitates maintains accurate.

The number of stable precipitates strongly increases in
the initial phase. After that, the number of precipitates
reduces, as predicted by the theory of nucleation.
Consequently the surviving precipitates increase in size,
either in number of atoms or in radius. The mean precipitates
radius increases almost linearly over time. The number of
precipitates normalized by the number of lattice sites
increases rapidly in the initial phase of the simulation and
then decreases slightly during the rest of the simulation.
Temperature has a profound influence on the evolution of the
precipitation simulation. As the CNT states, and the
simulation graphics do prove, the steady state nucleation rate
rises with the temperature increase.

The achieved results are very much in good agreement
with those reported by Clouet et al. [13]: the increase of the
precipitates average size and the reduction of the Sc
concentration in the Al solid solution during the simulation
follow the same tendency. The comparison between kMC
and CNT are very much similar [13]. Although we have used
the same model for Al3Sc precipitation as [13], it was
possible to go deeper in the evaluation of the influence of all
the parameters involved in simulation: lattice size,
temperature, Sc concentration, number of MC steps, and the
technique used in cluster identification and measuring. We
also tried strategies to accelerate the simulation, using
OpenMP.

Some features of ParaView made it an interesting choice
for visualization and even analysis such as its support to the
three formats (vtk, pdb, xyz) we used as output of kMC, it is
open source and based on a popular framework (VTK) [20],
and it supports parallelism as to handle huge files.

A field for future research is the exploration of
parallelization techniques for the kMC simulation. Due to the
sequential nature of the precipitation problem, a hypothesis
is to use multiple vacancies and run multiple simulations in
parallel, each one with a vacancy and a sub-lattice.
Simulating with multiple vacancies alters the vacancy
concentration to a unrealistic value. Thus, the validity of this
alternative, used to speed up the simulations, has to be
demonstrated. Examples of algorithms that follow this
strategy are the optimistic synchronous relaxation (OSR) and
the semi-rigorous synchronous sub-lattice (SL) [21]. These
approaches have to deal with two critical issues: correct the
excessive vacancy concentration and synchronize the parallel
instances of the asynchronous kMC simulation. Another
future research topic would be extending MC method to
simulate ternary alloys, such as Al-Mg-Sc, Al-Sc-Si or Al-
Sc-Zr.

ACKNOWLEDGMENTS

This work was funded by National Funds through the
FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project
PEst-OE/EEI/UI0752/2011.

REFERENCES
[1] A. Voter, "Introduction to the Kinetic Monte Carlo Method",

Radiation Effects in Solids, Springer, pp. 1-23, 2007.
[2] A. de Moura, “Simulation of the Nucleation of the Precipitate

Al3Sc in an Aluminum Scandium Alloy using the Kinetic
Monte Carlo Method”, MSc thesis, University of Minho, Dec
2012.

[3] B. Chapman, G. Jost, and R. Pas, "Using OpenMP: Portable
Shared Memory Parallel Programming", The MIT Press,
2007.

[4] W. Gropp, E. Lusk, and A. Skjellum, "Using MPI: Portable
Parallel Programming with the Message Passing Interface",
2nd edition, The MIT Press, 1999.

[5] M. Ester, H.-P. Kriegel, J. Sanders, and X. Xu, “Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Published in Proceedings of 2nd
International Conference on Knowledge Discovery and Data
Mining (KDD-96), 1996.

[6] J. Röyset, “Scandium in aluminum alloys overview: physical
metallurgy, properties and applications”, Metallurgical
Science and Technology, Hydro Aluminium R&D Sunndal,
N-6600 Sunndalsöra, Norway.

[7] P. Binkele and S. Schmauder, “An atomistic Monte Carlo
simulation of precipitation in a binary system”, International
Journal for Materials Research, 94, pp. 1-6, 2003.

[8] S. Schmauder and P. Binkele, “Atomistic computer
simulation of the formulation of Cu-precipitates in steels”,
Computational Materials Science 24 (2002), 2002, pp. 42-53.

[9] D.Kashchiev, "Nucleation: Basic Theory with Applications",
Butterworth-Heinemann, Oxford, 2000.

[10] E. Clouet and M. Nastar, "Classical nucleation theory in
ordering alloys precipitating with L12 structure", Physical
Review B 75, 132102, pp. 1-4, 2007.

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 22 / 98

[11] D. Bombac and Goran Kugler, “Precipitation in Alloys: A
kinetic Monte Carlo and Class Model Study”, World Journal
of Engineering, 2010.

[12] L. Lae, P. Guyot, and C. Sigli, "Cluster dynamics in AlZr and
AlSc alloys", Materials Forum Volume 28, Institute of
Materials Engineering Australasia Ltd, pp. 281-286, 2004.

[13] E. Clouet, M. Naster, and C. Sigli, “Nucleation of Al3Zr and
Al3Sc in aluminum alloys: From kinetic Monte Carlo
simulations to classical theory”, Physical Review B 69 (6),
064109, pp. 1-14, 2004.

[14] E. Clouet and F. Soisson, “Atomic simulations of diffusional
phase transformations”, C. R. Physique 11 (2010), 2010, pp.
266-235.

[15] S. Plimpton, C. Battoile, M. Chandross, L. Holm, A.
Thompson, V. Tikare, G. Wagner, E. Webb, and X. Zhou,
“Crossing the Mesoscale No-Man´s Land via Paralelel
Kinetic Monte Carlo”, Sandia Report, SAND2009-6226,
2009.

[16] J. E. Hatch, “Properties and Physical Metallurgy”, American
Society for Metals, 1984.

[17] R. Ng and J. Han, “Efficient and Effective Clustering
Methods for Spatial Data Mining”, Proc. 20th Int. Conf. on
Very Large Data Bases, Santiago, Chile, pp. 144-155, 1994.

[18] X. Xu, M. Ester, H. Kriegel, and J. Sander, "A Distribution-
Based Clustering Algorithm for Mining in Large Spatial
Databases", Proceedings of the 14th International Conference
on Data Engineering, pp. 324-331, 1998.

[19] M. Ankerst, M. Breunig, H. Kriegel, and J. Sander, "OPTICS:
Ordering Points To Identify the Clustering Structure",
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 49-60, 1999.

[20] W. Schroeder, K. Martin, and B. Lorensen, "The
Visualization Toolkit An Object-Oriented Approach To 3D
Graphics", 4th Edition, Kitware Inc. publishers, 2006.

[21] G. Nandipati, Y. Shim, J. Amar, A. Karim, A. Kara, T.
Rahman, and O. Trushin, “Parallel kinetic Monte Carlo
simulations of Ag(111) island coarsening using a large
database”, Journal of Physics: Condensed Matter,
21(8):084214, pp.1-12, 2009.

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 23 / 98

A CADx Scheme in Mammography: Considerations on a Novel Approach

Bruno Matheus, Homero Schiabel

Department of Electrical Engineering

USP – ESSC

São Carlos, Brazil

bmatheus@sc.usp.br, homero@sc.usp.br

Abstract—This paper describes a prototype of a complete
CADx system developed in the last years in our research
groupp. Its basic structure consists of pre-processing
corrections based on the image acquisition and digitization
procedures (FFDM, CR or film + scanner), a segmentation tool
to detect clustered microcalcifications and suspect masses and
a classification scheme, which evaluates the presence of
microcalcifications clusters and possible malignant nodules
based on their contour. The aim is to provide enough
information not only on the detected structures but also a pre-
report with a BI-RADS classification. At this time, the system
is still lacking an interface integrating all the modules. Despite
this, it is partially functional, as a prototype for testing.

Keywords-Mammography; Mammographic CAD;
Microcalcification Detection; Nodule Detection; Nodule
Classification; Image Analysis.

I. INTRODUCTION

Since all women over the age of 40 are recommended to
perform mammographic exams every two years, the
demands on radiologists to evaluate mammographic images
in short periods of time has increased considerably. As a
tool to improve quality and accelerate analysis, CADe/Dx
(computer-aided detection/diagnostic) systems are being
researched, but very few complete CADe/Dx systems have
been developed and most are restricted to detection and not
diagnosis. The existent ones [1] [2] are associated to
specific mammographic equipment (usually Digital
Radiology), which makes them very expensive.

Computer-aided Diagnosis (CAD) schemes are
addressed to accelerate and ease the evaluation of medical
images, sometimes serving as a second opinion. In
mammography, the lack of trained professionals makes the
careful evaluation of each image of each exam expensive
and restrictively time consuming, especially for second
opinions. Thus, several CAD schemes are being developed
focusing on mammography. However, the breast tissue is
commonly very difficult for analysis, which makes the few
CAD schemes approved by the American Food and Drug
Administration (FDA) highly expensive, in addition to be
only designed for detection (CADe) – indicating suspected
signals without classifying them.

Our research group has been developing in the past years
some processing schemes for both detection and

classification of signals regarding mammographic images.
These schemes include special attention to pre-processing
enhancements based on imaging acquisition quality
characteristics evaluation [3] [4] [5], detection of clustered
microcalcifications [6] [7] and detection and classification
of suspected masses [8] [9] [10] [11].

The purpose of this paper is to present the ensemble of
several years of research in this CADx scheme prototype,
including the results obtained individually by each module
(as well as joined at all) and to discuss the further
developments of this system in the near future. The scheme
corresponds to an automatic CADx system being developed
for free use and, in the future, to be connected to an online
image database [12] to aid in the medical reports.

This following paper contains a Methods section, where
the prototype system is described; this section is subdivided
by the function of the module described. The next section is
Results, where the results obtained so far with the prototype
are described. Lastly, the Conclusion section discuss the
future of the project.

II. METHODS

This CADx scheme is divided in 3 major structures: Pre-
processing, CADx processing and Comparison to database.
A detailed diagram is presented in Figure 1. Each division is
described as following:

A. Pre-processing

Once the digital images are obtained, they are submitted
to pre-processing techniques for enhancement based on
imaging intrinsic parameters, determined by quality
assurance procedures. This process is composed of:

A.1 Breast and pectoral muscle segmentation

Initially, the digital image is segmented to remove tags
and as much as possible of the background, reducing the
size of the image and, consequently, reducing the
computational cost of the following procedures. In this step,
the pectoral muscle is also segmented to be used in step
B.B.4.

This method consists of a logarithm contrast
enlargement [13] [14] followed by a segmentation using
Pun’s global threshold [15]. With this, the breast itself is

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 24 / 98

segmented from the background. The techniques used in this
step are fully detailed in [16].

A.2. Scanner/CR corrections

Another source of errors in this process is the image
conversion in digital format. The aim in this step is “to
correct” the final image according to the errors or distortions
due to the digitization process, from a film digitizer or other
electronic device in Computed Radiography (CR) or even
Digital Radiology (DR) systems [5]. The procedure
essentially transforms the image intensity according to the
ideal relation between the optical density (or the beam
intensity) and pixel gray scale. This is particularly important
in film scanning, due to the relation between the film
sensitometric curve and the digitizer characteristic transfer
curve.

The technique used in this stage was previously
described. For its use, knowing the characteristic curve of
the scanner or CR/DR system is a requirement.

Figure 1. CADx diagram

B. CADx processing

Once the image is digitized and transformed according
to the pre-processing techniques, the image is processed in
the 4 distinct modules below:

B.1 Density

In this module, the breast image has its density
evaluated, according to BIRADS [16] [17] classifications.
This evaluation is performed based on the average gray
scale intensity for the entire breast. Also, in this module,
both breasts are compared in each orientation (Mediolateral-
Oblique - MLO and Cranio-Caudal - CC) and analyzed for

density differences between breasts, characterizing an
asymmetry. If an asymmetry is detected, it is evaluated as a
nodule detection in step B.2.

The results of this system are of an average sensitivity of
94.6% with a false-positive rate of 26.35%. Comparing to a
well-recognized work in the field [18] - with a sensitivity of
90.38% and 32.12% false-positives rate - the proposed
module has better results.

B.2Nodules

This module is designed to detect and classify nodules.
First, the complete image is evaluated using neural network
techniques to detect Regions of Interest (RoIs), which
contain nodules [16]. The detected RoIs are then segmented
in order to separate the nodule itself from the background
using EICAMM [19]. Once the nodule is segmented, an
evaluation of the contour, texture and density is used to
classify the nodule between benign or malignant [19].

Early testing with this module presented the following
results: the detection scheme of this module yielded 74% of
sensitivity with 3.5 false positives per image; the
segmentation scheme matches 65.8% against a specialist
response and the classification process reached a sensitivity
of 81.28% with 20.28% false positive rate. More tests are
needed before a full comparison can be drawn to other
similar systems.

B.3Calcifications

This module uses a series of convolution filters derived
from Chan [20] and Schiabel [21] to detect, in the given
image, the location of clustered microcalcifications. The
filter is designed to match the format of a calcification,
increasing the signal when a match occurs and removing
most of the background. This filter is a reworking of Chan’s
filter for images of variable size.

This system has been shown to have good results with
different types of images specially using FFDM [22]. On
average, the system has 89% of sensitivity with 6.9 false-
positives per image. When evaluating only FFDM images,
the false positive rates are reduced to 1.4 per image. As a
comparison, the commercially available ImageChecker [1]
has 91% of sensitivity with 1.5 false-positives per image
and it is restricted to images produced by its own digitizer
system.

B.4 Pectoral muscle

This module takes the segmented pectoral muscle from
step A.1 and searches for nodules [16]. In the current
design, nodules are only detected, since, in most cases, they
will be linfonodes. The demarcation of them facilitates the
evaluation of spreading cancer by the radiologist.

This system simply finds the regional maximum
intensity of the previously segmented pectoral muscle.
These points are usually linfonodes.

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 25 / 98

The results of this module have shown 74.9% of
sensitivity and 3.5 false positives per image.

B.5 BI-RADS classification
The system is designed to present a BI-RADS©

classification based on all the information obtained in the
previous modules. The final purpose is that the results
shown by this CADx system constitute a pre-report, so that
a radiologist can confirm or change as fit.

C. Comparison to database

Another step in the future development of this CADx
system includes integration with BancoWeb [12] database,
allowing the radiologist to see example of similar results to
those found in the image evaluated.

III. RESULTS

Currently, the CADx scheme is almost fully developed,
but has not yet been integrated into a single system. For
example, the microcalcification module is fully functional,
but it was developed in MATLAB© and has not been
converted to JAVA© yet.

Hence, all results shown in this work are direct tests with
the different modules, not considering the pre-processing
step in the complete system.

The last two modules in the section above are not yet
completely developed (BI-RADS classification and
Comparison to database), since these two modules require
the rest of the program to be fully integrated for
development.

When all modules are working and tested the last step in
the development will be the interface itself, which will be
developed in association with experienced radiologists to
add as much useful functionality as possible.

Once the program is complete the validation will occur
in two formats. The first will be a comparison to the DDSM
database [23] that has over 2600 cases with complete
medical and pathological reports. This will be a direct
comparison between the program report versus the official
medical and pathological report.

The second form will be a comparison between the
program and trained radiologists with at least 10 years’
experience. This set of tests will compare the system results
to a trained radiologist and also the changes in results when
the radiologist has access to the results of the CADx system
before making his final call.

If the CADx improves the statistical results of the
radiologists, it can be considered useful as a second opinion.

IV. CONCLUSION AND FUTURE WORK

The main purpose of this paper was to present a CADx
system that has been shown promising results as a
prototype. Once the interface is ready and all tools of the

system can work automatically, this will be one of the few
CADx systems available for general use.

Each tool has been showing promising results, at least
equivalent to others reported in the literature. For the future,
it is intended to be established in three formats:
downloadable software, an internet system integrated to the
BancoWeb database and a library in JAVA with all the tools
used to develop the system.

ACKNOWLEDGMENT

To FAPESP for the financial support of this project and
to Breast Research Group, INESC Porto, Portugal for the
INBreast database images.

REFERENCES

1. Hologic. Hologic - Imagechecker Analog Cad. Imagechecker
Analog CAD, 2012. Availible in:
<Http://Www.Hologic.Com/En/Breast-
Screening/Imagechecker/Screen-Film-Cad-Systems/>.
[Retrived: 18 Mar 2013].

2. Kodak. Kodak Mammography Cad Engine, 2004. Available
in:
<Http://Www.Fda.Gov/Medicaldevices/Productsandmedicalp
rocedures/Deviceapprovalsandclearances/Recently-
Approveddevices/Ucm079437.Htm>. [Retrieved: 5 Sep
2013].

3. Schiabel, H., Vieira, M. A. C., and Ventura, L. Preprocessing
For Improving Cad Scheme Performance For
Microcalcifications Detection Based On Mammography
Imaging Quality Parameters. SPIE MI 2009 Diagnosis.
Orlando, FL (Usa): . 2009. pp. 72602g-1 - 72602g-12.

4. Romualdo, L. S., Vieira, M. A. C., and Schiabel, H.
Enhancement Of Breast Images By Noise Reduction And Mtf
Compensation To Improve Microcalcifications Detection.
World Congress On Medical Physics And Biomedical
Engineering (IFMBE Proceedings, vol. 25iv). Munich
(Germany): . 2009. pp. 801-804.

5. Goes, R. F. and Schiabel, H. Computational Adjust
Technique To Digital Mammographic Images Based On
Digitizer Characteristic Curve. Journal Of Electronic
Imaging, vol. 17, no. 4, pp. 043012-1 - 043012-9, 2008.

6. Goes, C. E., Schiabel, H., and Nunes, F. L. S. Evaluation Of
Microcalcifications Segmentation Techniques For Dense
Breast Digitized Images. Journal Of Digital Imaging, vol. 15,
pp. 231-233, 2002.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 26 / 98

7. Silva Jr., E. C., Schiabel, H., and Ventura, L. Detection Of
Clusters Of Microcalcification Based On Associated
Differential And Morphological Filters In Full Mammogram.
SPIE MI 2009: Image Processing. FL (USA): . 2009. pp.
72594-72594.

8. Schiabel, H., Santos, V. T., and Angelo, M. F. Segmentation
Technique For Detecting Suspect Masses In Dense Breast
Digitized Images As A Tool For Mammography Cad
Schemes. 23rd Annual Acm Symposium On Applied
Computing (Special Track: Computerapplications In Health
Care). Fortaleza, CE, Brasil: Acm New York. 2008. pp. 1333-
1337.

9. Ribeiro, P. B., Schiabel, H., and Patrocínio, A. C.
Improvement In Artificial Neural Networks Performance By
The Selection Of The Best Texture Features From Breast
Masses In Mammography Images. World Congress On
Medical Physics And Biomedical Engineering - IFMBE
Proceedings. Seul (South Korea): . 2006. pp. 2321-2324.

10. Patrocínio, A. C., Schiabel, H., and Romero, R. A. F.
Evaluation Of Bayesian Network To Classify Clustered
Microcalcification. SPIE MI 2004. San Diego: . 2004. pp.
1026-1033.

11. Patrocínio, A. C. et al. Tumoral Mass Classification By
Specialists And The Cad Scheme. World Congress On
Medical Physics And Biomedical Engineering - Ifmbe
Proceedings. Munich (Germany): . 2009. pp. 75-78.

12. Matheus, B. R. N. and Schiabel, H. Online Mammographic
Images Database For Development And Comparison Of Cad
Schemes. Journal Of Digital Imaging, 2010. vol. 24, no. 4 pp.
500-506, Jun 2011.

13. Gonzales, R. C. and Woods, R. E. Digital Image Processing.
New Jersey: Prentice Hall, 2008.

14. Ferrari, R. J., Rangayyan, R. M., Desautels, J. E., and Frère,
A. F. Analysis Of Asymmetry In Mammograms Via
Diretional Filtering With Gabor Wavelets. IEEE Trans. On
Medical Imaging, vol. 20, no. 9, pp. 953-964, Sep 2001.

15. Pun, T. Entropic Thresholding, The New Approach.
Computer Graphics And Image Processing, vol. 16, pp. 210-
239, Jul 1981.

16. Schiabel, H. and Menechelli, R. C. Automated
Characterization Of Secondary Signals Of Breast Cancer To
Compose A Module From A Cadx Scheme. 27th International
Congress On Computer Assisted Radiology And Surgery
(CARS 2013) In 15th International Workshop On Computer-

Aided Diagnosis. Heidelberg, Germany: . 2013. pp. 404-404.

17. American College Of Radiology. American College Of
Radiology (ACR) Breast Imaging Reporting And Data
System Atlas (Bi-Rads® Atlas). American College Of
Radiology Website, 2003. Available in:
<Http://Www.Acr.Org/Quality-
Safety/Resources/Birads/Mammography>. [Retrieved: Aug
2013].

18. Wu, J., Besnehard, Q. and Marchessoux, C. Automatic
Classification For Mammogram Backgrounds Based On Bi-
Rads Complaxity Definition And On A Multi Content
Analisys Framework. Medical Imaging 2011: Image
Processing, Proc. of SPIE 2011, Orlando, vol. 7962, pp.
79623f-79623f-12, Fev 2011.

19. Ribeiro, P. B., Romero, R. A. F., Oliveira, P.R, Schiabel, H.,
and Vercosa, L. B. Automatic Segmentation Of Breast
Masses Using Enhanced Ica Mixture Model.
Neurocomputing, vol. 120, pp. 61-71, March 2013. ISSN
0925-2312.

20. Chan, H. P., Doi, K., Vyborny, C. J., Lam, K. L. , and
Schmidt, R. A. Computer-Aided Detection Of
Microcalcifications In Mammograms: Methodology And
Preliminary Clinical Study. Investigative Radiology, vol. 23,
no. 9, pp. 664-671, 1998.

21. Nunes, F., Schiabel, H., and Goes, C.E. A Computerized
Scheme For Detection Of Clusters Of Microcalcifications By
Mammograms Image Processing. Medical Biological
Engineering Computing, vol. 35, no. 2, pp. 705-705, 1998.
ISSN 0140-0118.

22. Matheus, B., Neto, J., and Schiabel, H. Clustered
Microcalcification Detection Scheme For Mammographic
Images. The 17th International Conference On Image
Processing, Computer Vision, & Pattern Recognition. Las
Vegas. IPCV pp. 904-908. 2013.

23. Cheng, H.D., Cai, X, Chen, X., Hu, L., and Lou, X.
Computer-Aided Detection And Classification Of
Microcalcification In Mammograms: A Survey. Pattern
Recognition, vol. 36, no. 12, pp. 2967-2971, 2003.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 27 / 98

Rice-Planted Area Extraction by RADARSAT Data Using Learning
Vector Quantization Algorithm

Sigeru Omatu
Department of Electronics, Information, and Communication Engineering

Osaka Institute of Technology
Osaka, Japan

e-mail:omatu@rsh.oit.ac.jp

Abstract—The classification technique using the neural net-
works has been recently developed. We apply a neural network
of Learning Vector Quantization (LVQ) to classify remote sensing
data including microwave and optical sensors for estimation of a
rice field. The method has capability of a nonlinear discrimination
function which is determined by learning. The satellite data
were observed before and after planting rice in 1999. Three
RADARSAT and one SPOT/HRV data are used in Higashi-
Hiroshima City, Japan. RADARSAT image has only one band
data, which is difficult to extract a rice field. However, SAR back-
scattering intensity in a rice field decreases from April to May
and increases from May to June. Thus, three RADARSAT images
from April to June are used for this study. The LVQ classification
was applied to RADARSAT and SPOT data in order to evaluate
rice field estimation. The results show that the true production
rate of rice field estimation for RADASAT data by using LVQ was
approximately 60% compared with SPOT data. It is shown that
the present method is much better compared with SAR image
classification by the maximum likelihood (MLH) method.

Keywords-Remote sensing; Synthetic aperture radar; Neural
networks; Learning vector quantization; Maximum likelihood
method.

I. I NTRODUCTION

Rice is the most important agricultural product in Japan
and widely planted in wide places in Japan. A lot of man-
power is still necessary to estimate rice field areas every
year. Therefore, the development of a system to monitor the
rice crop will be welcome. Satellite remote sensing images,
such as LAND SATellite Thematic Mapper(LANDSAT TM),
or Satellites Pour l’Observation de la Terre Visible High-
Resolution data(SPOT HRV), has been expected to be used for
estimating a rice field. However, these optical sensors hardly
have been able to get necessary data at a suitable time since it
may be often cloudy or rainy during the rice planting season
in Japan.

On the other hand, space borne synthetic aperture adar
penetrates through clouds. Thus, SAR observes a land sur-
face under any weather condition. The back-scattering in-
tensities of C-band SAR images, such as RADAR SATel-
lite(RADARSAT), or European Remote-Sensing Satellite
1(ERS1)/SAR, change greatly from a non-cultivated bare soil
condition before rice planting to an inundated condition just
after rice planting [1]. In addition, RADARSAT images are
rather sensitive to a change of rice biomass in a growing
period of rice [2], [3]. Thus, rice area estimation is expected
to be realized in an early stage. In previous works, the authors

attempted to estimate a rice field using RADARSAT fine-mode
data in the same stage [4]. The estimation accuracy of a rice
field was approximately 40% by comparing with the estimated
area by SPOT multi-spectral data.

In this study, we attempt to detect a rice field from
RADARSAT data using Learning Vector Quantization (LVQ)
and to compare with accuracy by Maximum LikelyHood
(MLH) method . First, we will explain the LVQ algorithm and
then we will show the test site and remote sensing data used
here. After that, classification methods will be explained and
experimental results and discussion. Finally, we will present
the conclusion.

II. L EARNING VECTORQUANTIZATION ALGORITHM

Vector quantization is to represent a data distribution using
a set of units, which are called codebook vectors such that
a distortion measure is minimized. The LVQ algorithm was
proposed by Kohonen [5] in 1997 to find representative vectors
among many vectors by learning. In LVQ, only the closest
winning unit (using an Euclidean distance) to the current input
data is moved toward it at each iteration.

We will show the principle of the LVQ in more detail in
what follows. It consists of two layers which are an input
layer and a competitive layer as shown in Fig. 1. In the input
layer, input data with a dimensionn are given. Let us denote
the input vector byX and neurons in the competitive layer are
connected to the input vector with weightswji, i = 1, 2, . . . , n
and j = 1, 2, . . . ,M where connection weight vector is
denoted byWj = (wj1, wj2, . . . , wjn), j = 1, 2, . . . ,M and
M is the number of neurons in the hidden layer. Furthermore,
we denote the number of cluster bym, the iteration number
by t, and total number of iteration byT .

In order to measure a distance between an input vectorX
and a weight vectorWj, we adopt a Euclidean norm given by

dj = ||X − Wj|| =

√√√√ n∑
i=1

(xi − wji)2. (1)

We will search a neuron in the competitive layer, which
attains the minimum distance and call it as the winning neuron
denoted by c, that is,

dc = min
j

dj = ||X − Wc||. (2)

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 28 / 98

If the input vectorX and the winning unit c belong to the
same cluster, then the weight vectorWc will be moved such
that it becomes nearer toX, as shown in Fig. 2.

Conversely, if they do not belong the same cluster, the
weight vectorWc will be moved such that it becomes farther
from X, as shown in Fig. 3. Therefore, at an iteration t, if the
input vectorX and cluster of c belong to the same cluster,
then at the next iteration t+1

Wj(t + 1) = Wj(t) + α(t)(X − Wj(t)), j = c (3)

Wj(t + 1) = Wj(t), j ̸= c. (4)

On the other hand, at an iteration t, if the input vectorX
and the winning unit c belong to different cluster, then at the
next iteration t+1

Wj(t + 1) = Wj(t) − α(t)(X − Wj(t)), j = c (5)

Wj(t + 1) = Wj(t), j ̸= c. (6)

Initial values of weightswji are determined by using
random numbers. The functionα(t) means the learning rate
and it is set as follows:

α(t) = α0(1 − t

T
) (7)

whereα0 is a positive initial coefficient ofα(t).

III. T EST SITE AND REMOTE SENSING DATA

The test area has a size of about 9.4 by 7.5 km in Higashi-
Hiroshima City, Japan, centered at latitude N 34.42, longitude
E 132.70. This site is located at the eastern part of Hiroshima
City. Three multi-temporal RADARSAT fine-mode (F1F) im-
ages, taken on April 8, May 26, and June 19, in 1999 were
used as test data. SPOT/HRV multi-spectral data taken on June
21, 1999 were used to generate a reference image for a rice
field extraction. Above, three merged RADARSAT, as shown
in Fig. 4; one SPOT image in a part of the test site is shown
in Fig 5. The rice fields are mainly distributed in the bottom-
center portion in the images. The land surface condition in the
rice fields on April 8 is a non-cultivated bare soil before rice
planting with rather rough soil surface. The surface condition
on May 26 is an almost smooth water surface just after rice
planting, and that on June 19 is a mixed condition of growing
rice and water surface.

The RADARSAT raw data were processed using Vex-
cel SAR Processor (VSARP) and single-look power images
with 6.25 meters ground resolution were generated. Then
the images were filtered using median filter with 7 by 7
moving window. All RADARSAT and SPOT images were
overlaid onto the topographic map with 1:25,000 scale. As
RADARSAT images are much distorted by foreshortening
due to topography, the Digital Elevation Model (DEM) with
50 meters spatial resolution issued by Geographical Survey
Institute (GSI) of Japan was used to correct foreshortening of
RADARSAT images.

Cluter 1 Cluter 2 Cluter m

Competitive
Layer

Input
Layer

W
1 W

M

x
1

x
2

x
n

Fig. 1. LVQ structure

Input Vector

Winner Neuron

Wc
(t)

X

Boundary

Wc
(t) Wc

(t+1)
X

α(t)(X-W (t))c

Fig. 2. LVQ learning of weights when the winning neuron belongs to the
same cluster of the inputX whereα(t) > 0.

Input Vector

Winner Neuron

Wc
(t)

X

Boundary

Wc
(t+1) Wc

(t)
X

−α(t)(X-W (t))c

Fig. 3. LVQ learning of weights when the winning neuron belongs to the
different cluster of the inputX whereα(t) > 0.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 29 / 98

IV. CLASSIFICATION METHODS

Rice fields were extracted using two supervised classifica-
tion methods from three temporal RADARSAT images and
one SPOT image. One was an MLH classifier and the other
was an LVQ classifier. In case of the LVQ classifier we
adopted the initial weightα0 = 0.05 for RADARSAT and
α0 = 0.1 for SPOT. The MLH classifier has been used
as a land cover classification for satellite images. However,
the classification results may become poor accuracy since it
assumes that the distribution of each categorical data is normal
distribution. Kohonen’s LVQ is a classification method based
on competitive neural networks, which allows us to define a
group of categories on the space of input data by supervised
learning algorithm.

A water region, an urban area, a rice field, and two kinds of
forest were selected as target categories. We considered three
sub-classes in a water region and an urban area. Furthermore,
four sub-classes in a rice field and a forest. Then, we consider
them as the same class. The training data for supervised
classification was selected by the map and the ground truth.

As training data of SPOT image we selected as ten areas
of 5x5 pixels , namely 250 pixels in each category. For the
purpose of extraction of a rice field, the training data of the
rice field were added 800 pixels to the data.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In the beginning, SPOT image as an optical sensor classifies
were used for two methods of LVQ and MLH and the
classification results were compared. As we can see in Tables
I and II, the results of the confusion matrix were examined by
SPOT data. Comparing the results of two methods, LVQ was
a little better at high accuracy level, although the differences
were not so large.

The results of classification rate were shown in Tables III
and IV. The classification score of a rice field by SPOT
was about 90 % for both of two classification methods and
RADARSAT was about 80 % accuracy. Table IV shows
the result by LVQ classifier of multi-temporal RADARSAT
data. The results are better than MLH. In particular, the rice
classification accuracy of LVQ is much better than MLH.
Tables IV shows the results of average accuracy. The LVQ
classifier is superior to the MLH clasifier.

Figures 6 and 7 show the classified images by RADARSAT
and SPOT, respectively. The rice fields were obtained by the
three temporal RADARSAT images. The classification result
of the urban and the forest area were different between these
two images, on the other hand, water and rice areas were
resembled between these two images.

We defined two indices, a True Production Rate (TPR) and
a False Production Rate (FPR) for rice areas by RADARSAT.
TPR is the coincidence rate of rice areas by RADARSAT
within those by SPOT and FPR is the rate of non-rice areas
by SPOT within rice areas by RADARSAT. As the rice area
images extracted by RADARSAT are still contaminated by
speckle noises, the majority filter with 7 by 7 window was
applied to the rice extracted images by RADARSAT before

evaluation. The rice extracted image by SPOT was also filtered
by the same majority operation as RADARSAT to make the
ground resolution compatible each other, as shown in Table V.

We found experimentally that about 60 % of rice areas by
SPOT were not extracted by RADARSAT and about 35 % of
the areas by RADARSAT were outside areas of rice by SPOT
using LVQ. This result of TPR was better than that of MLH.
Figure 6 shows the results of extracted rice field in part of the
test site. In the figure, the white region shows the rice field
of each image. MLH has not included adjustable parameters
by users compared with LVQ. The latter could more excellent
results we must fine tuning parameters, especially the learning
rateα(t) selection needs trial error to get the better results.

Figure 8 and Figure 9 show the results of extracted rice field
in part of test site of RADASAT by MLH and by the LVQ
method where white color denotes rice-planted area. Figure 10
show the results of extracted rice field in part of test site of
SPOT by LVQ. From these results, the classification result by
LVQ becomes more detailed extraction of rice fields compared
with MLH.

VI. CONCLUSIONS

A rice field extraction was attempted using multi-temporal
RADARSAT data taken in the early stage of rice growing sea-
son by MLH and LVQ classifications. The LVQ classification
is much better compared with classification by the MLH for
a rice field extraction by RADARSAT data. However, for a
quantitative evaluation, the rice field areas by RADARSAT
resulted in poor coincidence rate with those by SPOT. Thus,
we will apply this proposed method to other SAR data due to
the extraction rice field.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant-in-Aid
for Scientific Research (B) (24360141). The authors would
like to thank JSPS to support this research work.

REFERENCES

[1] Y. Suga, Y. Oguro, and S. Takeuchi, “Comparison of Various SAR Data
for Vegetation Analysis over Hiroshima City”, Advanced Space Research
, vol. 23, no. 8, August, 1999, pp. 225–230.

[2] M. Bicego and T. L. Toan, “Rice Field Mapping and Monitoring with
RADARSAT Data”, International Journal of Remote Sensing, vol. 20,
no. 4, April, 1999, pp. 745–765.

[3] S. C. Liew, and P. Chen, “Monitoring Changes in Rice Cropping System
Using Space-borne SAR Imagery”, Proceedings of IGARSA’99, October,
1999, pp. 741–743.

[4] Y. Suga, S. Takeuchi, and Y. Oguro, “Monitoring of Rice-Planted Areas
Using Space-borne SAR Data”, Proceedings of IAPRS, XXXIII, B7,
February, 2000, pp. 741–743.

[5] T. Kohohnen, “Self-Organizing Maps”, Springer, 1997, pp. 206–217.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 30 / 98

Fig. 4. RADARSAT F1F mode image in the test site.CSA & RADARSAT
International 1999.

Fig. 5. SPOT-2HRV image in the test site. CNESS 1999.

TABLE I
THE CONFUSION MATRIX FOR THE CLASSIFICATION USING THE

MLH(SPOT)(%)

Water Urban Rice Forest
Water 100.0 0.0 0.0 0.0
Urban 0.0 100.0 0.0 0.0
Rice 0.0 0.0 100.0 0.0
Forest 0.0 0.0 0.0 100.0

TABLE II
THE CONFUSION MATRIX FOR THE CLASSIFICATION USING THE

LVQ(SPOT)(%)

Water Urban Rice Forest
Water 100.0 0.0 0.0 0.0
Urban 0.0 100.0 0.0 0.0
Rice 0.0 0.0 100.0 0.0
Forest 0.0 0.0 0.0 100.0

water urban rice forest

Fig. 6. Classification result of RADARSAT F1F image by LVQ.

water urban rice forest

Fig. 7. Classification result of SPOT/HRV image by LVQ.

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 31 / 98

TABLE III
THE CONFUSION MATRIX FOR THE CLASSIFICATION USING THEMLH

(RADARSAT) (%)

Water Urban Rice Forest
Water 100.0 0.0 0.0 0.0
Urban 0.0 62.0 0.0 38.0
Rice 0.0 4.5 53.3 42.2
Forest 2.0 3.6 9.2 85.2

TABLE IV
THE CONFUSION MATRIX FOR THE CLASSIFICATION USING THELVQ

(RADARSAT) (%)

Water Urban Rice Forest
Water 100.0 0.0 0.0 0.0
Urban 0.0 71.2 0.0 28.8
Rice 0.0 0.0 87.2 12.8
Forest 2.8 6.6 2.4 88.2

TABLE V
RESULT OFRICE FIELD EVALUATION BY RADARSAT COMPARED WITH

SPOTBY LVQ. (%)

Method TPR(%) FPR(%) TPR-FPR(%)
MLH 46.7 24.6 22.1
LVQ 59.1 62.0 35.6

Fig. 8. Results of extracted rice field in part of test site of RADASAT by
MLH.

Fig. 9. Results of extracted rice field in part of test site of RADASAT by
LVQ.

Fig. 10. Results of extracted rice field in part of test site of SPOT by LVQ.

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 32 / 98

A UsiXML Proposal for a Pattern-Oriented and Model-Driven Architecture for

Interactive Systems

Mohamed Taleb
Department of Software Engineering &

Information Technology

Software Engineering Research Laboratory

École de technologie supérieure, University

of Quebec, Montreal, Quebec, Canada

mohamed.taleb.1@ens.etsmtl.ca

Ahmed Seffah
Depatment of Computer Science and

Software Engineering

Human-Centered Software Engineering Group

Concordia University, Montreal, Quebec,

Canada

seffah.ahmed@yahoo.fr

Alain Abran
Department of Software Engineering &

Information Technology

Software Engineering Research Laboratory

École de technologie supérieure, University of

Quebec, Montreal, Quebec, Canada

alain.abran@etsmtl.ca

Abstract—Despite its obvious and well-publicized potential to

support the model-driven engineering of user interfaces, the

(re)use of the rich variety of Human-Computer Interaction

(HCI) design patterns, we have today has not achieved the

acceptance and widespread applicability of HCI design

patterns within the existing model-driven engineering

framework. This paper proposes a specification and a User
Interface eXtensible Markup Language (UsiXML)-based

formalization of a unifying Pattern-Oriented and Model-driven

Architecture (POMA). We have already introduced a set of

extensions, called the POMA Markup Language (POMAML),

designed to facilitate the specification of all the intrinsic

components of the POMA architecture, including its patterns

and models, and the relationships between these two artifacts

within the model.

Keywords-Pattern-Oriented; Model-Driven Architecture;

UsiXML; User Interface; POMA.

I. INTRODUCTION

Day-to-day experience suggests that it is not enough to
approach a complex design with a set of models and model-
driven engineering languages and tools. The developers
must also be able to use (reuse) proven solutions emerging
from the best model-driven practices for building models
and their transformations, as well as for generating code for
diverse platforms.

Without these solutions, developers are unable to
properly define valid models, and so cannot take full
advantage of the power of the model orientation, resulting in
poor performance. Invalid models will lead to poor
scalability and usability. Furthermore, the designer might
find himself “reinventing the wheel” when attempting to
develop an application.

We propose to enhance, extend, or rethink the activities
and artifacts of the model-driven engineering frameworks
using patterns for model construction, transformation, and
mapping. We proposed POMA (Pattern-Oriented and
Model-driven Architecture) [1] as a unifying architecture to
bridge the gap between patterns and models, as well as
between the model-driven engineering and pattern-oriented
design frameworks.

Specifically, we consider the possible extensions to the
User Interface eXtensible Markup Language (UsiXML)
collection of models [2] and the four basic levels of model

abstraction defined in the Cameleon Reference Framework
[2]. UsiXML defines, validates, and standardizes an open
User Interface Description Language, while increasing the
productivity and reusability of multi-platform and multi-
context interactive applications. It also improves the
usability and accessibility of these applications.

In our ongoing research, we are aiming at specifying and
representing the components of the POMA architecture. We
suggest extensions to the concepts of UsiXML to formalize
a language called POMAML (Pattern-Oriented and Model-
driven Architecture Markup Language). In other words,
POMA is a unifying architecture to bridge the gap between
patterns and models using POMAML.

This paper is organized as follows. Section 2 introduces
related work on POMA fundamentals, the basic concepts of
the POMA architecture, and the basic structural notation of
UsiXML. Section 3 primarily describes the application of
UsiXML in the POMA architecture. Section 4 presents an
illustrative case study. Section 5 presents a summary and
directions for future work.

II. RELATED WORK

Over the past two decades, research on interactive

system and User Interface (UI) engineering has resulted in

several architectural models, which constitute a major

contribution not only to facilitate the development and

maintenance of interactive systems, but also to promote the

standardization, portability, and ergonomic usability (ease

of use) of the interactive systems developed. Such

architectures provide a clear separation of concerns [3]. In

particular, they decouple the UI from the system semantics,

and define the reusable and the standardized UI

components.

A number of UI languages and notations have been

suggested to specify architecture and model user interfaces

for different platforms and at different levels of abstraction.

For example, User Interface Markup Language (UIML) [4]

is a meta-language that allows the developer to describe the

UI in generic terms and to use style descriptions to map the

UI to various target platforms. UIML was developed to

address the need for a uniform UI description language for

building multi-platform systems. eXtensible User-interface

Language (XUL) [5; 6] is an official Mozilla initiative,

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 33 / 98

which provides an XML-based language for describing

window layout. The goal of XUL is to build cross platform

systems that are easily portable to all the operating systems

on which Mozilla runs. XUL provides a clear separation

between the UI definition (the various widgets that make up

the UI) and its visual appearance (the layout and the “look

and feel”).

EXtensible Interface Markup Language (XIML)

followed a declarative interface modeling language called

MIMIC [7], and provides a way to describe the UI without

worrying about its implementation. The aim of XIML is to

describe the various abstract aspects (domain, task, and

user) and concrete aspects (presentation and dialog) of the

UI throughout the development life cycle. In addition,

XIML supports the definition of mapping from abstract

elements to concrete elements [8].

TERESA [9] provides tools to allow developers to

interactively define mappings between the various models.

Web Services eXtensible Markup Language (WSXML) [10]

integrates Web services and XML into the Service Oriented

Architecture. Web services constitute a technological

approach that is well suited to bridge information systems,

and can enable this integration, even when systems are

implemented on disparate platforms or through differing

technologies. XML is useful for a variety of data exchange

applications, and is a foundation technology for such

enterprise strategies as Web services, and likely has a future

in enterprises.

GrafiXML, developed by Limbourg et al. [2], is an

original UI builder, in that it enables designers and

developers to design several UIs simultaneously for multiple

contexts of use, i.e., for many users, platforms, and

environments. GrafiXML is an intelligent UI builder, in that

it maintains model consistency between these

representations through a set of mappings based on the UI

ontology.

Following the lead of the object-oriented software

design community, HCI practitioners investigated design

patterns as one possible way to capture and use the best

design practices. An HCI design pattern is defined as a

named, reusable solution to a recurring user problem in

different contexts of use, including the various computing

platforms (Web, Graphical User Interface (GUI), mobile

applications, etc.). Relationships between patterns have been

explored to combine related patterns into pattern languages,

resulting in a lingua franca for design [12].

Hundreds of HCI design patterns are freely available on

the Web. However, providing a list of patterns and their

loosely defined relationships, as is done for most HCI

pattern languages, is insufficient for effectively driving

design solutions. Understanding when a pattern is applicable

during the design process and how it can be used, as well as

how and why it can or cannot be combined with other

related patterns, are key notions in the application of

patterns.

Javahery and Seffah [3] proposed a design approach,

called Pattern-Oriented Design (POD), which provides a

framework for guiding designers through stepwise design

suggestions. At each predefined design step, designers are

given a set of applicable patterns. This process is in stark

contrast to the current use of pattern languages, where there

is no defined link to any sort of systematic method. Pattern

relationships are explicitly described, which allows

designers to compose patterns based on an understanding of

these relationships. In POD, patterns are building blocks at

different levels of abstraction, which makes them extremely

useful for designers when driving the UI design based on

user experiences [14; 15; 3].

The proposed Pattern-Oriented and Model-driven

Architecture (POMA) (Figure 1) [1] identifies an extensive

list of pattern categories and types of models aimed at

providing a pool of proven solutions to these problems. The

models of patterns span several levels of abstraction, such as

domain, task, dialog, presentation, and layout. The proposed

POMA architecture illustrates how several individual

models can be combined at different levels of abstraction

into heterogeneous structures, which can then be used as

building blocks in the development of interactive systems.

The various components of the POMA architecture are

detailed in [1], and include:

 The architectural levels and various categories of
patterns [16], [17], and [19];

 The Platform Independent Model (PIM) and
Platform Specific Model (PSM) [18];

 The pattern composition rules for selecting and
composing patterns corresponding to each type of
PIM model [16] and [18];

 The rules for mapping patterns and PIM models to
produce PSM models for multiple platforms [16]
and [18];

 The rules for transforming PIM to PIM models and
PSM to PSM models [20];

 The rules for source code generation;

 The generation of the whole of application.
The rationale and strengths of the POMA architecture

are as follows:

 POMA facilitates the use of patterns by beginners as
well as experts;

 POMA supports the automation of both the pattern-
driven and model-driven approaches to design;

 POMA supports the communication and reuse of
individual expertise regarding good design
practices;

 POMA can integrate all the new technologies,
including traditional office desktops, laptops,
Palmtops, PDAs (with or without keyboards),
mobile telephones, and interactive televisions,
among others.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 34 / 98

 Domain Model

[POMA.PIM]

Task Model

 [POMA.PIM]

Dialog Model

[POMA.PIM]

Layout Model

 [POMA.PIM]

Transformation

T1

Transformation

T2

Transformation

T4

The Symbol Represents an interaction

Transformation

T3

Presentarion

Model

[POMA.PIM]

 Domain Model

[POMA.PSM]

Task Model

[POMA.PSM]

Dialog Model

[POMA.PSM]

Layout Model

[POMA.PSM]

Transformation

T’
1

Transformation

T’
2

Transformation

T’
4

Transformation

T’
3

Presentation

Model

[POMA.PSM]

POMA : Pattern-Oriented and Model-driven Architecture

PIM : Platform Independent Model

PSM : Platform Specific Model

GenerationCode

Generation

rules

Architectural Level

and Categories of

Patterns

Interactive

Syatem Source

Code

Language

used

1. Navigation

Patterns

2. Interaction

Patterns

3. Visualization

Patterns

4. Presentation

Patterns

6. Information

Patterns

5. Interoperability

Patterns

Transformation

rules

Mapping

rulesComposition

rules

Patterns

Composition
Patterns

Mapping
(PIM to PSM)

L
a

n
g

u
a

g
e

u
s

e
d

PIM PSM

(PIM to PIM)

and/or

(PSM to PSM)

(PSM to source code)

Figure 1. POMA architecture for interactive system development [1].

The User Interface eXtensible Markup Language

(UsiXML) [21; 24] is an XML-compliant markup language.

It is an approach for describing the structure and

presentation aspects of the UI to describe dialog modeling

[22]. Limbourg et al. [2] describe the structured UsiXML,

based on the following four basic levels of abstraction

defined in the Cameleon reference framework. This

framework is intended to represent the UI development life

cycle for context-sensitive interactive applications. In other

words, the framework defines UI development steps for

multi-context interactive applications. It structures

development processes for two contexts of use into four

development steps (each development step being able to

manipulate any specific artefact of interest as a model or a

UI representation):

1. Task and Concepts (the highest level), where the user

task is defined based on his viewpoint, along with the

various objects that are manipulated by it.

2. Abstract User Interface (AUI): abstracts the Concrete

User Interface (CUI) into a UI definition that is

interaction modality independent (e.g.,

graphical/vocal interaction);

3. Concrete User Interface (CUI): abstracts the Final

User Interface (FUI) into a UI definition that is

independent of any computing platform;

4. Final User Interface (FUI): a UI running on a

particular platform, either by interpretation or by

execution.

UsiXML is defined as a set of XML schemas, each

corresponding to one of the models within the scope of the

language. It consists of a User Interface Description

Language (UIDL), which is a declarative language

capturing the essence of what a UI is, or should be,

independently of physical characteristics. It describes the

constituent elements of the UI of an application at a high

level of abstraction: widgets, controls, containers,

modalities, interaction techniques, etc. Despite that,

UsiXML does not require the use of any particular

development process, which means that designers are free to

choose the most appropriate abstraction level at which to

begin their projects [23].

III. POMA COMBINED WITH THE USIXML APPROACH

To tackle some of the weaknesses identified in related

work, a set of UsiXML concepts proposes to specify and

formalize the POMA architecture within the UsiXML

perspective (Figure 3) and its language, which is called the

POMA Markup Language (POMAML) and is described in

section 4 (Pattern-Oriented Modeling Architecture Markup

Language). The formalization is achieved in visual,

structural, and formal notations using XML for modeling

the patterns and models of the POMA components

described in section II in order to generate the specifications

for various types of UI engineered for interactive systems.

Our aim is to persevere with this objective, and continue to

design and reuse POMA architecture specifications that

span different levels of abstraction, such as the domain,

task, dialog, presentation, and layout models, until the final

layout of the various UIs has been generated.

Because of the number of concepts it embodies,

UsiXML is used to illustrate the POMA architecture (Figure

3). On the left is a series of development steps that comply

with the Cameleon reference framework [22], and on the

right are the concepts supported by UsiXML, and the

transformations and mappings applied to it. POMA

architecture based on UsiXML classifies UIs for supporting a

target platform and a context of use, and enables to structure

the development life cycle into five levels of abstraction and

patterns categories as follows (Figure 2):

1. Categories patterns library. These patterns of

different categories are defined and formalized in

XML language;

2. Five categories of models in PIM and PSM (Task,

Domain, Dialog, Presentation, Layout) used in

POMA architecture, providing examples, for a

model-driven architecture for interactive systems to

resolve many recurring design problems, examples of

which include: (1) decoupling the various aspects of

Web applications such business logic, the user

interface, navigation and information architecture; (2)

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 35 / 98

isolating platform-specific problems from the

concerns common to all interactive systems.
3. Abstract User Interfaces (AUI) of PIM. This

abstraction level defines a generic user interface

description of PIM models completely independent of

the considered UI toolkit and multi-platforms.

4. Concrete User Interface (CUI) Platform Independent

Model (PSM) for different platforms (Laptop, PDA,

Cellular, Palmtop, interactive television, iPhone,

etc.). This level defines the graphical concrete user

interfaces, including the concrete interaction objects

(CIO), for each specific platform.

5. Final User Interface (FUI). This level is to generate

the source code of the entire application for a specific

platform.

Categories Patterns

Library of POMA architecture

Five categories of Models

(Task, Domain, Dialog,

Presentation, Layout)

Abstract User Interface (AUI)

Platform Independent Model

(PIM)

Concrete User Interface (CUI)

Platform Independent Model

(PSM) for different platforms

Final User Interface

Source code Generation

Composition = selection + composition of

different categories of patterns by applying

rules

PIM = UML class diagram based on Patterns

Transformation of models = PIMPIM and/or

PSM  PSM by applying rules

AUI = Generic PIM completely independent of

the considered UI toolkit (Java Swing, Windows

Forms, etc.) and different platforms

CUI = Graphical Concrete Interaction Object

(dialog box, check box, check options, menus, etc.)

Formalization of PSM model in XML

Code generation of the entire application for each

platform (Laptop, PDA, Cellular, Palmtop,

interactive television, etc.) in C++, Java, etc.

M
a

p
p

in
g

 o
f
 p

a
t
t
e

r
n

s

f
r
o

m
 P

I
M

 t
o

 P
S

M

Domain and Task Model = CTTE based on

Paternò description + UML class diagrams

Dialog model = DialogGrapgEditor for

interaction and navigation + UML class diagram

Presentation and Layout models = UML class

diagram

C
o

m
p

o
s
it

io
n

P
a

t
t
e

r
n

s

T
r
a

n
s
f
o

r
m

a
t
io

n
 o

f
 m

o
d

e
ls

 =

P
I
M

 t
o

 P
I
M

 m
o

d
e

ls
 a

n
d

/o
r

P
S

M
 t

o
 P

S
M

C
o

d
e

g
e

n
e

r
a

t
io

n

o
f
 P

S
M

m
o

d
e

l

Figure 2. POMA architecture in UsiXML perspective.

In this section, we describe a design that illustrates and

clarifies the core ideas underlying the approach combining

the POMA architecture with the UsiXML, and explain its

practical relevance. The proposed POMA architecture

combined with UsiXML (Figure 2) shows how UsiXML

concepts are used to represent the components of the POMA

architecture to generate the source code of the various

concrete UIs of the application.

With the POMA architecture, it is possible to design a

formalism to describe a software architecture based on the

composition of several patterns to generate different types

of applications. This formalism can take three forms:

 Structural, using the XML formalization language
called POMAML;

 Formal, using mathematical methods and concepts;

 Visual, using UML specifications such as sequence
diagrams and class diagrams.

Here, we focus essentially on the use of the structural

notation to describe the entire POMAML language (Figure

3) of the POMA architecture components, such as patterns,

composition rules, levels of PIM and PSM models,

transformation rules, mapping rules, and generation rules

based on the XML notation.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 36 / 98

Figure 3. POMAML language

IV. AN ILLUSTRATIVE CASE STUDY

This following example presents the domain model

(Figure 4) of the POMA architecture for a laptop platform

using UsiXML concepts. In this case, the more those high-

level tasks are decomposed, the easier it is to use the

reusable task structures that have been obtained or captured

from other projects or systems. Here, these reusable task

structures are documented in the form of patterns. This

approach ensures an even greater degree of reuse.

Figure 4. Domain Model in POMAML language

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 37 / 98

V. SUMMARY AND FUTURE WORK

In this paper, we have discussed a perspective from

which the POMA architecture is specified and represented

using the UsiXML approach. Previously, we had provided a

set of extensions, called POMAML, which makes it possible

to generate source code in different programming languages

for each platform of an interactive system.

Our research has resulted in the integration and

formalization of UsiXML for the POMA architecture. It has

also led to avenues for further research, such as:

 Description of a process for the generation of source
code from POMA’s five PSM models;

 Development of a tool that automates the POMA
architecture-based engineering process;

 Standardization of the POMA architecture to all
types of systems, and not only to multi-platform
interactive systems;

 Quality assurance of the applications produced,
since a pattern-oriented architecture will also have
to provide for the encapsulation of quality attributes
and facilitate prediction;

 Validation of the migration, usability, and overall
quality of the POMA architecture for interactive
systems using existing methods;

 Evaluation of the effectiveness and learning time of
the POMA architecture for both novices and expert
users.

REFERENCES

[1] M. Taleb, A. Seffah, and A. Abran, “Interactive Systems Engineering:
A Pattern-Oriented and Model-Driven Architecture”, The 2009

International Conference on Software Engineering Research and
Practice (SERP'09), July 2009, pp. 636-642, Las Vegas, USA.

[2] Q. Limbourg, J. Vanderdonckt1, B. Michotte1, L. Bouillon1, and V.
López-Jaquero, “USIXML: A Language Supporting Multi-path

Development of User Interfaces”, vol. 3425/2005, Engineering

Human Computer Interaction and Interactive Systems, July 2005, pp.
200-220, DOI 10.1007/b136790, ISBN 978-3-540-26097-4, Springer

Berlin/Heidelberg Publisher.

[3] H. Javahery and A. Seffah, “A Model for Usability Pattern-Oriented
Design”, in Proceedings of TAMODIA2002, July 2002, pp. 104-110,

Bucharest, Romania.

[4] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J.

E. Shuster, “UIML: An Appliance-Independent XML User Interface

Language”, Proceedings of the 8th International WWW Conference,
May 1999, pp. 1695–1708, Elsevier Science Publishers, Toronto,

Canada.

[5] XUL, The XML User Interface Language, 2004, at:
http://www.xulplanet.com, [retrieved: April, 2013].

[6] XUL, XUL Tutorial, 2004, at:

http://www.xulplanet.com/tutorials/xultu, [retrieved: April, 2013].

[7] A. Puerta and D. Maulsby, “Management of Interface Design
Knowledge with MODI-D”, in Proceedings of IUI’97, January 1997,

pp. 249-252, Orlando, FL, USA.

[8] A. Puerta and J. Eisenstein, “Towards a General Computational
Framework for Model-Based Interface Development Systems”, in

Proceedings of IUI’99, January 1999, pp. 171-178, Los Angeles, CA,
ACM Press, New York, USA.

[9] TERESA, Transformation Environment for Interactive Systems
Representation, 2004, at: http://giove.cnuce.cnr.it/teresa.html,

[retrieved: April, 2013].

[10] P. Classon and J. Prem, “SOA: Integrating XML and Web Services,”

LiquidHub Inc., 2004, at:

http://www.liquidhub.com/docs/Horizons_WSXML_primer_v3.pdf,

[retrieved: April, 2013].

[11] B. Michotte and J. Vanderdonckt, “GrafiXML, A Multi-Target User

Interface Builder based on UsiXML”, Fourth International

Conference on Autonomic and Autonomous Systems, IEEE
Computer Society, March 2008, pp. 15-22, DOI

10.1109/ICAS.2008.29, ISBN 0-7695-3093-1/08.

[12] T. Erickson, “Lingua Franca for Design: Sacred Places and Pattern
Language”, in Proceedings of Designing Interactive Systems, August

2000, pp. 357-368, ACM Press, New York (NY), USA.

[13] J. O. Borchers, “Pattern Approach to Interaction Design”,

Proceedings of the DIS 2000 International Conference on Designing
Interactive Systems, August 2000, pp. 369-378, ACM Press, New

York, USA.

[14] A. Granlund and D. Lafrenière, “A Pattern-Supported Approach to
the User Interface Design Process”, Workshop Report, UPA’99

Usability Professionals’ Association Conference, June-July 1999a,
Scottsdale, AZ.

[15] M. Taleb, H. Javahery, and A. Seffah, “Pattern-Oriented Design

Composition and Mapping for Cross-Platform Web Applications, the
13th International Workshop, DSV-IS 2006, vol. 4323/2007, Springer-

Verlag, July 2006, Trinity College, Dublin Ireland, DOI 10.1007/978-

3-540-69554-7, ISBN 978-3-540-69553-0, Berlin Heidelberg,
Germany.

[16] M. Taleb, A. Seffah, and A. Abran, “Pattern-Oriented Architecture
for Web Applications”, 3rd International Conference on Web

Information Systems and Technologies (WEBIST 2007), March

2007, pp. 117-121, ISBN 978-972-8865-78-8, Barcelona, Spain.

[17] M. Taleb, A. Seffah, and A. Abran, “Model-Driven Design

Architecture for Web Applications”, The 12th International
Conference on Human Centered Interaction International (FIC-HCII

2007), Beijing International Convention Center, Beijing, P. R. China,

vol. 4550/2007, July 2007, pp. 1198-1205, Springer-Verlag, Berlin
Heidelberg, Germany.

[18] M. Taleb, A. Seffah, and A. Abran, “Pattern-Oriented Design for
Cross-Platform Web-based Information Systems”, The 2007 IEEE

International Conference on Information Reuse and Integration (IEEE

IRI-07), August 2007, pp. 122-127, Las Vegas, USA.

[19] M. Taleb, A. Seffah, and A. Abran, “Transformation Rules in POMA

architecture”, The 2010 International Conference on Software

Engineering Research and Practice (SERP'10), July 2010, pp. 636-
642, Las Vegas, USA.

[20] UsiXML, What is UsiXML?, Université catholique de Louvain,
Belgium, 2007, at:

http://www.usixml.org/index.php?mod=pages&id=2, [retrieved:

April, 2013].

[21] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, M. Florins,

and D. Trevisan: “UsiXML: A User Interface Description Language
for Context-Sensitive User Interfaces”, in Proceedings of the

AVI’2004 Workshop on Developing User Interfaces with XML:

Advances on User Interface Description Languages, UIXML’04,
Gallipoli, Italy, EDM-Luc, May 2004, pp. 55–62.

[22] M. Winckler, F. M. Trindade, A. Stanciulescu, and J. Vanderdonckt,
“Cascading Dialog Modeling with UsiXML,” Proceedings of the 15th

Int. Workshop on Design, Specification, and Verification of

Interactive Systems DSV-IS’2008, Kingston, Canada, Lecture Notes
in Computer Sciences, vol. 5136, Springer, Berlin, July 2008, pp.

121-135.

[23] Cover Pages (website hosted by OASIS): online resource for markup
language technologies, “User Interface eXtensible Markup Language

(UsiXML), 2005, at:

http://xml.coverpages.org/userInterfaceXML.html#usixm, [retrieved:
April, 2013].

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 38 / 98

A MapReduce Implementation of the Genetic-Based ANN Classifier for Diagnosing

Students with Learning Disabilities

Tung-Kuang Wu
1
, Shian-Chang Huang

2
,

Hsiu-Ting Kao
3
, Hsu Chang

4

Dept. of Information Management, NCUE
Changhua City, Taiwan

1
tkwu@im.ncue.edu.tw,

2
shhuang@cc.ncue.edu.tw,

3
b9456005@gmail.com,

4
zx1986@gmail.com

Ying-Ru Meng

Dept. of Special Education, NHCUE
HsinChu City, Taiwan

myr321@mail.nhcue.edu.tw

Abstract—Diagnosis of students with learning disabilities (LD)

is a difficult procedure that requires extensive man power and

takes a long time. Fortunately, through genetic-based (GA)

parameters optimization, artificial neural network (ANN)

classifier may be a good alternative to the above procedure.

However, GA-based ANN model construction is computation-

intensive and may take quite a while to process. Accordingly,

parallel processing such as multi-core programming and grid

computing have been used to speedup the process. In this study,

we setup a Hadoop min-cloud environment with virtualized

hosts so that we may take full advantage of the current multi-

core CPU technology. The GA-based ANN LD classifier is then

re-programmed based on the MapReduce programming model

and ported to this mini-cloud environment. Some

implementation issues and considerations regarding the

process will be discussed in the paper. Although the

preliminary results may not show significant breakthrough

over our previous studies, yet we do gain some experience

through this process and see the potential of the MapReduce

model in our future applications.

Keywords-learning disabilities; MapReduce; neural network;

virtualization; cloud computing

I. INTRODUCTION

The term “learning disabilities” (LD) was first used in
1963 [1]. However, experts in this field have not yet
completely reach an agreement on the definition of LDs and
its exact meaning [2]. In fact, a person can be of average or
above average intelligence, without having any major
sensory problems (like blindness or hearing impairment),
and yet struggles to keep up with people of the same age in
learning and regular functioning. Due to such implicit
characteristics of learning disabilities, the identification of
students with LDs has long been a difficult and time-
consuming process. In the United States, the so called
“Discrepancy Model” [3], which states that a severe
discrepancy between intellectual ability and academic
achievement has to exist in one or more of these academic
areas: (1) oral expression, (2) listening comprehension (3)
written expression (4) basic reading skills (5) reading
comprehension (6) mathematics calculation, is one of the
commonly adopted criteria to evaluate whether a student is
eligible for special education services.

In Taiwan, the diagnosis procedure pretty much follows
the “Discrepancy Model”. The sources of input parameters
required in such prolonged process include information from
parents, general education teachers, students’ academic
performance and a number of standard achievement and IQ
tests. To guarantee collection of required information
regarding students suspected with LD, usually checklists of
some kind are developed to assist parents and regular
education teachers. The Learning Characteristics Checklists
(LCC), a Taiwan locally developed LD screening checklist
[4], is commonly used in most counties of Taiwan. Among
the standard tests, the Wechsler Intelligence Scale for
Children, Third or Fourth Edition (WISC III or IV) plays the
most important role in this LD diagnosis model. WISC-III
consists of 13 sub tests [5]. The scores of the sub-tests are
then used to derive 3 IQs, which include Full scale IQ (FIQ),
Verbal IQ (VIQ), Performance IQ (PIQ), and 4 indexes,
which include Verbal Comprehension Index (VCI),
Perceptual Organization Index (POI), Freedom from
Distractibility Index (FDI), Processing Speed Index (PSI).
There are also a number of locally developed standard
achievement tests (AT), which typical consist of reading,
math, and fields that are related to students’ academic
achievement.

Diagnosis of students with LDs then involves mainly
interpreting the standard test scores and comparing them to
the norms that are derived from statistical method. As an
example, in case the difference between VIQ and PIQ is
greater than 15, representing significant discrepancy between
a student’s cultural knowledge, verbal ability, etc, and
his/her ability in recognizing familiar items, interpreting
action as depicted by pictures, etc, is a strong indicator in
differentiating between students with or without LD [5]. A
number of similar indicators together with the students’
academic records and descriptive data (if there is any) are
then used as the basis for the final decision. Confirmed
possible LD students are then evaluated for one year before
admitting to special education. However, it is important to
note that a previous study reveals that the certainty in
predicting whether a student is having a LD using each one
of the currently available predictors is in fact less than 50%
[6].

The above identification procedure involves extensive
manpower and resources. Furthermore, a lack of nationally

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 39 / 98

regulated standard for the LD diagnosis procedure and
criteria result in possible variations on the outcomes of
diagnosis. In some cases, the difference can be quite
significant [7].

With the advance in artificial intelligence (AI) and its
successful applications to various classification problems, it
is interesting to investigate how these AI-based techniques
perform in identifying students with LDs. In our previous
study, we have shown that ANN classifier does well in
positively identifying students with LDs [7]. In subsequent
studies, we combined various feature selection techniques
and genetic-based parameters optimization with the ANN
classifier, which further improves the overall identification
accuracy [8]. However, although ANN-based classifier
performs well in LD diagnosis problem, the procedure is
computation-intensive and may take quite a while to process.
Accordingly, multi-threaded programming and grid-based
parallel computing (a parallel distributed genetic algorithm
based implementation, will be referred to as PDGA hereafter)
have been used to speedup the ANN model training and
validation [9, 10, 11].

In this paper, we still focus on the ANN classification
model and work on porting the GA-based ANN classifier to
the MapReduce programming model. To fit into the new
programming model, we have done a number of
modifications of the PDGA procedure. The rest of the paper
is organized as follows. Section 2 briefly describes the
history of applying AI techniques to special education and
gives a short introduction to Hadoop related terms that are
used in our implementation. Sections 3 and 4 present our
experiment settings, design and corresponding results.
Finally, Section 5 gives a brief summary of the paper and
lists issues that deserve further investigation.

II. RELATED WORK

Artificial intelligence techniques have long been applied
to special education. However, most attempts occurred more
than one or two decades ago and mainly focused on using the
expert systems to assist special education in various ways [7].
There were also numerous classification techniques other
than neural networks that were developed and widely used in
various applications [12]. Among all the classification
techniques, artificial neural networks (ANN) have received
lots of attentions due to their demonstrated performance and
have gained wide acceptance [13].

An artificial neural network is a mathematical
representation that is inspired by the way the brain processes
information. Many types of ANN models have been
suggested in literature, with the most popular one for
classification being the multilayer perceptron (MLP) with
back propagation. The goal of this type of network is to
create a model that correctly maps the input to the output
using historical data so that the model can then be used to
predict the outcome when the desired output is unknown.
MLP with back propagation is typically composed of an
input layer, one or more hidden layers and an output layer,
each consisting of several neurons. Each neuron processes its
inputs and generates one output value that is transmitted to
the neurons in the subsequent layer. Fig. 1 provides an

example of an MLP with one hidden layer and one output
neuron.

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

xn

h1

h2

h
n

b1

b2

bn

b

y

w11

w21

wn1

wnn

w2n

w1n

w1

w2

wn

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

xn

h1

h2

h
n

b1

b2

bn

b

y

w11

w21

wn1

wnn

w2n

w1n

w1

w2

wn

Figure 1. MLP with one hidden layer.

The output of i-th hidden neuron is computed by
processing the weighted inputs and its bias term bi as follows:











+= ∑
=

j

n

j

iji

h

i xwbfh
1

 (2)

where wij denotes the weight connecting input xj to hidden
unit hi. Similarly, the output of the output layer is computed
as follows:











+= ∑
=

j

n

j

j

output xwbfy
1

 (3)

with n being the number of hidden neurons and wj represents
the weight connecting hidden unit j to the output neuron. A
threshold function is then applied to map the network output

y to a classification label. The transfer functions
hf and

outputf allow the network to model non-linear relationships

in the data. Also note that the number of hidden layer nodes
does not need to be the same as the number of input nodes.

The training of a neural network is the process of
presenting the network with sample data and modifying the
weights to approximate the desired function. In particular, an
epoch indicates one iteration through the process of
providing the network with a sample input and updating the
network’s weights. Let Ni, Nh and No respectively represent
input feature size, number of hidden and output nodes, the
total order of complexity is then O(Ni×Nh×No+Nh×No) for one

epoch [14]. Since a typical ANN training process usually
takes 500 epochs, the computation complexity for training
of an ANN model is roughly equal to 500×N×O(Ni×Nh×

No+Nh×No), where N represents the size of input samples for

training.
In the field of special education, ANN has been used in a

number of applications [7]. To improve the ANN
classification accuracy, genetic algorithms have been used in

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 40 / 98

the training and constructing of ANN model [15]. However,
the GA optimization procedure may require numerous
applications of the above ANN training process (depending
on the number of chromosomes and evolution generations),
and thus usually takes quite a long time to process [7].
Accordingly, researches have been applying parallel
processing, which may provide affordable computational
power, to speedup the time-consuming process [16]. For
network connected cluster or grid environment, message
passing interface (MPI) is usually used to coordinate
computing nodes for completing a common task. On the
other hand, to take full advantage of the currently available
multi-core processor technology, OpenMP may be used
explicitly to direct multi-threaded, shared memory
parallelism [9].

With the advance of the cloud computing, a number of
distributed computational models have also been developed.
Among them, the MapReduce, together with GFS and
GigTable were developed by Google in 2003. MapReduce is
a programming model for large-scale data processing
problems, which may separate the original problem from the
details of parallelization. However, other than the related
documents and algorithms, Google did not release their
source codes. Fortunately, Hadoop, developed by Apache
foundation that originally includes HDFS, HBase and
MapReduce, is an open-source alternative for Google’s
implementation [17].

HDFS (Hadoop Distributed File System) is designed to
operate upon low-cost hardware with high fault-tolerance
and provide high throughput access to applications that have
massive data sets. An HDFS cluster operates in a master-
slave setup consisting of a name-node (master) and a
varying number of data-nodes (slaves). The name-node
maintains the metadata for all the files and directories in the
file system. It also knows the data-nodes on which all the
blocks for a given file are located [17].

MapReduce, operating upon the HDFS, is a distributed
programming model that may work on a cluster of
tremendous computational nodes and is suitable for
processing problems with massive data sets. In MapReduce
programming model, a computation is specified by two
functions: Map and Reduce. The underlying MapReduce
library then proceeds to parallelize the computation, while
hiding issues such as data distribution, load balancing and
fault tolerance from the programmers. Accordingly,
MapReduce programmers may thus be able to concentrate
on the programming logic in solving the problems.

A MapReduce job, which consists of input data,
MapReduce program, and configuration information, is
divided into map and reduce tasks. The job-tracker and a
varying number of task-trackers control the job execution
process, with the job-tracker coordinating all the jobs on the
system and the task-trackers running tasks and sends job
progress to the job-tracker [17]. The configuration of
various roles in a Hadoop cluster environment can be shown
in Fig. 2. As can be seen, the master can be a job-tracker /
name-node and a task-tracker / data-node at the same time,
while a slave can only be a task-tracker and a data-node.

Figure 2. Various roles of Hadoop cluster nodes (revised from [18]).

In this study, we will work on porting the GA-based
ANN classifier for LD identification [9] to the emerging
cloud computing paradigm.

III. ENVIRONMENT SETUP AND IMPLEMENTATION ISSUES

A virtualized 12-node mini-cloud environment,
established on top of 2 multi-cores PCs running Ubuntu
server, is set up for the experiment. The hardware details of
the PCs and the mini-cloud setup are shown in Table I and
Fig. 3. Note, virtualization (through kernel-based virtual
machine: KVM) is adopted in this study so that we may take
full advantage of the current multi-core CPU technology.

TABLE I. HARDWARE DETAILS OF THE PCS IN OUR STUDY

 CPU No. of cores Memory

PC 0 Intel (R) Core (TM) i7 (2.7 GHz)
4 physical cores

(8 logical cores)
12 GB

PC 1 AMD Phenom (TM) II (3.3 GHz) 6 physical cores 8 GB

Figure 3. The mini-cloud setup in our study.

To map the regular genetic algorithm to the MapReduce
model, we re-arrange the order of the GA procedure as
shown in Fig. 4. The most computation-intensive step,
which would be the fitness function calculation (ANN
model construction and validation), is implemented in the
Map stage, while the other GA processes such as selection,
cross-over, and mutation are organized in the Reduce stage.
Note there is only one Reducer in our implementation,
which means only the most computation-intensive fitness
function is parallelized while the GA processes are executed

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 41 / 98

sequentially. Although this may somewhat degrade the
overall performance (in terms of execution time), yet the
implementation is much simpler and we may also avoid the
GA procedure converging to some local maxima when each
reduce task is distributed with too few chromosomes in a
multiple Reducers setup [10]. Furthermore, as our input data
is much smaller than the HDFS block size (64 MB), we
manually split the input data for each map task to avoid
potential overhead in managing the splits and map task
creation when it is done by Hadoop [17].

(a) (b)

Figure 4. (a) a regular GA operation process that we adopted in our earlier

PDGA implementation [9, 10, 11], and (b) its mapping to the

corresponding MapReduce programming model.

In addition, as shown in Fig. 5, in each generation the
reduce task would preserve at most N best chromosomes in
the HDFS.

Figure 5. Elite chromosomes preservation and distribution.

Note, these N chromosomes also have to be better, in
terms of accuracy, than a threshold value (which would be
the average of all the elite chromosomes stored in HDFS) to
be preserved. Those accumulated elite chromosomes may
later be randomly selected to replace the N worst
chromosomes in consecutive generations. In all of our
experiments in this study, N is set to 5.

IV. EXPERIMENT DESIGNS AND RESULTS

Our objectives in this study are two-fold: (1) to gain
some experience in a mini-cloud environment, and hopefully
this may be extended to future application with more input
and in a larger scale cloud environment setup, (2) to evaluate
how the parallel genetic algorithm performs in constructing
the ANN-based LD identification model with the
MapReduce programming model as compared to
implementations using multi-threaded APIs (OpenMP) and
grid-based distributed computing.

The data sets used in this study are summarized in Table
II, which together with the corresponding pre-processing
(such as normalization and feature selection) are exactly the
same as those used in [9].

TABLE II. DATA SETS AND THEIR FEATURES USED IN THIS STUDY

 sample size number of features

data set 1 652 7

data set 2 125 7

data set 3 159 10

To fulfill the above mentioned objectives, we have
design and conducted three experiments. The ANN code
(fitness function computation, adopting five-fold cross
validation and 500 epochs in each ANN training) is exactly
the one used in [9] (in C language), and is invoked by the
Map tasks (implemented with Java language) through
external procedure call. Three parameters of the ANN
classifier (number of hidden nodes, learning rate and
momentum), together with random number seeds, which
might affect the initial weights and bias of neural network,
are encoded into the chromosomes. For genetic algorithm,
real-value encoding is adopted with the crossover rate,
mutation rate and number of generation set at 0.8, 0.1 and 50,
respectively. Furthermore, accuracy in classification is used
to evaluate the fitness of populations. A performance index:
correct identification rate (CIR) is defined to evaluate the
experiment outcomes, as listed in equation 1 below.

CIR=
)cases ofnumber (total

)tionidentifica LD-non and LDcorrect of(number (1)

In the first experiment, we evaluate our MapReduce
implementation of the GA-based ANN classifier in terms of
CIR and execution time by fixing the population size
(number of chromosomes) assigned to each map task to 20
in the PDGA-based ANN classifier, while varying the
number of computing nodes (1, 2, 4, 8, and 12,
respectively). Accordingly, the overall population size also
varies between 20, 40, 80, 160, and 240, respectively. In
the second experiment, we fix the overall population size to
200, while varying the number of computing nodes (1, 2, 4,
8, and 12, respectively). In other words, the overall
population is evenly distributed to each map task (in case
of 12 nodes scenario, each node is assigned 17
chromosomes). The results of the two experiments are
shown in Tables III and IV, with all numbers as averaged
over twenty consecutive runs.

In general, according to Table III, the CIR improves as
the overall population size increases. From Table IV, when

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 42 / 98

adding more computing nodes (and thus reducing
population size assigned to each individual node), it is
possible to achieve higher CIR and lesser execution time at
the same time. The above two findings are reasonable and
consistent with our previous studies [9, 10].

TABLE III. PERFORMANCE COMPARISON BY FIXING POPULATION AT

EACH NODE TO 20 AND VARYING COMPUTATIONAL NODES (ALL TIME IN

SECONDS)

1 2 3
data set

slave node
CIR

execution

time
CIR

execution

time
CIR

execution

time

1 87.9% 4048 84.7% 2390 86.2% 3655

2 87.9% 3689 84.9% 1998 86.4% 3401

4 87.9% 3624 85.4% 2275 86.4% 3594

8 87.9% 4431 85.8% 2584 86.6% 4289

12 87.9% 5145 86.2% 3641 86.9% 4831

TABLE IV. PERFORMANCE COMPARISON BY FIXING THE TOTAL

POPULATION TO 200 AND VARYING THE COMPUTATIONAL NODES (ALL TIME

IN SECONDS)

1 2 3
data set

slave node
CIR

execution

time
CIR

execution

time
CIR

execution

time

1 88.0% 20368 85.9% 8170 86.3% 16521

2 88.0% 9781 85.8% 4116 86.8% 8807

4 88.0% 6456 85.6% 3046 86.9% 6545

8 88.1% 5293 85.8% 2977 86.5% 4386

12 88.0% 4378 85.7% 3407 86.9% 5035

However, in [10], we notice that in the later case
(experiment 2) there may be a limit on the trend. It appears
the sub-population assigned to each node has to be at least 20
to avoid the possibility that evolutionary process contains too
few chromosomes and potentially causes the GA
optimization process to be trapped into some local maximum.
But we do not see this obvious trend in Table IV. One
possible reason may be the sub-population size (17) in the
12-node scenario is very close to the above mentioned
threshold (20). However, it is more likely due to our non-
parallelized implementation of the Reduce stage where the
GA procedure proceeds. In other words, no matter how many
nodes are involved, all 200 chromosomes are taking part in
the evolutionary phase in one node. Furthermore, we need to
note that 88.1% (in Table IV) is the best (average) CIR we
have achieved so far with data set 1.

In the last experiment, we compare our MapReduce
implementation of the GA-based ANN classifier and the grid
and OpenMP implementations in terms of CIR and execution
time by varying the population size in a fixed 7-node mini-
cloud environment. By OpenMP, we mean OpenMP APIs
are used to multi-thread the most time-consuming ANN
model constructions and verifications in our case. A simple
static scheduling that evenly assigns population to the
available threads (cores) is adopted. The outcomes are shown
in Table V, again with all numbers as averaged over twenty
consecutive runs. Note that all three parallel computing

environments are built upon PC0 as listed in Table I so that
the performance comparison can be meaningful. In addition,
the outcomes of the sequential version (depicted as NA) of
our ANN classifier implementation are also shown and used
as the baseline for comparison.

TABLE V. PERFORMANCE COMPARISON ON VARYING THE

POPULATION IN THE 7-NODE SETUP (1 MASTER + 6 SLAVES, ALL TIME IN

SECONDS, NA, MR, GRID AND OMP REPRESENT SEQUENTIAL, MAPREDUCE,
GRID COMPUTING AND OPENMP IMPLEMENTATIONS, RESPECTIVELY)

1 2 3 data set

population
CIR

execution

time
CIR

execution

time
CIR

execution

time

NA 87.5% 6302 84.7% 1998 86.9% 4001

MR 87.9% 3935 85.3% 2225 86.6% 3581

Grid 87.4% 1991 85.7% 798 87.2% 1122
100

Omp 87.3% 1450 84.6% 435 86.7% 847

NA 87.6% 13460 84.8% 4545 87.0% 7450

MR 88.0% 5600 86.0% 2763 86.9% 4974

Grid 87.3% 3775 85.7% 1513 87.7% 2100
200

Omp 87.6% 2562 85.0% 908 86.8% 1544

300 MR 88.1% 6809 86.4% 3128 87.2% 5889

Only MapReduce implementation outcomes are available in the case of 300 population size.

According to Table V, it seems distributed
implementations (either MapReduce or grid computing)
perform somewhat better in terms of CIR. But when it comes
to execution time, the OpenMP version of the PDGA
performs the best (with speedup between 4.35 and 5.25), and
the grid implementation stands second (with speedup
between 2.50 and 3.57), and the MapReduce implementation
falls far behind (with speedup between 0.90 and 2.40). The
primary cause may be attributed to the sequential operation
in the Reduce stage (the GA procedure), which in our
measure may take between 25% (population=300) to 50%
(population=100) of the overall execution time. Accordingly,
the parallelization of the Reduce stage would be our first
priority in future research.

In addition, we also note that CPU usage jumps from
23% with sequential implementation to 92% with multi-
thread implementation using OpenMP APIs. In cases of
MapReduce and grid computing implementations, the CPU
usage can be as high as 100%. Apparently, the computing
power of the underlying multi-core CPUs has indeed been
fully utilized. However, considering the speedup depicted
above, there may be quite a lot of work to do in reducing
overhead associated with the MapReduce and grid
implementations (especially with the former one), which
would be another focus of our future study.

V. SUMMARY AND FUTURE WORK

In this study, we modify our grid-based PDGA
implementation of the ANN classifier for identifying
students with learning disabilities to the MapReduce
distributed programming model. Compared with the grid
computing model, MapReduce has the advantage of hiding

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 43 / 98

the underlying hardware details and thus allow the
programmers to be able to concentrate on the programming
logic in solving the problems. The preliminary results show
that in 50% of cases, the MapReduce implementation may
achieve the best CIR when compared to the other parallel
programming models. However, in terms of execution time,
the MapReduce model does not show significant
breakthrough. But we do see the potential of the MapReduce
model in our future applications. For example, increase the
population size, which may easily be extended by simply
adding more nodes to the Hadoop-based cloud environment,
seems to be a good direction to optimize the ANN LD
classification model. In addition, more diagnosis data for
students with LDs will be collected so that we may explore
the processing power of MapReduce upon massive data sets.
Finally, a more sophisticated parallelized GA procedure in
the Reduce stage is also under development.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Council of Taiwan, R.O.C. under Grant NSC 100-2511-S-
018-011-MY2.

REFERENCES

[1] S. A. Kirk, “Behavioral diagnosis and remediation of learning

disabilities,” Proc. of the Conference on the Exploration into

the Problems of the Perceptually Handicapped Child, 1963,
pp.1-7.

[2] J. M. Fletcher, W. A. Coulter, D. J. Reschly, and S. Vaughn,

“Alternative approach to the definition and identification of

learning disabilities: some questions and answers,” Annals of

Dyslexia, vol. 54, no. 2, 2004, pp. 304-331.

[3] J. Schrag, “Discrepancy approaches for identifying learning
disabilities,” http://www.specialed.us/discoveridea/topdocs/

nasdse/discld.pdf, retrieved: June, 2013.

[4] Y.-R. Meng and L.-R. Chen, “On discussing the differences

about the learning characteristics of LD,” Bulletin of Special

Education, vol. 233，2002，pp. 75-93. (in Chinese)

[5] C. L. Nicholson and C. L. Alcorn, “Interpretation of the
WISC-III and its subtests,” Paper presented at the 25th Annual

Meeting of the National Association of School Psychologists,

Washington, DC, 1993.

[6] T.-S. Huang, “A Study on the characteristics of WISC-III for
students with learning disabilities,” Master thesis, Graduate

Institute of Special Education, National HsinChu University

of Education, Hsinchu, Taiwan. (in Chinese)

[7] T.-K. Wu, S.-C. Huang, and Y.-R. Meng, “Evaluation of

ANN and SVM classifiers as predictors to the diagnosis of

students with learning disabilities,” Expert Systems with

Applications, vol. 34, no. 3, April 2008, pp. 1846-1856.

[8] T.-K. Wu, S.-C. Huang, and Y.-R. Meng, “Effects of feature

selection on the identification of students with learning

disabilities using ANN,” Lecture Notes in Computer Science,

Springer Berlin/Heidelberg, vol. 4221, 2006, pp. 565 – 574.

[9] T.-K. Wu, S.-C. Huang, Y.-R. Meng, Y.-L. Lin, and H. Chang,
“On the parallelization and optimization of the genetic-based

ANN classifier for the diagnosis of students with learning

disabilities,” Proc. 2010 IEEE Conference on Systems, Man

and Cybernetics, 2010, pp. 4263-4269.

[10] T.-K. Wu, S.-C. Huang, Y.-R. Meng, and T.-H. Wu,
“Experiences on constructing neural network based learning

disabilities identification model with the Amazon elastic

compute cloud,” Proc. 2012 International Conference on

Internet Study, 2012.

[11] K. Kazunori, M. Hiroshi, and I. Masaaki, “Asynchronous
Parallel Distributed GA using Elite Server,” Proc. 2003

congress on evolutionary computation, 2003, vol. 4, pp. 2603-

2610.

[12] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J.

Suykens, and J. Vanthienen, “Benchmarking state-of-the-art
classification algorithms for credit scoring,” Journal of the

Operational Research Society, vol. 54, 2003, pp. 627–635.

[13] C. M. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.

[14] E. Istook and T. Martinez, “Improved backpropagation

learning in neural networks with windowed momentum,
International journal of neural systems,” vol. 12, no.3 & 4,

2002, pp. 303-318.

[15] E. Cantú-Paz and C. Kamath, “An empirical comparison of

combinations of evolutionary algorithms and neural networks

for classification problems,” IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 5,

2005, pp. 915-927.

[16] N. Sakamoto, K. Ozawa, and T. Niimura, “Grid computing

solutions for artificial neural network-based electricity market

forecasts,” Proc. 2006 International Joint Conference on
Neural Networks, 2006, pp. 4382-4386.

[17] T. White, Hadoop: The Definitive Guide. O’ Reilly Media,

Inc.

[18] Y. Wang and W. Chen, “Introduction to the Hadoop

distributed file system,” http://trac.nchc.org.tw/cloud/raw-

attachment/wiki/NCHCCloudCourse090331/3.ppt, retrieved:
June, 2013.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 44 / 98

Principles and State-of-the-Art of Engineering Optimization Techniques

Ning Xiong, Miguel León Ortiz

School of Innovation, Design and Engineering

Mälardalen University

Västerås, Sweden

E-mail: ning.xiong@mdh.se, miguel.leonortiz@mdh.se

Abstract—This paper gives a survey of the principles and

the state-of-the-art of engineering optimization techniques. Both
the classic and emerging approaches to nonlinear optimization
problems are reviewed and analyzed. All the techniques are
discussed in two basic types: point-based transition and
population-based transition, depending on whether a single
point or multiple points are generated as new approximate
solution(s) in each step. We also consider multi-objective tasks
as new application trend and point out the strong potential of
population-based methods to tackle multiple objectives
simultaneously.

Keywords-optimization techniques; point-based optimization;

population-based optimization

I. INTRODUCTION

Nowadays, optimization has become an important issue
in industrial design and product development [1]. It is
necessary to enhance system performance whereas reduce
product cost to meet challenges in the competitive market.
From engineering perspective, optimization means adjusting
or fine tuning system designs in terms of one or more
performance factors. This is not a trivial task, in particular
when the problem space is complex and of high-
dimensionality. Application of suitable optimization
techniques has shown its benefit in supporting human
designers to acquire optimal or near optimal solutions within
a short design time.

Generally, an engineering optimization problem can be

formulated as:

),,,()(minimize 21 nxxxfXf 

mixxxg ni  1,0),,(tosubject 21 

where (x1, x2, …xn) is the vector of design variables,

gi(i=1…m) denote constraint functions that define the

region of feasible solutions in the problem space, and

function f(X) provides objective values for vectors of

variables representing alternative designs. The set of design

variables xi can take continuous or discrete values or a

mixture of both depending on specific problems. Besides,

the above statement is generic since maximization of a

certain function is equivalent to minimization of the minus

of it.

 The optimization techniques can be divided into two basic

categories: linear programming [2] and non-linear

programming [3], [4]. The former is applied to optimization

problems that have linear objective and constraint functions.

Important progresses in this area include the polynomial-

time ellipsoid algorithm [5] and the interior point algorithm

[6], both were proposed to reduce time complexity and to

allow for extremely efficient problem handling in the

optimization procedure. At present, linear programming has

been advanced to a soundly founded discipline and widely

used technology for linear optimization problems. The

second category of optimization is called nonlinear

programming, which refers to the consortium of methods

and approaches that are designed to deal with problems with

nonlinear objective or constraint functions [7]. Nonlinearity

is a very common property for many engineering

optimization problems, and solving such problems often

presents a challenge due to the high complexity, high

dimensionality and multi-modality of the problem space.

Although many techniques for nonlinear programming have

been developed, there are always pros and cons for them

and no single method can more competently solve all kinds

of problems than others.
This paper focuses on the study of nonlinear optimization

techniques. Special emphasis is made on presenting the
general principle and ideas of how to reach the optimum
rather than the details of computational procedures. Both the
classic and emerging approaches to nonlinear optimization
problems are reviewed and analyzed. We also consider
multi-objective tasks as new application trend when
discussing the potential capability of optimization methods.

The organization of this paper is as follows. Section II
highlights the basic idea and principle for general nonlinear
optimization problems. The review of concrete approaches
for optimization is given in Sections III and IV, respectively.
The type of approaches called point-based transition is
discussed in Section III, and the type of approaches called
population-based transition is addressed in Section IV.
Finally, Section V provides concluding remarks and
discussion.

II. GENERAL PRINCIPLE OF OPTIMIZATION

Mathematically, it is well known that an optimum of a

nonlinear function f(x1,x2,…xn) must be some point at which

the partial derivatives of the function with respect to all

variables are equal to zero, i.e.,

ni

x

f

i

,,2,1,0 


 (1)

A solution satisfying all the equations in (1) is called a

stationary point of function f. Further, the stationary point is

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 45 / 98

a minimum solution if the Hessian matrix of the second-

order derivatives, as defined in (2), is positive definite.















































2

2

1

2

2

2

1

2

21

2

2

1

2

n

n

nn x

f

xx

f

xx

f

xx

f

xx

f

x

f

H 


 (2)

 The above principle suggests a simple procedure to

obtain exact solution of an optimization problem. It is done

by finding all stationary points of the objective function and

then examining the property of the Hessian matrices of these

points. The global optimum solution is selected from those

stationary points for which the Hessian matrices are positive

definite.

Unfortunately, the approach to exact solutions of

optimization is rarely applicable in engineering practice.

The main reason lies in the difficulty of acquiring the

derivative information analytically. In many applications,

only concrete objective values of individual designs are

calculable through specific calculations such as simulation.

But the explicit expression of the objective function is not

available, not to mention the analytic formulation of the

partial derivative functions. It follows that we are unable to

construct the equations as formulated in (1) for determining

the stationary points of the objective function.

Numerical approaches present a pragmatic alternative to

solve engineering optimization problems. The main idea is

to create arbitrary initial approximate(s) to the problem and

then improve them progressively. The whole procedure

consists of a number of iterations. In each iteration, new

approximate(s) are created from the old one(s) as more

promising solution(s). Depending on the number of

approximates generated at a single step, two types of

numerical approaches (point-based and population-based

transitions) can be defined and explained as follows.

With point-based transitions, only one point as new

approximate is generated and evaluated in each of the

iterations. The new point is made as transition from an old

one with expected better performance. The general form of

such a transition can be expressed as

iiii ShXX 1
 (3)

where Xi+1 and Xi denote the new and old approximates
respectively, hi decides the length of transition, and Si is a
vector determining the direction of the move from Xi. There
are many different methods to determine the direction vector
Si in the literature. Some use merely values of the objective
function while others require partial derivative information
in addition to the objective values.

Sometimes, it is beneficial to apply point-based transition
methods in combination with random sampling to increase
their global search ability and thereby reducing the risk of
getting stuck into local optima. For instance, the initial
approximate for iteration can more favorably be decided by

resorting to a random scheme [8], which generates a set of
uniformly distributed points in the region of feasible
solutions. We then select the sample solution that receives
the best objective value as the starting point of search. The
other possibility is to follow the multi-start strategy [9] when
doing optimization with point-based transitions. This means
that we run the optimization algorithm multiple times and
every time a sample solution is selected randomly as the
starting point. The best solution found from individual runs
is treated as the final solution of the global optimum.

Population-based transition starts from an initial
population of feasible solutions. Then it undergoes an
iterative procedure in which new populations are
successively created from old populations to reach
progressively refined approximates to the problem. As many
points in the space are explored simultaneously, population-
based transition is superior to point-based transition in the
global search ability; hence it has less likelihood of ending
with a local minimum. Many biologically inspired
optimization techniques rely on transitions of populations,
such as genetic algorithms, memetic algorithms, differential
evolution, particle swarm optimization, as well as ant colony
optimization, which will be reviewed in Section IV.

III. OPTIMIZATION WITH POINT-BASED

TRANSITION

The approaches of this type explore the problem space

via transition from one feasible solution to another. The

transition procedure is controlled by either deterministic or

probabilistic rules. Six well known approaches in this

category will be surveyed here.

A. Hill-Climbing

Hill-climbing [10] is the simplest numerical approach for
optimization. It starts by creating an arbitrary solution
(approximate) to the problem and then it evaluates all the
neighbors of the current solution. If the best neighbor has a
lower objective value than the current solution, the current
one is replaced by that neighbor and the search moves on to
the next iteration, otherwise the search is terminated.

Hill-climbing is a local search and can only be applied in
discrete spaces as it implicitly assumes a finite number of
feasible neighbors at every point. The advantages of hill-
climbing lie in its simplicity and high efficiency. It has been
widely used to solve many machine learning and technical
optimization problems (e.g., [11], [12]). Hill-climbing is
particularly recommended when there is limited time for
search; for example, for real-time systems.

B. Gradient Descent

Gradient descent [13] aims to solve continuous
optimization problems. It has very similar idea to that of hill-
climbing. The only difference between both methods lies in
the way to determine the best successor solution from a
current one. Since it is not possible to evaluate every
successor in the continuous space, the gradient information is
utilized to identify the direction of move to reduce the
objective function most quickly. Hence, the normalized
direction vector of the move can be written in (4). The length

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 46 / 98

of move along Si can be determined by solving a one-
dimensional optimization problem. The golden section
method is often used in gradient descent to find the optimal
size of transition at each step.









































n

i i

n

i

x

f

x

f

x

f

x

f

S

1

2

21

,,,  

Gradient descent is simple and very useful in solving
many optimization problems when partial derivatives of the
object function are available. However, as local search
scheme, this method cannot guarantee the global optimality
of the solutions returned. It should preferably be combined
with the multi-start strategy to increase the chance of finding
the global minimum. The other weakness with gradient
descent is that, when the current solution gets close to a
minimum solution, the search will become quite inefficient
due to the decreasing lengths of the moves.

C. Newton’s Method

Newton’s method [14] attempts to improve the speed of

convergence of gradient descent in the vicinity of a

minimum solution. According to Taylor’s expansion, the

objective function near a minimum X
*

can be expressed by

an approximate form as:

      XHXgXXfXXfXf
TT


2

1
)()()(** (5)

where g is the vector of the first-order partial derivatives of

the objective function and H is the Hessian matrix of the

second-order partial derivatives of the objective function. For

all the first-order derivatives at the optimum X
*
 are zero,

Eq.(5) is simply rewritten as:

    XHXXfXf
T


2

1
)()(* (6)

From (6), it can be seen that the objective function is

approximately quadratic in the vicinity of X
*
. A quadratic

function has the following property:

  XHg  (7)

where g is the vector of partial derivatives evaluated at the

current point, and H is the Hessian matrix which is constant

for a quadratic function. Using the property in (7) enables us

to obtain the minimum solution X
*
 from a nearby point X in

terms of the following transition rule:

 gHXX 1*  (8)

This transition rule indicates that a single move suffices to

reach the minimum X
*
 when the current solution is nearby.

This shows a substantial improvement of the late

convergence speed compared with that of gradient descent.

Nevertheless, it has to be noticed that globally the

objective function is not quadratic. Hence, an iterative

procedure is needed to generate a sequence of moves for

progressive refinement. At iteration i, we first calculate g and

H at the current point Xi, and then, we use the Newton’s

method to create the next refined solution as

iiii gHXX 1

1



  (9)

Generally, the Newton’s method stated above is still a

local approach and it has two drawbacks. Firstly, it requires

heavy computation with the Hessian matrix of second-order

derivatives and its inverse. Secondly, the method is only

efficient in the neighborhood of an optimum, but away from

the optimum it may progress very slowly and even diverge.

So, our suggestion is not employing the Newton’s method

alone, but in combination with some other optimization

technique and using it at the final stage.

D. Tabu Search

Tabu search [15] [16] is a metaheuristic local search

algorithm to solve discrete optimization problems. It can be

considered as extension of the hill-climbing search in the two

aspects as follows. Firstl, there is added driving force to

enforce the local minimization procedure out of a local

minimum. Secondly, various memory structures are used to

store historical information which is then utilized to guide

the further exploration of new solutions. For instance, the

tabu list is introduced as short term memory to save recently

visited solutions to prevent cyclic behaviors during the

search. Intermediate and long term memory is used to

intensify and diversify the search to ensure adequate

exploration of the problem space.

The search starts from an arbitrary point as the current

solution. All the solutions in its neighborhood that are not in

the tabu list or satisfy the aspiration level are successor

solutions and their objective values are calculated. Then the

move is made to the best successor according to the objective

values, and the tabu list is updated accordingly. Both uphill

and downhill moves are allowed here to give chance to

escape from a local minimum. This process is repeated in a

number of iterations until the termination condition is

satisfied.

It is useful to apply tabu search in many practical

scenarios [17] [18], mainly in combinatorial problems. A

main limitation with this technique is that it requires

considerable memory resources to store historical

information. Besides, domain specific knowledge is needed

to design suitable aspiration criteria.

E. Simulated Annealing

Simulated annealing [19] [20] is a stochastic and meta-

heuristic algorithm for solving global optimization

problems. It is inspired by the physical principle of

annealing used in material engineering. In an annealing

process, the solid is first heated to a high temperature,

causing atoms to move away from their initial positions.

When the material cools down slowly, the atoms adjust

themselves into a new thermal equilibrium that corresponds

to a minimum energy state.

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 47 / 98

The algorithm is iterative and the main idea is to

randomly select a new solution in the neighborhood of the

current solution at every step. The difference of objective

values, ΔE, between the new and current solutions is

calculated as analogy to the change of energy. If the new

solution is better than the current one (ΔE<0), the current

solution is replaced by the new one. In case when the new

solution is worse (ΔE>0), there is still a chance to move to

it. The probability of this move is given by the Boltzmann

probability function:








 


T

E
EP exp)(

 (10)

The parameter T in (10) is the temperature used during the

search. In the early iterations, the temperature is high, which

results in high probability of moving into inferior points and

thereby avoiding local minima. Contrarily, during late

stages, the temperature is reduced to such a level that gives

little chance for accepting worse solutions and consequently

the search will finally converge.

The merit with simulated annealing is that it does not

require the objective function to be continuous and

differentiable, and it can handle both continuous and

discrete optimization problems. But, proper parameter

settings with this method are not difficult.

F. Simplex Method

A simplex is a geometric object consisting of n+1 points

(vertices) in the n-dimensional spaces. Every vertex of the

simplex corresponds to a feasible solution to the problem.

The initial simplex can be generated randomly. The main

idea is to move the simplex iteratively and every time

replacing the worst vertex of it with a new better point. The

search terminates when the standard deviation of the

objective values of the n+1 vertices of the simplex is lower

than a specified value.

According to the simplex method by Nelder and Mead

[21], the new better points for replacement are generated

through the operations such as reflection, expansion, and

contraction. The worst vertex is first reflected through the

centroid of the remaining points of the simplex. If the

reflection produces a better point, expansion is done to see

whether the objective function can be reduced further via

moving in the same direction. Otherwise, if the reflected

point is not satisfactory, contraction is performed via

generation of a point between the worst vertex and the

centroid for possible replacement.

The main advantage of the simplex method is that it is a

global optimization technique and it does not require any

derivative information of the objective function. The

method is robust and efficient with a small number of

design variables but it does not scale well up to high-

dimensional problems. As noted in [7], the efficiency of

simplex diminishes when the design variables are more than

five.

IV. OPTIMIZATION WITH POPULATION-BASED

 TRANSITION

The approaches of this type explore the problem space

via transition from one population of feasible solutions to

another. They are biologically inspired techniques and

probabilistic rules are used to create new solutions from old

ones. Five well known approaches in this category will be

reviewed here.

A. Genetic Algorithms

Genetic algorithms (GAs) are stochastic optimization

algorithms that emulate the mechanics of natural evolution

[22]. They are attractive to be applied in engineering

optimization tasks due to the two following reasons. First, a

GA evaluates many points in the search space

simultaneously, as opposed to a single point, thus reducing

the chance of converging to the local optimum. Second, a

GA uses only values of objective functions; therefore they

do not require the search space to be differentiable or

continuous.

 Essentially, a GA is an iterative procedure maintaining a

constant population size. An individual in the population

encodes a possible solution to the problem with a string

analogous to a chromosome in nature. At each step of

iteration, new individuals are created via applying genetic

operators on selected parents, and subsequently some of the

old, weak individuals are replaced by new strong ones. In

this manner, the performance of the population will be

gradually improved in the evolutionary process.

A classical GA works with binary code, i.e., individuals

in the population are represented by binary strings.

However, binary coding would not be the most appropriate

choice in applications to optimization problems with

continuous spaces. One reason lies in the matter of

resolution, i.e., a binary string is inherently related to some

loss of precision for representing the continuous value of a

variable. The other reason is the extra job of decoding that is

needed when doing fitness evaluation for a binary string in

the population.

The other alternative is to directly adopt arrays of real

numbers as population individuals. Real-coded GAs have

been studied by many researchers and nowadays become a

popular, extended version of GAs for solving real-valued

optimization problems. The interesting features of real-

coded GAs together with their used mechanisms and genetic

operators haven been carefully discussed in [23] and [24]. In

[25], real-coded GA was used to optimize similarity models

for case-based reasoning.

B. Memetic Algorithms

Memetic algorithms (MAs) [26] are population-based

metaheuristic search methods inspired by the principle of

natural evolution and Dawkin’s notion of memes capable of

local adaptation. MAs can be considered as enhancement of

GAs by embedding local search to allow for self-

refinements of individuals. According to the idea of

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 48 / 98

Lamarckian learning [27], local search can be done on all or

part of the population to reach a local optimum or improve

the current solution.

As hybridization of GAs and local search, MAs aim to

exploit the best search regions gathered by global sampling

with GA. Hence, an important demand for MAs is the

synergy between the exploration abilities of the GA and the

exploitation abilities of the local search. In [28], a local

search scheme was combined with the global search

capability of evolutionary algorithms for rule extraction.

The simplex method by Nelder and Mead was adopted as

the local search mechanism in the memetic algorithm [29]

for optimal fuzzy controller design. The hierarchical

memetic algorithm was proposed in [30] for combined

feature selection and similarity modeling in case-based

reasoning.

C. Differential Evolution

Differential evolution (DE) [31] is a stochastic and

meta-heuristic technique that has been developed for solving

optimization problems with real parameters. It provides a

powerful tool for searching for optimal solutions in high-

dimensional spaces that are nonlinear, non-differentiable,

non-continuous, and containing multiple local optima. DE is

similar to GAs in the sense that both are evolutionary,

population-based algorithms. But DE algorithms differ from

GAs in the way evolutionary operators are manipulated to

produce new child solutions. The main loop of DE

algorithms is briefly explained in the following.

A DE algorithm maintains a population of real-valued

parameter vectors and works iteratively. Each iteration starts

with mutation, in which three distinct parameter vectors are

randomly selected for every population member. The

weighted differences between two parameter vectors are

added to the third parameter vector to get the perturbed

vector. Then, crossover is done to combine the population

member and the perturbed vector to yield a new trial vector.

Every parameter in the perturbed vector has a certain

probability to enter the trial vector. Finally, the trial vector

replaces the old population member if it has a lower

objective value. A comprehensive review of various DE

algorithms together with associated operators is given in

[32].

DE attains increasing popularity in engineering

applications due to its attractive features such as fewer

running parameters to specify, ease in programming, high

efficiency, as well as strong global search ability. In [31]

and [33], it was indicated that DE algorithms were more

efficient and more accurate than several other optimization

methods, including controlled random search, simulated

annealing and genetic algorithms. A weakness for DE is that

there is no theoretic proof for its convergence.

D. Particle Swarm Optimization

Particle swarm optimization (PSO) algorithms [34]

mimic the flocking behaviors of animals in their movement.

Similar to GAs, PSO algorithms work with a population of

particles which represent feasible solutions to the problem.

The particles move around in the search space to improve

their fitness (objective values), iteratively. The movement of

each particle is determined in terms of both its best position

in the history and also the best position known so far from

all particles. In view of this, the speed of a particle at

iteration k+1 is updated as:

)()(22111 k

k

gbk

k

pbkk XPrcXPrcvwv 
 (11)

In (11), Ppb , and Pgb , denote, respectively, the best position

of the particle and the best known position from all particles,

w is the momentum, Xk is the position of the particle at

iteration k, r1 and r2 are two randomly generated positive

numbers, and c1 and c2 are the parameters used to balance

the individual and social influences.

PSO is simpler than GAs in its nature. Therefore, it

incurs lower computational cost in creating a new

population from the old one. But, the performance of PSO is

heavily dependent on the parameters w, c1, and c2 in (11),

and proper valuation of such parameters to ensure strong

search ability is a crucial task.

E. Ant Colony Optimization

Ant colony optimization (ACO) [35] [36] mimics the

behavior of a colony of ants in searching for food. It is a

population-based metaheuristic technique used to solve hard

combinatorial problems. Prior to applying ACO, the

optimization problem has to be transformed into the

problem of path finding on a graph. Then a group of ants

work collectively to find a shortest path on the graph by

pheromone communication during path formation [37].

An ant builds its path incrementally. It starts from a

randomly selected vertex and then chooses an edge to go to

the next vertex. The choice of an edge is stochastic yet its

probability is decided by the pheromone values and

heuristic information associated with the edge. The most

well known rule for determining the selection probability

for edge cij is given in (12)

 



fil Sc ilil

ijij

ijcP







)((12)

where Sf denotes the set of feasible edges immediately after

the current partial path, τij and ηij are the pheromone and

heuristic values respectively associated with edge cij, α and

β are the parameters controlling the relative importance of

pheromone versus heuristic information.

Further, when the ants completed their paths, the quality

of their solutions is used to update the pheromone values of

the edges. These updated values are then utilized by the ants

in the next iteration to build new paths. This procedure

continues until the maximum iteration number is reached or

all ants tend to produce a similar path.

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 49 / 98

F. Extension to Finding Multiple Solutions

As is seen in this section, the optimization techniques

with population-based transition are actually beam search,

they can handle a set of feasible solutions at the same time.

It follows that it would be relatively easy to modify or

extend these techniques such that a set of optimal solutions

rather than a single one will be returned from a single run of

the algorithm. For example, the niching genetic algorithms

were developed in [38] to find multiple interesting solutions

in the job shop scheduling.

Finding multiple solutions as interesting trade-offs is

also very important for multi-objective optimization tasks.

Traditional ways to cope with multiple objectives is to build

an overall objective function as weighted combination of

individual objective values. However it is very hard to

assign exact weights to reflect human preference, and

therefore the final solution obtained may not be most

preferred by human decision makers.

Multi-objective genetic algorithms have received

intensive research for more than one decade (see [39][40],

as examples). A nice feature of these algorithms is that a

diversity of Pareto-optimal solutions can be found and

presented to human decision makers, who then choose the

most preferred alternative according to their preference. The

Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)

[41] is an improved version of the early algorithms, which

incorporates a fast non-dominated sorting algorithm and the

crowding-distance assignment to improve the efficiency and

effectiveness of the algorithm respectively.

More recently, multi-objective PSO algorithms were

developed as extension of the single-objective counterparts.

The key issue here is how to select global and local best

particles in terms of multiple criteria. Different selection

strategies have been proposed for this purpose. In [42] the

tournament niche method was used to decide the global best

particle, and the local best particle was identified according

to Pareto-dominance. The other interesting strategy is to

stochastically choose the global best particle from the non-

dominated solutions using density-based probabilities [43].

V. CONCLUSION

This paper provides a survey of the principles and the

state-of-the-art of numerical techniques for solving

nonlinear optimization problems. All the techniques

discussed are classified into two basic types: point-based

transition and population-based transition, depending on

whether a single point or multiple points are generated as

new approximate solution(s) in each step of the iterations.

Generally, the point-based approaches are simple and

effective for optimization problems with a low number of

parameters. However, when the dimension of the space

increases, they become less efficient and are more likely to

get stuck in a local optimum. In many practical applications,

a point-based search method is often combined with the

random sampling or multi-start strategy to increase the

chance to find a global optimum. The population-based

approaches are superior to the point-based ones in global

search capability; they seem to be more suitable to be

applied in high-dimensional search spaces. But, larger

memory requirements and more computational cost are

connected with them as side effects.

Most of the optimization approaches addressed here are

derivative-free. This is a very useful property to promote

wide applications in various situations without requiring the

problem space to be continuous and differentiable. On the

other side, some classical search methods such as gradient

descent and Newton’s method are also valuable and

recommended to use, as long as the derivative information

is available or achievable. The derivative-based methods are

theoretically well founded and can contribute to substantial

improvement of local search performance. The exploitation

of derivative-based local search in a global evolutionary

algorithm would be a promising direction of research for

building new memetic computing frameworks.

Both the point-based and population-based approaches

can be used to solve multi-objective optimization problems.

For point-based approaches, it is necessary to construct an

overall objective function as a weighted combination of

individual objective values, and a single solution will be

returned after the running of an algorithm. Since there is no

clear relation between the weighting and the solution

obtained, we cannot guarantee that the solution found is

really the one that is most preferred by human decision

makers. Comparatively, the population-based approaches

appear to be more appropriate or have more potential for

tackling problems with multiple objectives. As noted in

Section IV, the population-based methods like GAs can

easily be extended to deal with multiple objectives

simultaneously and thereby returning a set of Pareto-optimal

solutions rather than a single one. This enables human

decision makers (designers) to choose the most preferred

solution from a group of interesting trade-offs.

ACKNOWLEDGEMENT

The work is within the EMOPAC project granted by the

Swedish Knowledge Foundation. We are also grateful to

ABB FACTS, Prevas, and VG Power for co-financing the

research.

REFERENCES

[1] L. Shi, S. Olafsson, and Q. Chen “An optimization

framework for product design,” Management Science, vol.

47, 2001, pp. 1681-1692 .

[2] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear

Programming and Network Flows, 2nd Edtion, New York:

John Wiley & Sons, 1990.

[3] D. G. Luenberger, Linear and Non-linear Programming. New

York: Addison-Wesley, 1990.

[4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear

Programming – Theory and Algorithms. New York: John

[5] L. G. Khachian, “A polynomial algorithm in linear

programming,” Soviet Mathematics Doklady, vol. 20, 1979,

pp. 1093-1096Wiley & Sons, 1993.

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 50 / 98

[6] N. Karmarkar, “A new polynomial algorithm for linear

programming,” Combinatorica, vol. 4, 1984, pp. 373-395.

[7] W. H. Swann, “A survey of non-linear optimization

techniques,” FEBS Letters, vol. 2, 1969, pp. 39-55.

[8] A. H. G, Rinnoy Kan, G. G. E. Boender, and G. T. Timmer,

“A stochastic approach to global optimization,” In: K.

Schnittkowski (Ed.) Computational mathematical

programming, 1985, pp. 281-308.

[9] J. S. Arora, O. A. Elwakeil, and A. I. Chahande, “Global

optimization method for engineering applications: a

review,”Structural Optimization, vol. 9, 1995, pp. 137-159.

[10] S. Russel and P. Norvig, Artificial Intelligence: A Modern

Approach (2nd ed.), New Jersey: Prentice Hall, pp. 111–114,

2003.

[11] N. Xiong and P. Funk, “Construction of fuzzy knowledge

bases incorporating feature selection,” Soft Computing, vol.

10, 2006, pp. 796 – 804.

[12] K. A. Sullivan and S. H. Jacobson, “Ordinal hill climbing

algorithms for discrete manufacturing process design

optimization problems,” Discrete Event Dynamic Systems,

vo1. 10, 2000, pp 307-324.

[13] M. Avriel, Nonlinear Programming: Analysis and Methods,

Dover Publishing, 2003.

[14] R. Battiti, “First- and second-order methods for learning:

Between steepest descent and Newton’s method,” Neural

Computation, vol. 4, 1992, pp. 141-166.

[15] F. Glover, “Tabu search – Part one,” ORSA Journal

Computing, vol. 1, 1989, pp. 190-206.

[16] J. A. Bland and G. P. Dawson, “Tabu search and design

optimization,” Computer Aided Design, vol. 23, 1991, pp.

195-201.

[17] J. A. Bland, “Structural design optimization with reliability

constraints using tabu search,”Engineering Optimization, vol.

30, 1998, pp. 55-74.

[18] J. M. Emmert, S. Lodha, and D. K. Bhatia, “On using tabu

search for design automation of VLSI systems,” Journal of

Heuristics, vol. 9, 2003, pp. 75-90.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization

by simulated annealing,” Science, vol. 220, 1983, pp. 671-680.

[20] R. W. Eglese, “Simulated annealing: a tool for operational

research.,” European Journal of Operational Research, vol. 46,

1990, pp. 271-281.

[21] J. A. Nelder and R. A. Mead, “A simplex for function

minimization,” Computer Journal, vol. 7, 1965, pp. 308-313.

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization

and Machine Learning, New York: Addison-Wesley, 1989.

[23] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-

coded genetic algorithms: Operators and tools for behavioural

analysis,” Artificial Intelligence Review, vol. 12, 1998, pp.

265-319.

[24] F. Herrera, M. Lozano, and A. M. Sánchez, “A taxonomy for

the crossover operator for real-coded genetic algorithms: An

experimental study,” International Journal of Intelligent

Systems, vol. 18, 2003, pp. 309-338.
[25] N. Xiong, “Fuzzy rule-based similarity model enables

learning from small case bases,” Applied Soft Computing,
vol. 13, 2013, pp. 2057-2064.

[26] N. Krasnogor and J. Smith, “A tutorial for competent memetic

algorithms: model, taxonomy, and design issues,” IEEE

Trans. Evolutionary Computation, vol. 9, no. 5, 2005, pp.

474-488.

[27] Y. S. Ong and A. J. Keane, “Meta-Lamarckian in memetic

algorithm,” IEEE Trans. Evolutionary Computation, vol. 8,

2004, pp. 99-110.

[28] J. H. Ang, K. C. Tan, and A. A. Mamun, “An evolutionary

memetic algorithm for rule extraction,” Expert Systems with

Applications, vol. 37, 2010, pp. 1302–1315.

[29] X. Zhang, A. Erdem, H. Shi, N. Xiong, D. Isovic, and M.

Bobesic, “A novel memetic algorithm incorporating Nelder-

Mead method in fuzzy controller design,” Proc. Int. Conf.

Computational Intelligence and Software Engineering, 2012,

pp. 55-59.

[30] N. Xiong and P. Funk, “Combined feature selection and

similarity modeling in case-based reasoning using hierarchical

memetic algorithm,” Proc. of the IEEE World Congress on

Computational Intelligence, 2010, pp. 1537–1542.

[31] R. Storn and K. Price, “Differential evolution - A simple and

efficient heuristic for global optimization over continuous

spaces,” Journal of Global Optimization, vol. 11, 1997, pp.

341–359.

[32] S. Das, “Differential evolution: A survey of the state-of-the-

art,” IEEE Trans. Evolutionary Computation, vol. 15, 2011,

pp. 4-31.

[33] M. M. Ali, and A. Torn, “Population set based global

optimization algorithms: Some modifications and numerical

studies,” Computers and Operations Research, vol. 31, 2004,

pp. 1703 – 1725.

[34] J. Kennedy and R. Eberhart “Particle swarm optimization,”

Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.

[35] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:

optimization by a colony of cooperating agents,” IEEE Trans.

Systems, Man, and Cybernetics – Part B, vol. 26, 1996, pp.

29-41.

[36] M. Dorigo, “Ant colony optimization,” Scholarpedia, vol. 2,

2007, pp. 1461.

[37] M. Dorigo and L.M. Gambardella, “Ant Colony System : A

cooperative learning approach to the traveling salesman

problem,” IEEE Trans. Evolutionary Computation, vol. 1,

1997, pp. 53-66.

[38] E. Perez, M. Posada, and F. Herrera, “Analysis of new

niching genetic algorithms for finding multiple solutions in

the job shop scheduling,” Journal of Intelligent Manufacturing,

2012, vol. 23, pp. 341-256.

[39] C. M. Fonseca and P. J. Fleming, “Multiobjective

optimization and multiple constraint handling with

evolutionary algorithms, part I: A unified formulation,” IEEE.

Trans. Systems, Man, & Cybernetics, Part A, vol. 28, 1998,

pp. 26-37.

[40] N. Srinivas and K. Deb, “Multiobjective function

optimization using nondominated sorting genetic algorithm,”

Evolutionary Computation, vol. 2, 1995, pp. 221-248.

[41] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and

elitist multiobjective genetic algorithm: NSGA-II,” IEEE

Trans. Evolutionary Computation, vol. 6, 2002, pp. 182-197.

[42] D. S. Liu, K. C. Tan, C. K. Huang, C. K. Goh, and W. K. Ho,

“On solving multiobjective bin packing problems using

evolutionary particle swarm optimization,” European Journal

of Operational Research, vol. 190, 2008, pp. 357-382.

[43] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-

objective particle swarm optimization with time variant

inertia and acceleration coefficients,” Information Sciences,

vol. 177, 2007, pp. 5033-5049.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 51 / 98

Improving the Performance of Particle Swarm Optimization Algorithm With a

Dynamic Search Space

Benoît Vallade, Tomoharu Nakashima
Department of Computer Science and Intelligent Systems Osaka Prefecture University

Osaka, Japan
valladeben@cs.osakafu-u.ac.jp & tomoharu.nakashima@kis.osakafu-u.ac.jp

Abstract-This paper addresses an improvement idea for
Particle Swarm Optimization Algorithm (PSO). As a
search algorithm, the PSO is used to tune a set of
parameters and find the best combination of parameter
values for this set. These parameters habitually take
their values in a static search space. This paper proposes
a solution to improve the efficiency of the algorithm with
optimization problems using parameters, which take
their values in dynamic space. The appreciable
experiments’ results prove that this one is an efficient
solution to such problems.

Keywords-algorithm of non-deterministic search; particle

swarm optimization algorithm; dynamic search space

I. INTRODUCTION

Nowadays, in the aim to solve optimization problems,
the algorithms of non-deterministic search are commonly
used. These problems, such as robots’ motion optimization
[1], require to find the best combination of parameter values
for the particular problem at hand. There are various kinds
of search algorithms [2], such as tabu algorithms, genetic
algorithms, PSO (Particle Swarm Optimization) algorithms,
and others. Among all these algorithms, this paper will
focus on the particle swarm optimization algorithm also
called the PSO algorithm. This choice has been motivated
by the high degree of adaptability of this algorithm which is
the best choice to implement our improvement.

The concept of the PSO algorithm is based on the
simulation of a simplified social model and more
particularly on the animals flocking [3]. Its conception
follows some standard which have evolved overtime [4].

Like the other algorithms of non-deterministic search,
these standard PSO algorithms allow to tune a set of
parameters, which take their values in static search space.

This means that any time during the optimization, the
search space of each variable will stay the same.

However, some optimization problems use a set of
variables, which take their values in dynamic search spaces
[1]. This means that the search spaces of the variables may
vary during the optimization.

This paper presents our solution to improve the
efficiency of the PSO algorithms in case of

problems using variables with dynamic search space. First,
in the next section, we will describe the global concept of
the search algorithms and detail the standard versions of the
PSO algorithm. Next, the third section will explain in
details the particularities of these dynamic problems and the
algorithm’s improvement used to solve them. The fourth
section will give the results of some experiments which
compare the efficiency of both algorithms, standard and
new, on these problems. Finally, we will conclude on the
quality of the PSO and the efficiency of the new algorithm.

II. STANDARD PARTICLE SWARM OPTIMIZATION

A. An algorithm of non deterministic search

As introduced before, the PSO algorithm is an algorithm
of non-deterministic search. This means that it searches for
the best combination of values for a set of variables. As the
Table I shows, the variables take their values in search
spaces defined by a minimal and a maximal values. These
limits are given by the user and will take constant values.

TABLE I. SET OF VARIABLES’ STATIC SEARCH SPACES

 Min Max

A -5 5

B 2 6

C -10 -5

D 0 10

E -2 5

In addition, it means that the algorithm follows the same

global processes. Firstly, the algorithm generates a set of

random solutions. A solution is a combination of values for

the set of parameters. After that, the solution’s quality will

be determined through a fitness function. This function is

completely dependent on the problem to be optimized and is

given by the user. This quality value is used to compare the

actual solution to the precedent best solution, and a new

solution will be generated. These three steps (calculate

solution’s quality, compare solutions and generate a new

solution) will be repeated so long as the optimization

continues. This one stops when the stop criterion satisfies

certain criteria chosen by the user (time, number of

iterations, etc.). To finish, the generation of the new

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 52 / 98

solution depends on the algorithm (tabu search, genetic

algorithm, PSO), but it generally uses the best and previous

solutions.

This process is described in the Figure 1.

Figure 1. Global algorithm of an algorithm of non-deterministic search.

B. Concept overview

The special feature of the PSO algorithm is that its

concept is based on the animals flocking [3].

As explained above, a solution is a combination of

values for a set of parameters, while a problem is defined by

these parameters, which take their values in static search

spaces. Consequently, another way to represent an

optimization problem is to consider a solution as a position

in a search space defined by crossing all the individual

parameters’ search space. The position takes place in a

hyper-space of dimension equals to the numbers of

parameters. And its coordinate’s values correspond to the

parameter’s value of the solution.

Coming back to the animal’s social behaviour subject

and more particularly on the birds flocking; during their

feeding time, multiple birds evolved in the same space and

search for the position where there is the biggest quantity of

foods. In the course of their search, each bird always

remembers the position where they have found the biggest

quantity of food. In addition, as the birds follow a social

behaviour inside the flock, they also share the best position

found by the whole flock. Finally, as shown in Figure 2,

each bird adapts its movements in the search space

according to these knowledge.

Figure 2. Birds’ movements according to Best Positions knowledge.

 This social behaviour is used by the PSO algorithm as a

conceptual idea to generate new solutions and optimize the

set of parameters. In this transposition, the birds will be

called particles, the flock will be the swarm and the quantity

of foods will correspond to the quality of the solution. As

the flock of birds seeks for the best food’s position, the

swarm of particles seeks for the best quality’s position.

C. Standard algorithm

Our research is based on 2011’s version of the standard

PSO algorithm described in the paper of Maurice Clerc [4],

with the particularity of not using the neighbourhood system

(in case of neighbourhood system, the particles are grouped

in teams and they share the information about the best

position found by all the team’s member only inside the

team, in our case there is only one big team, which

correspond to the whole swarm). This part of the paper

gives some details about this version of standard PSO

algorithm.

1) Particle’s components and algorithm: As explained

in the previous part on the birds flocking transposition, a

swarm of particles is included in the search space. Each

particle is aware of:

 Its Position (initialized randomly in the search space)

 Its Velocity (initialized randomly in the search space)

 Its Best Position ever found (initialized as the first

particle’s position)

 The Swarm’s Best Position (initialized by comparing

all the quality Particle’s first position)

It should be noted that in the 2011 version, the

initialization of the positions’ and velocities’ values are

randomly generated, parameter by parameter.

Each iteration of the optimization, these particles’

attributes are updated following the process described in

Figure 3:

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 53 / 98

Figure 3. Process of an iteration of the PSO algorithm.

2) Evolution rules: Below are given the equations used

for the velocity and position update and all the other details

useful to the implementation of the 2011 version of the PSO

algorithm.

a) Swarm size and initialization: In the 2011 version

the swarm size (number of particles) will be user defined,

with 40 as suggested value. The initialization of the

particles’ attributes will be conducted as described before.

b) Calculate Velocity and Position: First the velocity

will be updated by using the following equations:

In these equations:

 c = 1.193 and w=0.721 (constants)

 (or) is the actual position value of the

 particle

 is the particle’s best position of the particle

 is the swarm’s best position of the particle

 is the centre of gravity of the three points ,
and .

 is the hyper sphere of centre and radius


 is a position randomly choose in the hyper

sphere

 is the actual velocity of the particle

 is the new velocity of the particle

Next, the position is updated by using the equation:

In cases where , the following gravity centre

equation is used for the velocity updating:

c) Confinement: But, sometimes, the new position of

the particle is out of the search space. In those cases, the

algorithm uses a confinement procedure, which moves the

particle on the closest edge of the search space. This

movement is conducted by replacing the value of each

parameter of the position by the closest corresponding

parameter’s search space limits, min or max. Finally, the

velocity forced to the following value:

d) Particle’s and Swarm’s Best: To finish the quality

of the new position is calculated by using the fitness

function. As said before, this function depends on the

problem and is defined by the user. Its results will be used

to compare the different positions found by the algorithm.

During a first comparison the value of the particle’s best

position is updated in function of the previous one and of

the actual position. In order to do the second comparison,

the algorithm waits that all the particles’ best of the swarm

are updated. All the particles’ best position of the swarm

will be compared to determine which the swarm’s best

position is, and this knowledge will be shared with all the

swarm’s particles.

III. PSO IN DYNAMIC SEARCH SPACES

This section discusses the topic of the problems based
on set of parameters with dynamic search spaces. And then
the proposed solutions to deal with such problems and
through the changes made on the standard PSO algorithm
are explained.

A. Dynamic Search Space problems

Contrarily to the previous standard types of problems,

which used parameters taking their values in static search

spaces, some problems are based on dynamic search spaces.

In these kinds of problems, the search spaces limit of some

parameters depends on the value of other parameters. Table

II gives an example of such a set of parameters:

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 54 / 98

TABLE II. SET OF VARIABLES’ DYNAMIC SEARCH SPACES

 Min Max

A 0 5

B -A A

C -5*A+B +5*A+B

D -15 2*A

E -20 10

In those kinds of problems, commonly used in robots’

motion optimization [1], the search spaces limits depends

on the value of the parameters and consequently on the

position of the particle. Finally, as shown in Figure 4, all the

particles evolved in a different search space, which changes

in function of the particle’s position. However, a maximal

space search can be created by using the maximum value

possible for each parameter’s maximum limit and the

minimum value possible for the parameter’s minimum limit.

Figure 4. Dynamic search space representation in a two-parameter

optimization problem.

Table III uses the Table II ‘s example to create the

corresponding maximal search space.

TABLE III. SET OF VARIABLES’ MAXIMAL SEARCH SPACES

 Min Max

A 0 5

B -5 5

C -30 30

D -15 10

E -20 10

This space consequently contains all the individual

search spaces possible. By individual search space, we

mean the search spaces which are created by using the

position value. But it also contains positions which are not

included in these individual search spaces. To keep the

precedent example (Table II and Table III), the position of

coordinate (0;-5;0;0;2) is available in the maximal search

space but not in individual spaces. As the search spaces

limits are user-defined, we will call these positions,

“uninteresting positions”.

B. Dynamic search space PSO concept

To solve such problems, there are two options. The first

one is to apply the optimization on the maximal search

space. As described above, this space includes all the search

spaces possible and has the particularity to be static. The

advantage of such a solution is that, as the search space is

static, the standard PSO algorithm described before can be

used. The disadvantage is that the optimization will also be

conducted on uninteresting positions. This may result in

loss of time and a final optimization position not intended

by the user.

The second solution is to use individual search spaces.

This means that each particle will have its own search space

and this one will change as the same time as the particle

move. This solution avoids the search on the uninteresting

positions but implies some modifications to the standard

algorithm.
As we chose to improve the efficiency of the PSO

algorithm in case of dynamic search space problems, we
will explain in the following part the necessary changes to
the standard algorithm.

C. Dynamic search space PSO modifications

This part discusses about the problem faced by the

standard algorithm resulting from the choice of the second

solution and about the possible modifications to avoid it.

1) Problem: During the initialization step as well than

during the confinement methods, the new value of the

position will be generated parameter by parameter. A

random value will be generated between the parameter’s

search space limits for the initialization and the closest limit

will be searched for the confinement. But, by using dynamic

search spaces, these limits values will depend on others

parameters’ values. Also, the algorithm would not be able to

generate a parameter’s value if its limits have not ever been

defined. That is why the parameters’ values need to be

defined in the good order.

2) Modification: This order will of course be based

on the links between the parameters. The parameter A is

linked with the parameter B if value of B is required to

calculate the limits of A’s search space.

 In the aim to represent these links, we chose to use an

acyclic graph representation.

 These graphs are tree graphs with the particularity to

allow multiple roots and multiple parents for a same child.

Of course we can’t allow cycle due to the impossibility to

generate a position value if the parameters are linked

through a cycle. In this case, the first proposed methods

using the maximum search space should be used.

Our implementation uses a unique root, which does

not correspond to any parameter, but it allows us to insert

all the parameters in the same graph, even the one which are

not linked with others parameters (search space limits have

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 55 / 98

constant value). These special parameters will be direct leaf

of the root.

Each parameter is represented by a node which is

linked to other nodes following the parameters links. The

node A is parent of the node B if the parameter A needs the

value of B. The nodes will be sorted in depth layers, a node

will also be in the layer under the layer of its deepest

parents. The direct leafs are inserted in the deepest layer of

the graph.

Finally, to generate the position value, the order to

follow is decided by using the graph. This path corresponds

to a back breadth-first search of the graph. This means that

we start from leafs and we head to the root of the graph by

visiting each node of a layer before to go to the upper one.

node includes calculate its search space limits and generate

its value (or search the closest limits for the confinement

method). Figure 5 is the acyclic graph representation of the

example given in Table II. It also shows the calculation path

(dotted arrows):

Figure 5. Acyclic graph representation of parameters link and calculation

path.

IV. EXPERIMENTS

In order to compare the efficiency between the standard
and the new algorithm on dynamic search spaces problems,
we set up two experiments. The problem is that there are no
such problems in literature [5]. Consequently, we cannot
compare it with the other algorithms’ results but have to
create our own artificial problems. This is the why the two
next experiments do not correspond to any known problems
and have no real correspondence with the real life. These
problems have only been designed to proof the functionality
and efficiency of the new algorithm compared with the
standard algorithm.

A. Experiment 1

For this one, we will use a swarm of 40 particles and

launch optimization of 500 iterations. We created three

optimization problems very simple (so they will be solved

in 500 iterations) and compared how many iterations are

required to find the optimal position (position with the best

fitness quality).

These problems have the following characteristics:

- two dimensional problems (parameters: X , Y)

- The Y’s search space limits depends on X’s value

- The optimal position is the point of coordinate (5.5 ;

0.01) and the fitness function calculate the distance

between the particle position and the optimal position.

- X’s value vary in [0 ; 1000]

- Y’s vary in the limits defined by Table IV, the standard

algorithm will use the maximum search space:

TABLE IV. SEARCH SPACE LIMITS FOR THE Y PARAMETER

 New Algorithm
Standard

Algorithm

 Min Max Min Max

A

-

49.75
49.75

B

-

240.5
240.5

C

-

497.5
497.5

We repeated the optimization 10 times and took the

average number of iterations needed to find the optimal

point (as we calculate the distance, the fitness value = 0).

Table V regroups the results of this experiment:

TABLE V. AVERAGE NUMBER OF ITERATIONS NEEDED TO FIND THE

OPTIMAL POSITION
 A B C

Standard

algorithm
279 297 298

New algorithm 282 255 250

We remark that the standard algorithm has better results

for the problem A, but becomes less efficient on B and C.

This means that the new algorithm would be more efficient

on big search spaces, and more particularly, when the

number of uninteresting positions grows up, which make

sense.

B. Experiment 2

As the previous results seems indicate that the new

algorithm is more efficient on big search space we set up a

second experiment to confirm. To do so we still used the

same configuration for the PSO algorithm (40 particles, 500

iterations and we created a more complicated problem

evolving on a bigger maximal search space. The search

spaces limits of this problem are described in Table VI and

the parameters links can be visualized in Figure 6.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 56 / 98

TABLE VI. SEARCH SPACE LIMITS FOR THE SET OF PARAMETERS
Parameters Min Max

A -(D+E+F) D+E+F

B -(E+F+G) E+F+G

C -(H+I) H+I

D -500 500

E -2.5*J 2.5*J

F -0.5*J 0.5*J

G / H -500 500

I -(K*0.5) K*0.5

J / K / L -500 500

It should be noted that the maximal search space is not

given, but it can be easily calculated, as shown in the

previous examples.

Also to be noted that the optimal position is a static

position (0,0...,0), centre of the search space. The fitness

function calculates the distance to this point, so the best

quality value possible is 0.

Figure 6. Acyclic graph representation of parameters link.

In this experiment, the problem is too big to be solved in

500 iterations; so, we compare the quality of the solutions.

The standard algorithm gave an average of 0.0027, while

the new algorithm gave an average of . The

results of this experiment show clearly the efficiency of the

new algorithm.

V. CONCLUSION AND FUTURE WORK

To conclude, the PSO is a very simple and easily

adaptable algorithm. The actual standard version of the PSO

algorithm is able to deal with dynamics search space by

venturing a loss of time and falling on an uninteresting

result. This paper described an efficient solution to improve

its performance in this case. However, there is actually no

efficient solution for dynamic search space problems, where

parameters are cycled linked. Our future objectives will be

to be able to deal with cycled graph, and to test our solution

on real world problems.

REFERENCES

[1] T. Uchitane and T. Hatanaka, “Applying evolution strategies

for biped locomotion learning in roboCup 3D soccer

simulation”, Proc. of 2011 IEEE Congress on Evolutionary

Computation New Orleans. LA, 2011, pp. 179-185.

[2] H. Youssef S. M. Sait, and H. Adiche, “Evolutionary

algorithms, simulated annealing and tabu search: a

comparative study”, Engineering Applications or Artificial

Intelligence, 2001, pp. 167-181.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization”,

Proc. of IEEE International Conference on Neural Networks

Perth, 1995, pp. 1942-1948.

[4] M. Clerc, “Standard particle swarm optimisation”, technical

report, 2012.

[5] M. Molga and C. Smutnicki, “Test functions for optimization

needs”, 2005.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 57 / 98

Reliable Outer Bounds for the Dual Simplex Algorithm
with Interval Right-hand Side

Christoph Fünfzig
Fraunhofer Institute for Industrial Mathematics

Kaiserslautern, Germany
Email: c.fuenfzig@gmx.de

Dominique Michelucci, Sebti Foufou
Le2i, University of Burgundy

Dijon, France
Email: {dominique.michelucci, sebti.foufou}@u-bourgogne.fr

Abstract—In this article, we describe the reliable computation
of outer bounds for linear programming problems occuring in
linear relaxations derived from the Bernstein polynomials. The
computation uses interval arithmetic for the Gauss-Jordan pivot
steps on a simplex tableau. The resulting errors are stored as
interval right hand sides. Additionally, we show how to generate
a start basis for the linear programs of this type. We give details
of the implementation using OpenMP and comment on numerical
experiments.

Keywords-verified simplex algorithm; interval arithmetic;
tableau form; OpenMP parallelization

I. INTRODUCTION

Linear relaxation [1] is a common method to solve non-
linear systems in several variables with domains Di ⊂ R,
i = 1, . . . , N . For the system with variables x1 ∈ [0, 1] and
x2 ∈ [0, 1],

x2
1 − x2 = 0

x2 − x1 ≤ 0

a linear relaxation derived from the tangent plane in x1 =
x2 = 0.5 is

(x1 − 0.5) − (x2 − 0.5) − 0.25 ≥ 0
x2 − x1 ≤ 0

In [2], we presented linear relaxations for the monomials
x2

i and xixj , i < j with xi ∈ Di, xj ∈ Dj , which are derived
from the Bernstein polynomials on domain D. The curves
(xi, x

2
i), and the surfaces (xi, xj , xixj), i < j are enclosed

in a polytope, called Bernstein polytope (Figure 2).
With linear relaxation, a quadratic system

F (x) = 0, G(x) ≥ 0, x = (x1, . . . , xN)

gives a linear system in the variables xi, xii, and xij , i < j.
For example, a lower bound for component i can be obtained
by solving a linear program: minimize xi on the linear system
obtained with the Bernstein polytope for domain D.

In this article, we show how to use interval arithmetic in
a tableau-form implementation of the dual simplex algorithm
(Section II) to verify computations and to generate a tight
lower bound on the minimum value. The tableau has floating-
point entries and uses an interval right-hand side. In a pivot
operation of the Gauss-Jordan algorithm, rounding errors are
collected and stored in the right-hand side intervals (Section
II-B). For the application of linear relaxations using the

Bernstein polytope, we give two ways to generate a start basis
for the occurring linear programs in Section II-C. Finally, we
conclude on this work in Section IV.

A. Related Work

In an overview, there are three classes of methods for solv-
ing polynomial systems. Using computer algebra, polynomial
expressions (resultants) can be defined, which are equal to
zero if and only if the polynomials have a common root. They
provide simple and effective methods for low degree problems
due to the degree of the resulting expression. Decomposing an
arbitrary polynomial in the ideal of the given polynomials is
possible with a special generator of the ideal. Such an ordered
generator (Gröbner basis) can be used to compute common
polynomial factors. From a computational point of view, these
methods need exact arithmetic. Recently, some articles [3]
work towards their numerical computation with tools from
interval arithmetic.

An established semi-numerical method solves a given poly-
nomial system P with the same number of equations as
variables. The method uses a continuation method [4] with
a scalar parameter t ∈ [0, 1] to deform a polynomial system
P 0 with known solutions to the given system P . Finding an
initial simple polynomial system P 0 for the given P is the
main difficulty of the method.

In this article, we solve quadratic polynomial systems by
branch-and-bound using a linear relaxation for the monomials.
We compute an outer bound for the optimum value of the
linear program reliably. In [2], the revised simplex code SoPlex
[5] in floating point arithmetic and a backward analysis of the
final linear system for the objective value was used. The article
[6] gives a comparison of linear programming codes using
rational arithmetic and floating-point arithmetic. Of course,
the use of floating-point arithmetic, which is used at least in
parts of the code, is significantly faster than exact rational
arithmetic. [7] describes how to compute a lower bound using
an arbitrary linear program solver. The authors use the weak
optimality theorem of linear programming: Any feasible point
y of the dual problem Aty ≤ c (max bty) gives a lower bound
bty for the minimum of the primal problem Ax = b, x ≥
0 (min ctx). As outlined in [7], the lower bounds obtained
from a verified, feasible point can be away from the optimum
value for ill-conditioned problems. The article [7] additionally

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 58 / 98

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

x1^2-x2
(x1-0.5)-(x2-0.5)-0.25

x1

x2

Fig. 1: Linear relaxation (dashed below) for x2
1 − x2 (solid above).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x

Bernstein polytope for x^2

B0^2(x)
B1^2(x)
B2^2(x)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Bernstein polytope for x*y

B0^1(x)B0^1(y)
B0^1(x)B1^1(y)
B1^1(x)B0^1(y)
B1^1(x)B1^1(y)

x

y

Fig. 2: Bernstein polytope enclosing the curve (left) (x, x2): B2
0(x) ≥ 0, B2

1(x) ≥ 0, B2
2(x) ≥ 0. The surface (right)

(x, y, xy): B1
0(x)B1

0(y) ≥ 0, B1
1(x)B1

0(y) ≥ 0, B1
0(x)B1

1(y) ≥ 0, B1
1(x)B1

1(y) ≥ 0.

considers the computation of upper bounds. Concerning the
parallelization of simplex codes, [8] summarizes a number of
attempts. The authors of [9] consider the parallelization of the
sparse dual simplex code CPLEX. They make out the steepest-
edge pricing rule as a good candidate for parallelization, which
compares all infeasible rows based on the resulting change of
the dual variables.

B. Notation

We use R for the lower bound of an interval R and R
for the upper bound. median(R) denotes the median of the
interval bounds R and R computed as [0.5 (R + R)]−. For
a real number a, we denote by a− the largest floating-point
number smaller or equal to a, and by a+ the smallest floating-
point number larger or equal to a. We denote by ek the kth
vector of the canonical basis with ek,k := 1, and 0 otherwise.

As usual, an inequality between vectors, like x ≥ 0, applies
to all components i: xi ≥ 0.

II. LINEAR PROGRAMMING PROBLEM

A linear program in standard form is defined by

min ctx
Ax = b
x ≥ 0

where A is a m × n real matrix, b is a m-component real
vector, and c is a n-component real vector. The system Ax = b
contains the linear equality constraints, and the function ctx
defines the linear objective function to be minimized. An
inequality at

1x ≤ b1 is transformed into an equality by a
new variable xs ≥ 0: at

1x + xs = b1, which is called a
slack variable [10]. Note that in our case it is m ≤ n, i.e.,

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 59 / 98

our problem has at least as many variables as rows due to
the slack variables. There are several ways to ensure non-
negativity of variables. The first way is to use symbolic
substitution of the problem variables x̃i → (xi − Di) if
Di < 0 and change all equations and inequalities into problem
variables x̃i ∈ [0,Di − Di]. This adds a linear number
of additional terms to the given problem. The second and
preferred way is to substitute all variables xi and xij locally
into x̃i → (xi − Di) resp. x̃ij → (xij − Di · Dj) so that
xi = x̃i +Di resp. xij = x̃ij +Di · Dj). Then row r changes
into

∑
k ark(x̃k +Dk) = br which needs to be done only once

during tableau setup.
The tableau-form implementation of the simplex algorithm

(with column basis) selects a maximal subset of m linear
independent columns of A (corresponding to the basic vari-
ables of x), where m is the rank of the matrix A. The subset
with index set B is called a basis, and the corresponding
submatrix A∗,B is invertible; the rest matrix is denoted by
A∗,N . Non-basic variables always have a zero value. A basis
update operation maintains the reduced row-echelon form of
the tableau (xB = A−1

∗,Bb)
(

ct
BxB (cB − ct

BA−1
∗,BA∗,B)t (cN − ct

BA−1
∗,BA∗,N)t

xB A−1
∗,BA∗,B A−1

∗,BA∗,N

)

(1)
which allows to look up the reduced costs in the first row, the
objective function value in the first column of the first row, and
the basic variable values xB in the first column below the first
row of this tableau [10]. Furthermore, we group matrix rows
into equalities (without a slack variable) given by the index set
E and inequalities (each having a slack variable) given by the
index set I . Maintaining this form is possible with the Gauss-
Jordan algorithm from numerical linear algebra. As tableau
rows define basis variables, it is possible to check the non-
negativity constraints x ≥ 0 and to select a leaving variable in
the simplex algorithm (pricing [10]). The leaving variable is
replaced by an entering variable, which can be selected from
the reduced costs in the first tableau row (ratio test [10]).
For applications, this dual form of the simplex algorithm is
beneficial [11], which changes an infeasible basis with a sub-
minimum value into an optimum, feasible basis. It selects the
leaving variable from the infeasible basis first and replaces
it by the entering variable. In contrast the primal form of
the simplex algorithm, selects the entering variable first, then
selects the leaving variable until an optimum value is reached.

A. Pricing Rule and Ratio Test

Important for the performance of the solver is the pricing
rule, the ratio test, and the start basis [11]. For the pricing
rule, we consider the steepest-edge rule

Definition 1 (Goldfarb-Forrest pricing rule): Select row r
which has the most negative ratio xr

|et
rA−1

∗,B |2 .

where d = et
rA

−1
∗,BA∗,N is the change of the dual variables

per unit change of xr (see Equation 1). The values xr are
stored as right-hand sides described in the following Section
II-B, and A−1

∗B is part of the tableau.

For the ratio test, we use
Definition 2 (Harris ratio test): Select column s so that

ar,s is minimum with cj

ar,j
≥ θr(ε), ar,j < 0, θr(ε) :=

min{ cj+ε
ar,j

: ar,j < 0}.
This rule chooses the element cs

ar,s
of the set { cj

ar,j
≥ θr(ε) :

ar,j < 0} defined by a small parameter ε > 0. This allows to
choose the denominator ar,s < 0 with largest magnitude for
the division. Note that cj is non-negative up to rounding errors
for the dual simplex algorithm always. The ratio test traverses
the objective function row and the row r of the tableau in
parallel.

B. Pivot Steps using Interval Arithmetic

For the collection of computer arithmetic errors during a
pivot step of the Gauss-Jordan algorithm, we use interval
arithmetic. Let ar,s be the pivot element in row r, and Di

the variable domain for variable xi. Then the linear equation

∑
j

ar,j

ar,s
xj =

br

ar,s

transforms into an interval equation∑
j

Rr,jxj = Rr

where we can select a floating-point value ar,j ∈ Rr,j of the
interval so that Rr,j ⊂ ar,j + [(Rr,j − ar,j)−, (Rr,j − ar,j)+].
The intervals can be collected and stored as an interval right
hand side R′

r∑
j

ar,jxj = Rr−
∑

j

[(Rr,j−ar,j)−, (Rr,j−ar,j)+]Dj =: R′
r

(2)
With the representative ar,j := median(Rr,j), the resulting
interval [(Rr,j − ar,j)−, (Rr,j − ar,j)+] has smallest width.
Figure 3 shows the hyperplane arrangement for an example.

Similarly, a row operation as required in the Gauss-Jordan
algorithm between row r and row i∑

j

(ai,j − ar,j
ai,s

ar,s
)xj = bi − br

ai,s

ar,s

can be performed in interval arithmetic∑
j

Ri,jxj = Ri

and rewritten using an interval right-hand side∑
j

ai,jxj = Ri−
∑

j

[(Ri,j −ai,j)−, (Ri,j −ai,j)+]Dj =: R′
i

(3)
In this form, a sufficient condition for the feasibility of

xi, i ∈ B is Ri ≥ Di. In case Ri < Ri, it is infeasible
and a candidate for the pricing rule. Otherwise some Ri have
smaller and larger than Di, in which case we stop the solving
process with a lower bound of the optimum value. Due to use
of interval right-hand sides, it is possible to reduce the number
of variables {xj} by replacing a variable xj with its interval

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 60 / 98

Fig. 3: Hyperplane arrangement (grey) for the interval
equation [0.8, 1.2]x + [1.0, 1.0]y + [−0.5, 0.5] = 0. A thick

hyperplane results from the selection of interval
representatives 1.0x + 1.0y + [−0.7, 0.7] = 0.

Dj . In this way, an active subset of variables of the linear
program can be defined.

In the geometric view of the polytope defined by interval
right-hand sides, the thick hyperplanes bound a set of poly-
topes, which are not necessarily of the same topology. See
Figure 4 for an example, where the minimum-y vertex of the
outer hyperplanes is defined by the intersection of r1 and r3,
but the minimum-y vertex of the inner hyperplanes is defined
by the intersection of r1 and r2.

Note that these topology changes make situations possible,
where the outer polytope is non-empty but the inner polytope
is empty. In such cases, the algorithm can not decide feasibility
of the linear program.

C. Start Basis Generation

Inside the non-linear solver, we only have to handle objec-
tive functions of the form xi = et

ix for a variable index i. Start
basis generation can be done by performing the Gauss-Jordan
algorithm on the equation part AE,∗ of the system. This defines
a subset BE of the basis B. Note that the set BE depends
on the pivot selection strategy in the Gauss-Jordan algorithm
and does not need to change during pivoting in the simplex
algorithm. Also pricing rule and ratio test only consider the
inequalities I and the inequalities of the Bernstein polytope.

The first possibility is to select only pivots with column
index different from i. In this case, where BE does not contain
variable index i, we can easily complete the basis from the
vertex with smallest value xi of the Bernstein polytope for
(xi, x

2
i). I.e., for minimization (with B

(2)
i the i-th quadratic

objective function
user equalities, n vars u + 3c + 4d slack vars

u user inequalities, n vars u + 3c + 4d slack vars
3c Bernstein inequalities u + 3c + 4d slack vars
4d Bernstein inequalities u + 3c + 4d slack vars

Fig. 5: Tableau organization with regions for the user system
and for the Bernstein polytope.

Bernstein polynomial)

(B(2)
0 (xi) ≥ 0)

B
(2)
1 (xi) = 2(−xii + (ui + vi)xi − uivi) ≥ 0

B
(2)
2 (xi) = xii − 2uixi + u2

i ≥ 0

for maximization

B
(2)
0 (xi) = xii + −2vixi + v2

i ≥ 0

B
(2)
1 (xi) = 2(−xii + (ui + vi)xi − uivi) ≥ 0

(B(2)
2 (xi) ≥ 0)

The second possibility is to select a pivot with column index
i. In this case, where BE contains the variable index i, we can
generate a start basis from the equation row k defining variable
xi. Let xi +

∑
j �=i ak,jxj = Rk be row k. If there are columns

ak,j > 0 the current basis part BE is not optimum, and it can
be changed by primal steps into an optimum basis. I.e., for
each such column j with ak,j > 0 we determine a row r such
that ar,0 ≥ 0 and −ar,0

ak,j

ar,j
< 0 is minimum. Both strategies

are compared in Section III based on a numerical example.

III. IMPLEMENTATION AND NUMERICAL EXPERIMENTS

We implemented the dual simplex algorithm in C/C++ using
the tableau organization shown in Figure 5. The tableau can be
stored as an m×n array of double-entries or in a sparse form
as an array of m rows of index/entry pairs. The right-hand side
vector is represented using the boost interval arithmetic library.
We additionally keep a basis description consisting of arrays,
var giving the index of the defining row for a variable index,
and row giving the index of the variable defined in a row. Both
are inverse to each other: row[var[j]] = j for variable index
j and var[row[i]] = i for row index i. We have one pivot
operation 1

ar,s
Ar,∗ for the pivot row r, and m row operations

Ai,∗ + fiAr,∗ for all other rows i�=r. The m different row
operations can be done in parallel using OpenMP. We use
the basis description to exclude basis columns, which are unit
vectors and therefore contain a zero value in the pivot row r.
Altogether, the number of multiplications and additions for a
row operation ranges from n−m to n. Note that in the interval
version (Equations 2 and 3), the pivoting and row operations
are not entrywise as in [12] but require a reduction operation
for the right-hand side interval. We avoid a parallel reduction
by storing the right-hand side updates [(Ri,j − ai,j)−, (Ri,j −
ai,j)+]Dj in an array and perform the summation sequentially.
Similarly, we perform the loop for the steepest edge pricing
rule and the loop for the ratio test in parallel using OpenMP
but without a critical section for the minimization.

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 61 / 98

Fig. 4: Polytope bounded by thick hyperplanes r1, r2, r3 and r4. Note that the topology of the polytope built by the outer
hyperplanes (thick) is not the same as the one by the inner hyperplanes (thin).

In the following, we demonstrate the different strategies for
start basis generation on the example system mixed.sys:

0.5x1 = x2x3

0.5x2 = x1x3

0.5x3 = x1x2

on D1 = D2 = D3 = [−1, 1]. The basis variables are marked
with a box around them. When pivoting with x23, x13, x12,
the system is in reduced row-echelon form

0.5x1 = x23

0.5x2 = x13

0.5x3 = x12

and can be completed with two inequalities of the Bernstein
polytope for xii, i = 1, 2, 3 into a start basis. Figure 6, left,
shows a statistics of the interval width of the objective value
in the course of pivoting. The computation as described in [2]
performs one reduction of each variable before bisecting the
largest interval. For this problem (tableau size m = 19× n =
33) on D1 = D2 = D3 = [−1, 1], it needs 47 reductions (410
pivot steps in total), 10 bisections, and the solution time is
0.30s using the sparse form (Windows 7/Visual Studio 2008,
Intel Pentium P8700, Dual Core 2.53GHz). The same solving
using the dense form takes 0.82s and produces different error
widths. The largest condition number of the tableau is 2.0.

When pivoting with x1, x13, x12, the system is in reduced
row-echelon form

0.5 x1 = x23

0.5x2 = x13

0.5x3 = x12

and can be completed with three inequalities of the Bernstein
polytope x23 into a start basis. Note that the reduced row-
echelon form for variables x2 and x3 is similar and thus
omitted here. Figure 6, right, shows a statistics of the interval
width of the objective value in the course of the pivot steps.
For this problem, the computation performs 47 reductions (275
pivot steps in total), 10 bisections, and the solution time is
0.32s. The same solving using the dense form takes 0.72s. The
worst condition number of the tableau is 846.3, and it results in
larger objective value intervals, i.e., worse lower bounds. In the
comparison, the second start basis results in less pivot steps in
the dual simplex iteration. Tableaus of larger condition number
normally occur if very small pivots were chosen. This can
be necessary for Bernstein inequalities corresponding to very
small intervals Di. It is possible to replace such a Bernstein
polytope by a thick plane or a thick line as described in [2].

In general, the tableau method tends to populate rows
quickly. On the system mixed.sys, the user and Bernstein
region of the tableau get filled approximately 60% to 80%.

For comparison with the revised simplex implementation
SoPlex, we compute a rigorous lower bound bty + e using the
duality gap

e = min{(ct − y∗ tA)x : x ∈ D}
The primal solution vector x∗ is directly available, and the
corresponding dual solution vector y∗ can be derived from the
constraint slackness at x∗. When solving the system mixed.sys,
the code performs around 500 pivot steps, which are fast due
to the revised simplex implementation. But large duality gap
sizes (larger than 10−10) occur for linear programs, where no
bound reduction could be achieved due to an early termination
in SoPlex.

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 62 / 98

 1e-020

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 50 100 150 200 250 300 350 400
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

er
ro

r

pi
vo

ts

min/max x, mixed.sys

Interval width
Num pivots (min)
Num pivots (max)

 1e-020

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 50 100 150 200 250
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

er
ro

r

pi
vo

ts

min/max x, mixed.sys

Interval width
Num pivots (min)
Num pivots (max)

Fig. 6: System mixed.sys with start basis from Bernstein polytope for xii (left) and from the equation system itself (right).
Errors are derived from the interval width of the objective value.

IV. CONCLUSION

In this paper, we presented a new way to implement the
dual simplex algorithm in tableau form with pivot steps using
interval arithmetic for the direct computation of a reliable
lower bound. Such an algorithm can be used for example in a
polynomial system solver using linear relaxations. Compared
to a lower bound computed from the duality gap, it is not
so much affected by the condition number of the given linear
program and an early termination of the simplex code. But due
to the use of the tableau form it performs more floating-point
operations than a revised simplex implementation (e.g., SoPlex
[5]) for a sparse input system due to the gradual increase of
non-zeros during pivot steps.

The computation is based on the Gauss-Jordan algorithm
and performs pivot steps in interval arithmetic that are par-
allelizable with OpenMP. We always avoid critical sections
for reduction operations. In the steepest edge pricing rule and
the ratio test, a suboptimal choice does not produce wrong
results and we could not observe any performance degradation.
For tableau storage, we choose row major order, which avoids
recomputing the row factors for a row operation. We prefer
sparse storage (as rows of index/entry pairs) over dense (as
an array). To avoid further fill-in, we make use of a separate
basis description so that the locations of unit vectors in the
tableau are known.

For large systems, it is possible to work with an active set
of variables {xj} and replace all others with their interval Dj ,
which is a major benefit of using an interval right-hand side.
But with such wide intervals the topology changes, outlined
in Figure 4, need to be handled.

ACKNOWLEDGEMENTS

This research work has been funded by NPRP grant number
NPRP 09-906-1-137 from the Qatar National Research Fund
(a member of The Qatar Foundation).

REFERENCES

[1] R. Kearfott, “Discussion and empirical comparisons of linear relaxations
and alternate techniques in validated deterministic global optimization,”
Optimization Methods and Software, vol. 21, no. 5, 2006, pp. 715–731.

[2] Ch. Fünfzig, D. Michelucci, S. Foufou, “Nonlinear systems solver in
floating-point arithmetic using LP reduction,” in ACM/SIAM Symposium
on Solid and Physical Modeling, 2009, pp. 123–134.

[3] M. Bodrato, A. Zanoni, “Intervals, syzygies, numerical Gröbner bases :
A mixed study,” in CASC 2006 Proceedings, V. G. Ganza, E. W. Mayer,
and E. V. Vorozhtsov, Eds., vol. 4194. LNCS, Springer, September
2006, pp. 64–76.

[4] J. Verschelde, “Polynomial homotopy continuation with PHCpack,”
ACM Communications in Computer Algebra, vol. 44, no. 4, 2010, pp.
217–220.

[5] R. Wunderling, “SoPlex library version 1.4.2,” 1996.
[6] C. Keil, “A comparison of software packages for verified linear program-

ming,” Preprint Institute of Reliable Computing, Hamburg University of
Technology, 2008.

[7] ——, “Lurupa – rigorous error bounds in linear programming,” in
Algebraic and Numerical Algorithms and Computer-assisted Proofs,
Dagstuhl Seminar Proceedings (Number 05391), B. Buchberger,
S. Oishi, M. Plum, and S. Rump, Eds., July 2006.

[8] J. Hall, “Towards a practical parallelisation of the simplex method,”
Computational Management Science, vol. 7, no. 2, 2010, pp. 139–170.

[9] R. E. Bixby, A. Martin, “Parallelizing the dual simplex method,”
INFORMS Journal on Computing, vol. 12, no. 1, Jan. 2000, pp. 45–
56.

[10] C. Papadimitriou, K. Steiglitz, Combinatorial optimization: Algorithms
and Complexity. Dover, 1998.

[11] R. Bixby, “Solving linear and integer programs,” in Block Course
Combinatorial Optimization at Work, Berlin, M. Grötschel, Ed., 2009.

[12] S. F. McGinn, R. E. Shaw, “Parallel Gaussian Elimination using
OpenMP and MPI,” in 16th Annual Int. Symp. on High Performance
Computing Systems and Applications, Moncton, Canada, June 2002, pp.
169–176.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 63 / 98

Implementing a Generalized Cobb Model for Production Functions

Alina Andreica

IT Department

Babes-Bolyai University, Cluj-Napoca, Romania

alina.andreica@ubbcluj.ro

Florina Covaci

IT Department

Babes-Bolyai University, Cluj-Napoca, Romania

florina.covaci@ubbcluj.ro

Abstract — The paper proposes an extension of Cobb-Douglas

model for production functions applicable in multi-product

and regional contexts and a combined symbolic & numeric

method for solving the system. In this respect, we propose a

new application of Buchberger’s algorithm for computing

Gröbner basis in simplifying the polynomial set that is

obtained by modelling economic production systems. We

present our Mathematica categorical implementation of

Gröbner basis algorithm that can be applied for performing

necessary computations. We apply Gröbner basis algorithm

for some specific production function cases proposed in the

economic literature and discuss the results. We consider that

Gröbner basis algorithm is important in processing (according

to various variable orderings) the polynomial set that is

constructed and in synthesizing the most important economic

characteristics taken into account by the model. Further on,

numeric methods can be applied if necessary. We also note the

importance of generic implementations of Buchberger’s

algorithm, which can be easy adapted for various domains.

Keywords-Cobb-Douglas model; generalized production

functions; symbolic modelling; Buchberger algorithm; generic

implementations.

I. INTRODUCTION AND WORKING FRAMEWORK

Category theory in symbolic computation introduces

techniques for implementing general working contexts of

performing symbolic algorithms. The defined categories can

later be particularized for various domains, by elegantly

using the same definition. Definitions for categories and

domains, from the symbolic point of view, can be found in

[1], [2]. In these papers, we describe an extension of

Mathematica – a computer algebra or symbolic computation

system [15] – with a new type system, containing algebraic

categories and abstract definitions of Gröbner basis [4]

simplification algorithm. Within this package, the

algorithms that implement Buchberger’s method for

computing the Gröbner basis and the reduced Gröbner basis

for a given set of polynomials are applied for multivariate

polynomial domains over various coefficient rings.
Buchberger’s algorithm for Gröbner basis [4] has found

numerous applications in various fields related to polynomial
simplification over various fields [10], [11] including
computational geometry [12].

Within this paper, we present a new application of
Buchberger’s algorithm for Gröbner basis, belonging to the

economic field, namely, for simplifying production function
sets according to Cobb-Douglas model [7].

Section 2 describes the Cobb-Douglas model for
economic production functions [7]. Section 3 presents the
basic principles of Buchberger algorithm for computing the
Gröbner basis. In Section 5, we present the model we
propose for generalizing the Cobb Douglas model at a
macroeconomic scale, taking into account many countries. In
Section 6, we describe the basic principles of categorical
polynomial definition and processing from our Mathematica
implementation, while Section 7 presents our
implementation of computing the Gröbner basis.
Conclusions reveal the most important contributions of the
paper.

II. COBB-DOUGLAS MODEL FOR ECONOMIC

PRODUCTION FUNCTIONS

In economic modelling, the Cobb-Douglas functional
form of production functions [7] is widely used to represent
the relationship of a production output in respect with
specific inputs. The model was proposed by Knut Wicksell
[14], and tested against statistical evidence by Paul Douglas
and Charles Cobb in 1928 [7].

The model states [7] that a production function can be
written in the functional form:

 KALY  (1)
where:
Y the production output
L represents the labour input
K represents the capital input
A, α and β are constants determined by technology. The

exponents α and β are output elasticity coefficients with
respect to labour and capital, respectively. Output elasticity
measures the responsiveness of output to a change in levels
of either labour or capital used in production [7].

According to the original model [7], the following cases
are considered relevant:

 if α+β=1, the production function has constant

returns to scale;

 if α+β<1, returns to scale are decreasing;

 if α+β>1 returns to scale are increasing. Assuming

perfect competition, α and β can be shown to be

labour and capital’s share of output.
Cobb and Douglas were influenced by statistical

evidence that appeared to show that labour and capital shares
of total output were constant over time in developed

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 64 / 98

countries; they explained this feature by applying statistical
fitting in least-squares regression of their production function
[7].

III. BUCHBERGER’S ALGORITHM

Buchberger’s algorithm computes the Gröbner basis [4]

of a given set of polynomials over a coefficient ring as a

“simplified” polynomial set; the Gröbner basis G for a

polynomial set F is a “reduced” form of G [4], [5] that

generates the same ideal as F.

The “simplified” polynomial set that is obtained in the

reduction process is significant in solving various problems

involving polynomial sets. Buchberger synthesizes [5] a

variety of application fields for Gröbner basis algorithm,

revealing its importance in systems theory. The application

presented in this paper is founded on the principles presented

in [5].

Based on category theory and generic principles, recent

versions of Buchberger’s algorithm [6] are abstract

implementations, which offer generic frameworks for

applying the algorithm. The implementation we presented

for Mathematica in [1] and [3] are based on these generic

principles, proving to have important flexibility and

extendibility advantages in applying the algorithm over

various domains

Present built-in Mathematica implementations of

Buchberger algorithm support polynomials over the

following coefficient domains: InexactNumbers, Rationals,

RationalFunctions and Polynomials[x] [16].

IV. GENERALIZED COBB-DOUGLAS MODEL. APPLYING

BUCHBERGER’S ALGORITHM

We generalize the Cobb-Douglas model for production

functions in order to represent production states at a

macroeconomic scale. We consider that such a model is

relevant in order to better grasp the production phenomena

that appear in economies.

In this respect, we propose a set of Cobb-Douglas

functions for expressing the necessary labour input and

capital input to obtain a certain output within an economy.

Taking into consideration the economy of a country, we

consider the variables Lp, Kp as the labour input,

respectively capital input for obtaining the product p and

Gross Domestic Product (GDP) as the global output. For

more economic regions, Gross Domestic Products (GDPs)

can be represented as:

 m1,=i,iY , - Yi being the Gross Domestic Product

(GDP) generated by region i. If we consider that each region

i produces ni products, we arrive to the generalized model

(2).

We consider that the model we propose is relevant for

expressing production characteristics at a macroeconomic

scale. Furthermore, the possibility of expressing production

characteristics in regional development frameworks, can be

very useful in the context of economic European integration.

11

1

11

11

12

2

12

2

11

1

11

1 112111 ... n

n

n

n ppnpppp KLAKLAKLAY




21

2

22

22

22

2

22

2

21

1

21

1 222212 ... n

n

n

n ppnpppp KLAKLAKLAY




.

. (2)

.

mmn

mn

pmn

mnm

mmmm

ppmnppmppmm KLAKLAKLAY


 ...2

2

2

2

1

1

1

1 21

Consequent to defining the functional production

polynomials, an important task is to simplify the polynomial

set in order to obtain in a canonical form the functions that

express labour and capital inputs for different products and

regions at a macroeconomic scale. Such a form is important

for characterizing the production features in a synthesized

manner. In order to obtain this simplified form, we can

apply Buchberger’s algorithm.

For monomial exponents representing elasticity

coefficients that have real values, we can apply the

reduction steps by computing the necessary subtractions of

the exponent lists: in respect with the order relation on the

real set , extended to tuples of real exponents, n, the

“leading” monomial of each polynomial can be reduced by

computing monomials with corresponding exponent

subtractions in respect with the other polynomials. For the

reduction step in Buchberger’s algorithm, instead of taking

into account the least common multiple for pairs of

exponent vector lists, we compute the maximum of two

exponent vector lists in respect with n

In our Mathematica implementation based on generic

principles [1], [3], we easily defined the Lcm (Least

Common Multiple) operator in the exponent vector package

VectExp as a Max operator and we supplementary defined

the real domain in our coefficient domain package DomCoef

– for which a code overview is given in Fig. 1:

DomReal[R_]:=Module[{},
 InelCom[R,"+","*","0","1"];

 (* Mathematica definition [2] *)
 R["+",a_Real,d_Real]:=a+d;
 R["+",a_Real,Infinity]:=Infinity;
 R["+", Infinity, d_Real]:=Infinity;
 R["-",a_Real,b_Real]:=a-b;
 R["*",a_Real,b_Real]:=a*b;
 R["/",a_Real,b_Real]:=a/b;
 R["=",a__,b__]:=SameQ[a,b];
 R["<>",a__,b__]:=UnsameQ[a,b];
 R["<",a__,b__]:=a<b;
 R["<=",a__,b__]:=a<=b;
 R[">",a__,b__]:=a>b;
 R[">=",a__,b__]:=a>=b;
 R["0"]:=0;
 R["max"]:=Infinity;
 R["/",a_List,b_Real]:=a/b;
 R["+",a__,b__]:=a+b;
 R["-",a__,b__]:=a-b;
 R["*",a__,b__]:=a*b;
 R["/",a_List,b_Real]:=a/b;
 R["/",a__,b__]:=a/b;]

Figure 1. Mathematica abstract definition for the real domain.

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 65 / 98

The higher impact of labour L or capital K variables in

the above described polynomials – (2) – can be evaluated by

taking into account appropriate orderings of Li, i=1,m, Ki,

i=1,m. Moreover, the model can be enhanced by

supplementary taking into account new production

variables. In this respect, [17] proposes to take into account

a third variable as a sum of variables with a smaller

production impact. Still, the model we propose may take

into account any number of variables.

We applied Buchberger’s algorithm for sets of 2-3

polynomials representing GDPs in 2 countries by taking

input values and elasticity coefficients proposed in [17].

For cases in which the reduced polynomial set should be

further processed, numeric solving methods may be

consequently applied

V. POLYNOMIAL CATEGORICAL IMPLEMENTATION

In order to implementing the multivariate polynomial

category, we define an auxiliary domain for monomials [1],

naming it the exponent vector domain [9].

An exponent vector with a given base of identifiers (for

example, x,y,z) will be retained by the list of exponents

corresponding to each variable. In operating upon exponent

vectors, we use two types of representations: lists,

respectively products of primes with the exponents in

question [9]. We use the latter representation [1], the

exponent vector e1, e2, ..., en will be retained and processed

by the number

 , (3)

where p1, p2, ..., pn are prime numbers, for simplifying

computations - the first prime numbers. In this

representation, an exponent vector sum reduces to the

corresponding prime numbers product, whereas the greatest

common divisor (Gcd) and the least common multiple

(Lcm) can be computed by similar operations upon prime

products.

The exponent vector domain is an abelian monoid [2]

that introduces the following operations:

• computing neutral, minimum and maximum elements

("0", "Max","Min");

• conversions between the list and number internal forms

("ListaInVectorNr", "VectorNrInLista");

• sum ("+"), greatest common divisor ("Gcd") and least

common multiple ("Lcm") for two exponent vectors;

• positiveness test for an exponent vector ("Pozitiv");

• divisibility test for two exponent vectors ("|");

• relational operators ("<", ">", "=", "<=", ">=", "<>")

between two exponent vectors - we shall consider the

lexicographical ordering corresponding relations are

implemented by string[...] functions);

• conversions between external and internal forms ("Inp",

"Out").

We give in Fig. 2 an overview of the Mathematica

package which defines the exponent vector domain (for the

functions in italics we omitted the body). All operations

within an exponent vector domain V, created by the

function VectExp[V,lv], where lv is the variable list

representing the base, will be prefixed with the domain

name and will have as the first parameter the operation

code. For example, V["+",v1,v2] returns the sum of two

exponent vectors (in internal form), V["Gcd",v1,v2]

computes the greatest common divisor, while

V["Lcm",v1,v2] computes the least common multiple.

BeginPackage["VectoriExp‘"]
VectExp::usage="VectExp[V ,lv List] defines the
exponent vector domain V, with the base lv "
Intreg::usage="Integer domain"
string::usage="string operations"
Begin["VectoriExp‘Private‘"]
Needs["HierMath‘"]

string["Rel",s1 String,s2 String]:= Mathematica definition[2]
(*tests the relation <, =, > between s1 and s2, returning -1,0,1*)
(* "Rel" may be "<", ">", "=", "<>" *)

VectExp[V ,lv List]:= Mathematica definition [2] (*creates the

exponent vector domain V, with the base lv*)

MonoidCom[V,"+",en]; Mathematica definition [2]
(*creates an abelian monoid [2]*)

V["ListaInVectorNr",l List]:= Mathematica definition [2]

V["VectorNrInLista",nr Integer]:= Mathematica definition[2]
V["+",l1 List,l2 List]:=l1+l2;
V["-",l1 List,l2 List]:=l1-l2;

V["Pozitiv",l List]:= Mathematica definition [2]
(*tests if all list elements are >0*)

V["Gcd", l1 List, l2 List]:= Mathematica definition [2]
(*computes greatest common divisor *)

V["Lcm", l1 List, l2 List]:= Mathematica definition [2]
(computes teast common multiple *)

V["Rel", l1 List, l2 List]:= Mathematica definition [2] (*tests the

relation <, =, > between l1 and l2, returning -1,0,1*)

V["|",l1 List,l2 List]:= Mathematica definition[2]
(* divisibility test *)

V["Out",l List]:= Mathematica definition [2]
(* output form *)

V["Inp",e]:= Mathematica definition [2] (*transforms an input with

the syntax x[^e1]*y[^e2]... into the internal list form;
the code is rather complex and based on Mathematica
internal forms*)
V["Max"]:=max; V["Min"]:=min;]
End[]
EndPackage[]

Figure 2. Mathematica abstract definition for the exponent vector domain.

The representation of a polynomial (polinom.m package)

uses a list of two elements: the exponent vector list,

lexicographically ordered, and the corresponding coefficient

list [2]. For example, the polynomial 2*xˆ2*z-5*y (with the

base {x,y,z}) will be represented as {{{0,1,0},{2,0,1}}, {-

5,2}}

We give below the main part of the Mathematica

package which defines the polynomial category (polinom.m

package [2]; we omitted the bodies for the functions in

italics). Within Mathematica definitions, functional and

parametric specification of operations within various

domains can be noticed (Figs. 1, 2).

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 66 / 98

For example, within the polynomial domain Pol, defined

by Polinom[Pol, DCoef, DVect, l], where DCoef is the

coefficient domain and DVect is the exponent vector

domain with the base l, the construction

DVect["|",v,Pol["Monom",i,P]] performs a divisibility test -

within DVect exponent vector domain - between two

exponent vectors, the second one corresponding to a

monomial selected from a polynomial P (by "Monom"

operation, within the polynomial domain Pol).

DVect["+",o1,o2] is the sum of o1 and o2 in DVect domain,

whereas DCoef["+",o1,o2] is a sum in DCoef domain. An

overview of the Gröbner basis package we have defined [1],

[2] is given in Fig. 3:

BeginPackage["Polinom‘"]
Polinom::usage="Polinom[Pol,DCoef,DVect,l] defines the
multivariate polynomial domain Pol, over the coefficient domain
DCoef and the exponent vector domain DVect (of monomials), with
the basis l"
Begin["Polinom‘Private‘"]
Needs["VectoriExp‘","DomCoef‘"]
Polinom[Pol ,DCoef ,DVect ,baza List]:=Module[n,lv,
(*defines a multivariate polynomial domain, with coefficients in
DCoef, over the exponent vector domain Dvect, with the base
baza*)
InelCom[DCoef,"+","*"]; (*creates an abelian ring [2]*)
VectExp[DVect,baza];
Pol["DomCoef"]:=DCoef;
Pol["DomVectExp"]:=VectExp;
Pol["Init"]:=List[List[DVect["Max"]],List[]];
(*returns the null polynomial, with a sentinel in the exponent vector
list*)

Pol["Nul",P]:=Mathematica definition [2] ;
(* returns True if P is null *)
Pol["Nr",P]:=Length[P[[1]]]-1; (*dimension*)
Pol["Monom", i ,P]:=P[[1]][[i]];
(*the ith monomial from the polynomial P*)
Pol["Coef",i ,P]:=If[i<=Pol["Nr",P],P[[2]][[i]],0];

Pol["Indice",l ,P]:= Mathematica definition [2]
(*the index of the monomial l in the polynomial P*)
Pol["MonomGrMax",P]:=P[[1]][[Pol["Nr",P]]];
Pol["CoefGrMax",P]:=P[[2]][[Pol["Nr",P]]];

Pol["AdaugMonom",T ,v ,c]:= Mathematica definition [2]
 (*adds to the polynomial T the monomial formed by the exponent
vector v and the coefficient c taking into account the lexicographical
ordering; if v exponent vector exists, it adds the coefficient c to the
appropriate existing one*)

Pol["MonomInPol",l :List,c :Number]:= Mathematica definition [2]
(*transforms a monomial into the equivalent polyniomial *)

Pol["+",P1 ,P2]:= Mathematica definition [2]
(* returns the sum of P1, P2 *)

Pol["*",P1 :List,P2 :List]:= Mathematica definition [2]
(* returns the product of P1, P2 *)

Pol["&",nr :Number,P :List]:= Mathematica definition [2]
(*multiplies P by the number n*)
Pol["-",P1 ,P2]:=Module[{P}, (*polynomial subtraction *)
P=Pol["&",-1,P2]; Return[Pol["+",P1,P]];];

Pol["/",P ,v List,c :Number]:= Mathematica definition [2]
(* divides each of P’s monomials by the exponent vector v and
coefficient c and returns the result *)

Pol["|",v List,P]:= Mathematica definition [2]
(* tests whether the exponent vector v divides any of P’s monomials
and returns True or False *)

Pol["Out",P]:= Mathematica definition [2] (*polynomial display*)

Pol["Inp",e]:= Mathematica definition [2] (*transforms an input

polynomial into the internal form; the code is rather complex and
based on Mathematica internal forms*)
] (*Module*)
End[]
EndPackage[]

Figure 3. Mathematica abstract definition for the polynomial domain.

The following section is dedicated to the Gröbner basis

algorithm and its application to production functions.

VI. GROEBNER BASIS ABSTRACT IMPLEMENTATION AND

APPLICATION CASES FOR PRODUCTION FUNCTIONS

We implemented Buchberger’s algorithms for

computing the Gröbner basis and the reduced Gröbner basis

[4] of a polynomial set into Mathematica packages:

groebner.m and groebred.m [1], [2]. The functions which

compute the Gröbner bases are parameterized with a

polynomial domain, therefore they can be applied for

polynomial domains over any consistent coefficient domain

that is previously defined. Note that a polynomial domain is

created by using the polynomial categorical definition

within polinom.m package, which is parameterized with a

coefficient domain defined in domcoef.m package [1], [2].

Within groebner.m package [1] we implemented

Buchberger’s Gröbner basis algorithm [4] - BazaGroebner[]

function. We completely described the algorithmic iterations

for computing the normal form of a polynomial modulo a

polynomial set - Normal[Pol,F,g] function, where Pol is the

current polynomial domain. For computing the S-

polynomial of two polynomials, we implemented the

formula proposed in [9] - SPol[] function.

An overview of the Gröbner basis package we have

defined [1], [2] is given in Fig. 4:

BeginPackage["Groebner‘"]
Normal::usage="Normal[Pol,F,g] verifies if g is in normal form mod
F, over the polnomial domain Pol"
FormaNormala::usage="FormaNormala[Pol,DCOef,DVect,F,p]
returns the p’s normal form modulo F; operations are
performed over the polynomial domain Pol"
SPol::usage="SPol[Pol,DCoef,DVect,P1,P2] computes
Rez=SPol(P1,P2), in the polynomial domain
Pol(DCoef,DVect)"
BazaGroebner::usage="BazaGroebner[Pol,DCoef,DVect,F] returns,
for F set of polynomials over the domain
Pol(DCoef,DVect), F’s Groebner base"
MultPolExtInInt::usage="MultPolExtInInt[Pol,M] transforms a set of
polynomials in external representation into internal representation
(operations over Pol domain)"
MultPolIntInExt::usage="MultPolIntInExt[Pol,M] transforms a set of
polynomials in internal representation into external representation
(operations over Pol domain)"
Tiparire::usage="prints a set of polynomials given in internal
representation"
TipPerechi::usage="prints a set of polynomial pairs given in internal
representation"
Begin["Groebner‘Private‘"]
Needs["Polinom‘"]

PolNormal[Pol ,F List,g]:= Mathematica definition [2]
(*Verifies whether g is in normal form mod F, i. e. no

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 67 / 98

monomial of g is divisible by the leading monomial of
any polynomial belonging to F - set of polynomials.
Operations are performed within the polynomial domain Pol*)

FormaNormala[Pol ,DCoef ,DVect ,F List,p]:=]:= Mathematica

definition [2]
(*Returns p’s normal form mod F; operations are performed
within the polynomial domain Pol(DCoef,DVect) *)

SPol[Pol ,DCoef ,DVect ,P1 ,P2]:= Mathematica definition [2]
(*computes, within the polynomial domain P, Rez=SPol(P1,P2)*)

MultPolIntInExt[Pol ,M List]:=]:= Mathematica definition [2]
(*transforms M polynomial set from internal form into a set of
external forms*)

MultPolExtInInt[Pol ,M List]:= Mathematica definition [2]
(*transforms M polynomial set from external form into a set of
internal forms *)

Tiparire[Pol ,M List]:= Mathematica definition [2] (*displays a

polynomial set*)

TipPerechi[Pol ,M List]:= Mathematica definition [2]
(*displays a set of polynomial pairs*)

BazaGroebner[Pol ,DCoef ,DVect ,baza List,M List]:= Mathematica

definition [2]
(* returns the Groebner basis of the polynomial set M
(given as a list), within the polynomial domain Pol *)
End[]
EndPackage[]

Figure 4. Mathematica abstract definition for the Gröbner basis algorithm.

Groebred.m package [1], [2] implements Buchberger’s
algorithm for computing the reduced Gröbner basis [4].

Comparing our implementation to the Mathematica built
in one GroebnerBasis[{poly1, poly2, …},{x1, x2, …}], our
abstract based one is obviously slower, but it enables
computations over various abstract coefficient domains,
which can be defined. The built in GroebnerBasis
implementation works over rational numbers, integers,
rational functions or inexact numbers, with additional
computation options [16].

We have applied the Gröbner basis algorithm in
Mathematica for various cases of production functions
proposed for Romania and Moldova for the period 2002-
2004 in [17]. We have denoted with R the polynomial
corresponding to Romania’s Gross Domestic Product (GDP)
function for this period and with M – the polynomial
corresponding to Moldova’s Gross Domestic Product (GDP)
function for the same period.

For the set of polynomial production functions:
R = 37.4

a
 62.6

b
 X+45.3

a
 54.7

b
 Y+49.1

a
 50.9

b
 Z

M = 33.8
a
 66.2

b
 X+33.4

a
 66.6

b
 Y+40.5

a
 59.5

b
 Z

where X, Y, Z are technology based variables, and using
symbolic elasticity coefficients a, b [17], the Gröbner basis
still contains two polynomials in X, Y, Z:

{-1531.14
a
 3621.14

b
 Y+1249.16

a
 4169.16

b
 Y-1659.58

a

3369.58
b
 Z+1514.7

a
 3724.7

b
 Z,33.8

a
 66.2

b
 X+33.4

a
 66.6

b

Y+40.5
a
 59.5

b
 Z,37.4

a
 62.6

b
 X+45.3

a
 54.7

b
 Y+49.1

a
 50.9

b
 Z}

Using the ,  elasticity proposed in [17] as a, b values,
we obtain the liniar polynomials:

R = 45.3457 X+48.6099 Y+49.7656 Z
M = 43.4613 X+43.2359 Y+46.7666 Z
The GroebnerBasis function reduces the X variable

(corresponding to year 2002) from the R polynomial and the

Y variable (corresponding to year 2003) from the M
polynomial, generating the following simplified set:

{1. Y+0.27755 Z,1. X+0.799942 Z}
We may infer that during the period 2002-2004, for

Romania and Moldova, the most relevant evolution years
from the production point of view were 2003 and 2004 for
Romania and 2002 and 2004 for Moldova. Such results have
to be correlated with other macroeconomic variables.

Another possible application case would be the one
taking into account countries from Latin America,
considering the K values as capital flows and the L values
given in [18]. Simplified polynomials would mean similar
evolutions in different countries.

VII. CONCLUSION AND FUTURE WORK

We addressed a problem from an economic field, namely
a generalized model for production functions, by applying
computer algebra tools.

We generalized Cobb-Douglas model for production
functions in multi-product and regional contexts by
constructing a representative polynomial set in respect with
the production inputs (labour, capital, other variables) and
we propose the application of Buchberger’s algorithm in
simplifying the polynomial set that is obtained. We consider
that Gröbner basis algorithm is important in processing
(according to various variable orderings) the polynomial set
that is constructed and in synthesizing the most important
economic characteristics taken into account by the model.

We presented our Mathematica categorical
implementation of Buchberger’s algorithm for Gröbner basis
algorithm that can be applied for performing necessary
computations. We underline the importance of such abstract
implementations, which can be easy adapted for various
domains based on parameterized principles. Our
implementation is actually an extension of Mathematica with
a type system.

We applied the Gröbner basis algorithm for Gross
Domestic Product (GDP) functions of Romania and
Moldova for the period 2002-2004 using data proposed by
Zaman et al in [17] and we discuss the results of applying
Buchberger’s simplification algorithm on these polynomial
sets. Similar processings can be performed for other
countries, using specific values that are available in
economic analyses for the input data in the production
functions.

We intend to further work on the proposed model and to
study other cases from the economic literature. We also
intend to extend our implementation of Buchberger
algorithm for new domains, based on the same abstract
principles.

REFERENCES

[1] A. B. Andreica, “Parameterized Types for Categorical Definitions in
Mathematica”, Symbolic and Numeric Algorithms for Scientific
Computing - SYNASC 2002 International Workshop, Mirton,
Editors: D. Petcu, V. Negru, D. Zaharie, T. Jebelean, 2002, pp. 8-25.

[2] A. B. Andreica, “Defining Algebraic Categories in Mathematica”,
Analele Universitatii de Vest Timisoara, Seria Matematica -
Informatica, Categ CNCSIS B+, XLI, 2003, pp. 9 - 23

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 68 / 98

[3] A B. Andreica, “Implementing Parameterized Type Algorithm
Definitions in Mathematica”, Eighth International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Lisa
O’Connor editor, IEEE Computer Society Press, 2006, pp. 1-6.

[4] B. Buchberger, “Gröbner Bases: An Algorithmic Method in
Polynomial Ideal Theory”, in Mathematics and Its Applications,
Multidimensional Systems Theory, N. K. Bose Ed., D. Reidel
Publishing Co., 1985, chapter 6.

[5] B. Buchberger, “Gröbner Bases and Systems Theory”,
Multidimensional Systems and Signal Processing, 12, Kluwer
Academic Publishers, 2001, pp. 223-251.

[6] B. Buchberger, “Towards the Automated Synthesis of Groebner
Bases Algorithm”, RACSAM, vol Falta, 2004, pp.1-10.

[7] C W. Cobb and P H Douglas, “A Theory of Production”, American
Economic Review, 18, 1928, pp. 139-165.

[8] D. Gruntz and M. Monagan, “Introduction to Gauss”, MapleTech,
Birkhuser, 9, 1993, pp. 23-35.

[9] D. Gruntz, “Gröbner Bases in Gauss”, MapleTech, Birkhuser, 9,
1993, pp. 36-46.

[10] K. Iwancio and M. Singer, “Applications of Groebner Bases”,
http://www4.ncsu.edu/~kmiwanci/app_gbases_2.pdf [retrieved: 05,
2013]

[11] V. Levandovskyy, “Non–commutative Computer Algebra for
polynomial algebras: Groebner bases, applications and
Implementation”, http://d-nb.info/976594358/34 [retrieved: 05,
2013]

[12] V. Powers and B. Reznick, “A new bound for Pólya's Theorem with
applications to polynomials positive on polyhedra”, Journal of Pure
and Applied Algebra, Vol. 164, Issues 1–2, Oct 2001, pp. 221–229
http://www.sciencedirect.com/science/article/pii/S002240490000155
9 [retrieved: 05, 2013]

[13] C. Ratiu-Suciu, F. Luban, D. Hincu, and N. Ene, Modelarea si
simularea proceselor economice , Biblioteca electronică a Academiei
de Studii Economice Bucureşti, [retrieved: 05, 2013]

http://www.ase.ro/biblioteca/carte2.asp?id=70&idb=7

[14] B. Sandelin, “The Early Use of Wicksell-Cobb-Douglas Function: A
Comment on Weber”, Journal of the History of the Economic
Thought, Vol. 21, Issue 02, Cambridge University Press, June 1999,
pp. 191-193, doi: http://dx.doi.org/10.1017/S105383720000314X.

[15] S. Wolfram, Mathematica, 1992.

[16] Mathematica Online Tutorial [retrieved: 06, 2013]
http://reference.wolfram.com/mathematica/guide/Mathematica.html

[17] G. Zaman, Z. Goschin, I. Partachi, and C. Herteliu, “The Contribution
of Labour and Capital to Romania’s and Moldova’s Economic
Growth”, Journal of Applied Quantitative Methods, Vol. 2, Issue 1,
March 30, 2007, http://jaqm.ro/issues/volume-2,issue-
1/pdfs/zaman_goschin_partachi_herteliu.pdf [retrieved: 06, 2013]

[18] Capital flows and labour costs values for countries in 2013
http://www.tradingeconomics.com/country-list/capital-flows,
[retrieved: 09, 2013]

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 69 / 98

Trading Redundant Work Against Atomic Operations
On Large Shared Memory Parallel Systems

Rudolf Berrendorf
Computer Science Department

Bonn-Rhein-Sieg University
Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de

Abstract—Updating a shared data structure in a parallel pro-
gram is usually done with some sort of high-level synchronization
operation to ensure correctness and consistency. However, under-
lying synchronization instructions in a processor architecture are
costly and rather limited in their scalability on larger multi-
core/multi-processors systems. In this paper, we examine work
queue operations where such costly atomic update operations
are replaced with non-atomic modifiers (simple read+write). In
this approach, we trade the exact amount of work with atomic
operations against doing more and redundant work but without
atomic operations and without violating the correctness of the
algorithm. We show results for the application of this idea to
the concrete scenario of parallel Breadth First Search (BFS)
algorithms for undirected graphs on two large NUMA shared
memory system with up to 64 cores.

Keywords—atomic instructions, redundant work, parallel BFS

I. I NTRODUCTION

Updating a shared data structure in a parallel program as
for example an insert operation on a work queue is usually
done on an application level with some sort of high-level
atomic update operation (e.g., in OpenMP [1] lock-protected,
atomic operation, etc.; see [2] [3] for a general discussion). The
implementation of such a high-level synchronization operation
itself is done by the compiler or inside a runtime system
with one or even more atomic instructions (atomic-add, test-
and−Φ, compare-and-swap, etc.) of the underlaying processor
architecture. The general problem with such atomic instruc-
tions is that they are rather costly compared to an ordninary
memory access and not really scalable on larger systems [4]
[5] (see also section IV for our own investigations on that).
The time forone such atomic instruction increases significantly
under contention as the number of cores in a multi-core/multi-
processor system gets larger.

As the use of such synchronized updates on shared data
guarantees correct operations on that data, this strict en-
forcement is often not really necessary. An example is a
work queue, where working threads insert new items and
idle threads remove items to be worked on. But for certain
algorithmic scenarios (e.g., within a certain program phase),
a work item may be inserted even multiple times without
violating the correctness of the algorithm, but only causing
additional redundant work to be done. In such cases, the costly
synchronized access can be completely removed for the cost
of eventually additional work to be done.

An example for such a scenario is a Breadth First Search
(BFS) for undirected graphs (see section III for details).
Most of the published parallel BFS algorithms iterate over a

vertex frontier where the vertices of the current vertex frontier
insert new unvisited vertices to the following vertex frontier.
In this scenario, adding a vertex twice in such a frontier
generates more work to be done in the next level iteration but
does not influence the correctness of the algorithm. Another,
more general scenario is the development of asynchronous
algorithms [6].

In this paper, we examine such a general strategy for a
concrete parallel BFS algorithm on large shared memory multi-
core multi-processor systems with up to 64 cores. We examine,
what the factors are that influence the amount of additional
work, what the amount of additional work is, and whether this
additional work without any synchronized access to the work
queue trades off against the traditional sychronized access to a
work queue doing exactly the amount of work that is necessary.

The paper is organized as follows. After this introduction,
we start with an overview of related work, followed by a brief
overview on parallel BFS algorithms. After that, we present
our new approach, describe our experimental setup, and then
evaluate the new approach against the traditional way.

II. RELATED WORK

There are several papers on certain aspects on the opti-
mization of synchronization constructs in a wider sense. This
includes, amongst others, reducing the number of consecuting
mutex lock/unlocks [7] in a program and compiler optimiza-
tions for read/write barriers [8]. Furtheron, there are advanced
synchronization techniques trying to minimize synchroniza-
tion costs including RCU (Read-Copy-Update) [9], special
monitors [10], read-writer optimizations [11], and specialized
lock-free data structures (e.g., [12]). [2] gives an overview of
different aspects on related topics. [13] shows a similar benign
race as ours in a parallel BFS algorithm, but without analyzing
the influence of that.

An interesting general approach to handle possible con-
current accesses to shared data structures is the concept of
transactional memory (original paper [14]). This approachhas
some similarities with our approach as both are optimistic:
do a read-modify-write operation without a critical section
and react only is something went wrong. The idea with
transactional memory as well as in our approach is that the bad
thing happens rather seldom. Transactional memory detects
the problem and (depending on the API in use) rolls back
the whole transaction and restarts the operation. We instead
ignore the problem (and do not even detect the problem) and
have more work to do in the future.

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 70 / 98

III. PARALLEL ALGORITHMS FORBFS

In our application scenario for the examination, we are
interested in undirected graphsG = (V,E) whereV is a set of
verticesv1, ...,vn andE is a set of edgese1, ...,em. An edgee
is given by an unordered paire = (vi,v j) with vi,v j ∈V . The
number of vertices of a graph will be denoted by|V | = n and
the number of edges is|E| = m.

Assume a connected graph and a source vertexv0 ∈V . For
each vertexu ∈V definedepth(u) as the number of edges on
the shortest path fromv0 to u, i.e., the edge distance fromv0.
With depth(G) we denote the depth of a graphG defined as
the maximum depth of any vertex in the graph relative to the
source vertex.

The problem of Breadth First Search (BFS) for a given
graphG = (V,E) and a source vertexv0 ∈ V is to visit each
vertex in a way such that a vertexv1 must be visited before
any vertexv2 with depth(v1) < depth(v2). As a result of a
BFS traversal, either the level of each vertex is determined
or a (non-unique) BFS spanning tree with a father-linkage
of each vertex is created. Both variants can be handled by
BFS algorithms with small modifications and without extra
computational effort. The problem can be easily extended and
handled with directed or unconnected graphs. A sequential
solution to the problem can be found in textbooks, based on a
queue where all non-visited adjacent vertices of a visited vertex
are enqueued. The computational complexity isO(|V + |E|).

If one tries to design a parallel BFS algorithm, different
challenges might be encountered. As the computational density
of BFS is rather low, BFS is bandwidth limited for large graphs
and therefore memory bandwidth has to be handled with care.
For a similar reason in ccNUMA systems, data layout and
memory access should respect processor locality. In multicore
multiprocessor systems, things get even more complicated,
as several cores share higher level caches and NUMA-node
memory, but have private lower-level caches.

1: function BFS(graph g, vertex source)
2: var
3: d, distance vector of size|V |. Initial values:∞
4: current,next, vertex container. Initially empty
5: end var
6: d[source] ← 0
7: current.insert(source)
8: while current is not emptydo
9: for all v in current do

10: for all neighboursw of v do
11: old = CompareAndSwap(d[w],∞,d[v]+1)
12: if old = ∞ then
13: next.insert(w)
14: end if
15: end for
16: end for
17: Barrier
18: swapcurrent with next
19: end while
20: returnd
21: end function

Fig. 1: Parallel BFS with an atomic CAS-operation

In BFS algorithms housekeeping has to be done on visited
/ unvisited vertices with several possibilities how to do that.
Some of them are based on special container structures for ver-
tex frontiers where information has to be inserted and deleted.
Scalability and administrative overhead of these containers are
of interest. Generally speaking, these approaches deploy two
identical containers (current frontier, next frontier) whose roles
are swapped at the end of each level iteration. Fig. 1 shows this
in a rather straightforward version with an atomic Compare-
And-Swap (CAS) operation in an inner loop (line 11) to detect
and update unvisited vertex neighbors. In this atomic operation,
a vertex is checked wether it is visited already (d[w] 6= ∞), and
if not, marks the vertex as visited. Based on this knowledge,
only an unvisited vertex gets inserted into the next vertex
frontier. After all vertices in the current container are visited,
all threads wait at a barrier before work on the next container
/ frontier gets started (level iteration). This version canbe
further optimized using chunked lists for every thread. The
insert operation of a new vertex into a thread-local chunk can
be done in a non-atomic way. But the construction of a global
list from thread-local chunks (i.e., the insertion of each chunk
into a global list) must still be done in a synchronized way. But
as this is done only if a chunk gets full, this is not the critical
operation of this algorithm but the detection of visitedness in
line 11. Container centric approaches are eligible for dynamic
load balancing but are sensible to data locality on ccNUMA
systems. Container centric approaches for BFS can be found
in some parallel graph libraries [15] [16]. [17] contains an
overview and evaluation of several parallel BFS algorithms.

For level synchronized approaches, a simple list is a suf-
ficient container. There are approaches, in which each thread
manages two private lists to store the vertex frontiers and uses
additional lists as buffers for communication [18] [19]. This
approach deploys a static one dimensional partitioning of the
graph’s vertices and therefore supports data locality.

IV. A LTERNATIVE TO ATOMIC ACCESSES

Atomic operations in a higher level parallel API for
shared memory systems as mutual exclusion, atomic update,
locks, compare-and-swap etc. are usually mapped on shared
memory systems to atomic instructions that the underly-
ing processor architecture provides. These atomic instruc-
tions are by itself rather costly if no contention exists. But
if multiple threads concurrently access a shared state with
such instructions, the costper operation increases signifi-
cantly. Fig. 2 shows the cost for one lock/unlock-operation
(omp_set_lock/omp_unset_lock) in OpenMP on a shared
memory system dependend on the number of processor cores
utilised. In this test,p processors do in a loopn lock/unlock-
operation with an empty function call between that. The test
was executed on a large 64 core AMD based system. Other
systems show a similar behaviour.

Looking at the formulation of the parallel BFS algorithm
in Fig.1, an atomic CAS-Operation is used in line 11 to check
whether the child vertexw is unvisited (d[w] = ∞), and if so,
replace the depth-value ofw with the depth value of the current
vertex v incremented by one. And if the neighbour vertex
w was unvisited, additionally insertw into the next vertex
frontier. The CAS operation guarantees, that every vertex is
inserted exactly once into a vertex frontier (detection andmark

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 71 / 98

 0

 2000

 4000

 6000

 8000

 10000

 12000

12 4 8 16 24 32 40 48 56 64

ns
ec

number of threads

Fig. 2: Cost per lock/unlock on a large AMD-based system.

of visitedness). Without the atomic operation, a race condition
exists ond[w]. Replacing the critical operation with a non-
atomic code results in Fig. 3 (only relevant parts are shown).

1: for all neighboursw of v do
2: if d[w] = ∞ then
3: d[w] = d[v]+1
4: next.insert(w)
5: end if
6: end for

Fig. 3: Parallel non-atomic BFS (relevant part)

The code of interest is in line 2 and 3 that was previously
guarded by the CAS-operation. There are two possibilities
when executing this code in parallel:

1) Between the read accessd[w] in line 2 and the
completion of the write acces in line 3 no other
thread accessesd[w]. In this case (and an appropriate
memory model discussed above) there isno problem
with this version, the vertexw is inserted exactly once
in a vertex frontier as before.

2) More than one thread detects for a certain vertexwx
thatwx is unvisited (i.e.,d[wx] = ∞) before any of the
other threads can change thed[wx] to some visited
value. In this case, the vertexwx gets inserted twice
or even more into the next vertex frontier.

It is important to state that even the second case produces
no wrong results as any thread that detects thatd[wx] is
unvisited, writes intod[wx] in the next step the valued[v]+1
that is equal for all threads in one level iteration. Therefore,
correctness is guaranteed in our scenario. But, as stated above,
in such a case the vertexwx is inserted twice or even more
into the next vertex frontier and due to that, generates more
and redundant work in the next level iteration.

Looking at the generated assembler code (and this is more
or less invariant of the compiler used), the read access tod[w]
in line 2 (i.e., a load instruction) and the write access tod[w]
in line 3 (i.e., a store instruction) are nearby instructions in
the code sequence. With an assumption, that a thread is not
suspended during execution, the time window between the two
instructions is therefore rather small (few cycles in practice).
This assumption will be mostly true for many real scenarios,
e.g., running OpenMP programs on a dedicated system with
not more threads than processor cores available.

Another aspect in this discussion is the memory consis-
tency model in use. In a strict memory consistency model, it
is guaranteed, that the write operation is visible to other threads
immediately after this operation. But todays, all memory
consistency models in practical use (e.g., [20] [1]) are rather
relaxed and the compiler may buffer the value ofd[w] in
a register, a processor core may buffer that value in write
buffers, or the new value is not propagated between different
processors soon etc. This can enlarge the time window for
problems substantially even under the assumption made above
that a thread is not suspended. A programmer may insert an
appropriate flush operation of the used parallel API before line
2 and after line 3 such that all threads / processors are forced to
read / writed[w] to / from main memory in the corresponding
operation. But dependend on the implementation of such
a flush-operation, this could lead to substantial additional
overhead as this is done inside an inner loop iteration.

The question we are interested in is now, whether the
relaxation using non-atomic modifications tod[w] as given
in Fig. 3 (which surely is faster than a CAS-operation) pays
off as we might increase the work to be done substantially.
The amount of additional work to be done will be influenced
generally speaking mainly by:

1) problem time window (influenced by the generated
code sequence and implemented consistency model)
in relation to the time threads spend in non-critical
code

2) the number of threads in use (number of concurrent
parties)

3) the problem data influencing access collisions, i.e., in
our case the topology of the graph (vertex degrees,
shared neighbours)

The larger the time window is that another thread may
see the vertex in question as unvisited, and the more threads
are participating, and the more vertices have connections to
the unvisited vertex, the higher the probability that additional
work is generated.

Although we state this here in the context of a parallel
BFS algorithm, the discussion is a general discussion on
the technique itself and not specific to BFS. We propose
to replace costly atomic operations with probably redundant
work but with cheaper simple load/store operations without
modifying the correctness of the algorithm. The hypothesisis,
that especially on large shared memory systems with many
concurrent threads this technique pays off.

V. EXPERIMENTAL SETUP

In this section, we describe the test setup to systematically
compare the two alternatives (atomic accesses vs. redundant
work) in the concrete scenario of a parallel BFS. The general
algorithmic approach for parallel BFS chosen for this discus-
sion was already given in Fig.1. We optimized this algorithm
to work on chunked array based lists where each thread inserts
a new vertex into a thread-private chunk. If such a chunk gets
filled, the chunk is inserted into a global list. The insertion of
a chunk into the global list is done in all algorithm versions
with one atomic operation. But the influence of that atomic
operation is neglectible.

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 72 / 98

TABLE I: CHARACTERISTICS FOR USED GRAPHS

degree graph
graph name |V | |E| avg. max. depth
RMAT-1M-1G 106 109 1,000 599,399 8
RMAT-1M-10M 106 107 10 4,726 16
Streets-Europe 50,912,018 108,109,320 2.123 13 17,345

In the first version namedatomicBFS1, every thread uses
a CAS operation as described in Fig.1 to detect unvisited
vertices and updates them accordingly. This guarantees, that
every vertex is inserted exactly once in a vertex frontier. But on
the other side,every check is done atomically even on vertices
that were visited already, even in a previous level iteration.

This last aspect can be optimized easily with a standard op-
timization technique in prefixing the expensive CAS-operation
with a normal read operation followed by the CAS-operation
only, if the test was sucessful (i.e., a test-and-test-and-set op-
eration). This technique is also done in the OpenMP reference
implementation of the Graph500 benchmark [15] for BFS. We
name this versionatomicBFS2. In this version, all vertices
already visited are no longer handled with a CAS operation.
We discuss the performance effect of this optimization later.

The third approach (namednonatomicBFS) does not use
atomic operations for the unvisited-detection, but ratherthe
code shown in Fig. 3. Therefore, a vertex may be inserted more
than once in the next vertex frontier. The main difference to
the other versions is therefore that the detection of an unvisited
vertex and the subsequent update to a visited state is no longer
done atomically but rather with simple read/write accesses
including the possibility of multiple insertions of a vertex as
multiple threads may see a vertex as unvisited concurrently.
Further algorithmic optimizations different to that discussed
here and a general overview of parallel BFS algorithms can
be found in another paper [17]. There is also shown, that
there are better but more complex algorithms for the parallel
BFS problem. But as we are only interested in this paper
in the discussion of atomic operations vs. redundant work,
the relative comparism of the introduced three versions is
sufficient for that.

As we discussed already in section IV, the first factor
influencing the probability of multiple insertions is the time
window related to the time spent in non-critical code. Although
the BFS algorithm has only few instructions between the read
and write operation on the critical data, there is not much work
to do in the non-critical part. Therefore, BFS is an example
for a rather problematic algorithm in this sense.

The second factor influencing the probability of double
insertion is the degree of parallelism. We used in our tests
different parallel systems. The largest one is a 64 core AMD-
6272 Interlagos based system with 128 GB shared memory
organised in 4 NUMA nodes, each with 16 cores (1.9 GHz).
Another system is a 2-way Intel E5-2670 system with 128
GB main memory and 16-way parallelism (including 2-way
Hyperthreading).

The third factor is the probability of a data collision,
i.e., two vertices having a common neighbor in the graph. Only
unvisited neighbours leed to an atomic operation in version
atomicBFS1. This factor is mainly influenced in our scenario

by the graph topology / degree distribution. We used several
large graphs from different application areas. Besides real
graphs we used also synthetically generated pseudo-random
graphs that guarantee certain topological properties. Dueto
the limited space in this paper, we will show only results for
a street graph (Streets-Europe) and two R-MAT graphs with
parametersa,b,c influencing the topology, degree distribution,
and clustering properties of the generated graph. See [21] for
details on RMAT-graphs and [22] for a general discussion on
degree distributions for R-MAT graphs. We used as RMAT
parameters in the results showna = 0.45,b = 0.25,c = 0.15.
After graph generation, we introduced artificial edges to get a
connected graph. Table I shows some important properties of
the graphs used.

VI. RESULTS

Fig. 4 and Fig. 5 show performance results for the three
versions of investigation on the two different parallel systems
using different data sets. The performance is given as a
rate Million Traversed Edges per Second (MTEPS), a usual
measure for BFS performance (the higher, the better). The
relative performance degradation Fig.4b and 4c in all versions
with higher thread numbers is caused by memory bandwidth
restrictions. Details on that can be found in [17].

The unoptimized atomic versionatomicBFS1 is in all tests
slower than the other two versions as withevery access tod[w]
in the relevant code section an atomic operation is executed.
The performance difference to the other versions is very high,
if many of the atomic operation were done unneccesarily, i.e., a
vertex of investigation was visited already before (e.g., Fig. 4a
and Fig.5a). For the two atomic versions, most times the
optimized second atomic versionatomicBFS2 is much better
due to the prefixed test done with a normal read operation.

But the best version out of the three is the version
nonatomicBFS using our proposed technique without any
atomic operation in the code section of investigation. The
difference to the better atomic versionatomicBFS2 is rather
small if there is a lot of vertex sharing (e.g., vertices have
high degrees). In that case, vertices may get visited very often
and only the first visit leads to a CAS operation in version
atomicBFS2 (see again Fig. 4a and Fig.5a). On the other side,
the difference between the non-atomic versionnonatomicBFS
and atomicBFS2 is quite high, if update operations are done
more frequently on vertex visits, as for example in sparse
graphs with small vertex degrees (Fig.4b, 4c, 5b, 5c).

To further examine these results, we determined frontier
sizes during each level iteration. Theedge frontier size gives
the number of outgoing edges from vertices in the current
frontier, i.e., the number of vertex candidates that have to
be checked for inclusion into the next frontier. On the other
side, the vertex frontier size gives the number of unique
vertices that get inserted into the next vertex frontier (i.e., the
vertex was checked, found unvisited, and then sucessfully
inserted). The edge frontier size is therefore the amount of
checks to be done (in algorithm versionatomicBFS1 with
a CAS operation, in the other versions by a simple read
operation), and the vertex frontier size is the amount of actual
insertions into the next frontier (in versionatomicBFS2 with
a CAS, in versionnonatomicBFS with a simple write). Fig. 6

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 73 / 98

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) Performance for RMAT-1M-1000M

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) Performance for RMAT-1M-10M

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) Performance for Streets-Europe

Fig. 4: Performance data on AMD-based system with 64x parallelism.

TABLE II: PERCENTAGE OF VERTICES THAT GET INSERTED MULTI-
PLE TIMES.

number of threads min. percentage median max. percentage
2 0.000012 0.000030 0.000049
4 0.000002 0.000014 0.000026
8 0.000004 0.000013 0.000027
16 0.000002 0.000018 0.000039
24 0.000006 0.000020 0.000037
32 0.000010 0.000022 0.000035
40 0.000010 0.000022 0.000037
48 0.000010 0.000026 0.000035
56 0.000012 0.000027 0.000055
64 0.000016 0.000029 0.000051

shows frontier sizes during each level iteration. Setting this
information in relation to the performance numbers, a large
difference between edge frontier size and vertex frontier size
in a level iteration means that many atomic checks were made
in versionatomicBFS1 that didn’t lead to an unvisited neighbor
vertex / insert operation. On the other side, if the difference
between vertex and edge frontier size is small, the difference
between the three versions is less, as the amount of critical
operations is rather small compared to all operations executed.

Furtheron, we measured how many vertices get inserted
multiple times in versionnonatomicBFS, i.e., the additional
and redundant work that is generated. The factors influencing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) Performance for RMAT-1M-1000M

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) Performance for RMAT-1M-10M

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) Performance for Streets-Europe

Fig. 5: Performance data on Intel-based system with 16x parallelism.

that were discussed already. We show results only for the
largest system and for the street-graph, this is the most prob-
lematic test instance where the probability for double insertion
is highest. In Tab. II we show the overhead in percentage of
vertices inserted more than once, i.e., leading to redundant and
more work. As can be seen, the probability increases slightly
with more threads, but still this overhead is for our scenario
negligible (also in all other tests with different data setsnot
shown here). Even with 64-fold concurrency, there are very
rare situations that lead to multiple insertions. The maximum
overhead value is 0.000055 percent or absolutely seen, instead
of 50,912,018 vertices to be inserted, withnonatomicBFS
50,912,046 vertices were inserted, the difference is 28.

VII. C ONCLUSIONS

We propose in parallel programs, and within certain scenar-
ios, to replace costly atomic update operations on shared data
structures with simple read-write updates. If the correctness of
the algorithm is not affected by this change, this leads to an
algorithm variant that does not need any atomic operations.
This algorithm variant still works correctly, but on the other
side, it may generate more and redundant work to be done.

As an example for such a scenario, we used a parallel
BFS algorithm where the atomic detection and update of

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 74 / 98

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8

si
ze

level iteration

vertex frontier edge frontier

(a) Frontiers for RMAT-1M-1000M

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12 14 16

si
ze

level iteration

vertex frontier edge frontier

(b) Frontiers for RMAT-1M-10M

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

si
ze

level iteration

vertex frontier edge frontier

(c) Frontiers for Streets-Europe

Fig. 6: Vertex and edge frontier sizes.

univisited neighbour vertices was replaced with simple non-
atomic read/write updates. The results show, that for this
scenario the non-atomic version has a huge performance
improvement in many situations compared to a straightforward
implementation with atomic accesses (atomicBFS1). And our
version has most times a performance improvement of up to
50% compared to an optimized atomic version (atomicBFS2)
that uses atomic accesses only if necessary. The higher the
frequency of atomic operations, the greater the advantage is.
Our proposed technique delivers inall tests equal or better
performance results within the error of measurement than any
of the versions with atomic operations.

The upcoming mainstream transactional memory hardware
implementations (e.g., Intel Haswell) use a different approach.
But similar to our approach, this is an optimistic approach,
too, as only the conflict case has to be handled, and not every
access. It would be rather interesting to compare these two
alternatives with relevant scenarios.

ACKNOWLEDGEMENTS

The system infrastructure was partially funded by an in-
frastructure grant of the Ministry for Innovation, Science, Re-
search, and Technology of the state North-Rhine-Westphalia.
Matthias Makulla did most of the implementation work on
several parallel graph algorithms including an initial version
of the ones used in this paper.

REFERENCES

[1] “OpenMP application program interface,” OpenMP Architecture Re-
view Board, http://www.openmp.org/, 2011, retrieved: 6,2013.

[2] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Burlington, MA: Morgan Kaufmann, 2008.

[3] M. Ben-Ari, Principles of Concurrent and Distributed Programming.
Harlow: Addison-Wesley, 2006.

[4] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in ACM/IEEE Intl.Conf. for High
Performance Computing, Networking, Storage and Analysis, 2010, pp.
1–11.

[5] P. E. McKenney, “Synchronization and scalability in themacho multi-
core era,” http://www2.rdrop.com/∼paulmck/scalability/paper/
MachoMulticore.2010.08.09a.pdf, 2010, retrieved: 6,2013.

[6] M. M. Wu, “Asynchronous algorithms for shared memory machines,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1992.

[7] P. Diniz and M. Rinard, “Synchronization transformations for parallel
computing,” in Proc. ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 1997, pp. 187–200.

[8] D. Novillo, R. C. Unrau, and J. Schaeffer, “Optimizing mutual exclusion
synchronization in explicitly parallel programs,” in Proc.5th Interna-
tional Workshop on Languages, Compilers, and Run-Time Systemsfor
Scalable Computers, 2000, pp. 128–142.

[9] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais,and
J. Walpole, “User-level implementations of read-copy update,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 2, 2012,
pp. 375– 382.

[10] D. Dice, “Implementing fast Java monitors with relaxed locks,” in
Proc. JavaTM Virtual Machine and Technology Symposium, Monterey,
2001, pp. 79–90.

[11] S. Haldar and K. Vidyasankar, “Constructing 1-writer multireader
multivalued atomic variables from regular variables,” Journal of the
ACM, vol. 42, no. 1, 1995, pp. 186–203.

[12] K. Fraser and T. Harris, “Concurrent programming withoutlocks,” IEEE
Transactions on Computers, vol. 25, no. 2, 2007, pp. 1 – 44.

[13] C. Leiserson and T. Schardl, “A work-efficient parallelbreadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in 22nd ACM Symp. on Parallelism in Algorithms and Architectures,
2010, pp. 303–314.

[14] M. Herlihy and J. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. 20th Intl.Symposium
on Computer Architecture, 1993, pp. 289–300.

[15] Graph 500 Comitee, “Graph 500 benchmark suite,”
http://www.graph500.org/, retrieved: 6, 2013.

[16] D. Bader and K. Madduri, “Snap, small-world network analysis and
partitioning: an open-source parallel graph framework for the explo-
ration of large-scale networks,” in 22nd IEEE Intl. Symp. on Parallel
and Distributed Processing, 2008, pp. 1–12.

[17] R. Berrendorf and M. Makulla, “Parallel breadth first search algorithms
for multicore- and multiprocessor systems,” in submitted for publica-
tion, 2013.

[18] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L,” in ACM/IEEE Conf. on Supercomputing,
2005, pp. 25–44.

[19] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in 21st Intl. Conf. on Parallel and
Distributed Computing and Systems, 2009, pp. 1–10.

[20] ISO/IEC 14882:2011 Programming Languages – C++, ISO, Geneva,
Switzerland, 2011.

[21] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SIAM Intl. Conf. on Data Mining, 2004, pp. 442
– 446.

[22] C. Gröer, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Networks, vol. 58, no. 3, 2011, pp.
159–170.

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 75 / 98

Proactive Automated Dependable Resource
Management in Cloud Environments

Anna Schwanengel and Gerald Kaefer
Siemens AG

Corporate Technologies / Industry Sector
Munich / Nuremberg, Bavaria, Germany

Email: {anna.schwanengel.ext, gerald.kaefer}@siemens.com

Claudia Linnhoff-Popien
Ludwig-Maximilians-University Munich

Institute for Informatics
Munich, Bavaria, Germany
Email: linnhoff@ifi.lmu.de

Abstract—Cloud Computing comes along with easy and self-
managed resource provisioning and releasing. However, booting
and shutting down of instances still means dealing with laten-
cies, administrative efforts and supplementary costs. Considering
that, scaling of required resources needs to be well-scheduled,
especially, as resources in Clouds are often highly and complexly
dependent among each other. The challenge, thereby, is to manage
Cloud services with less overhead while fulfilling negotiated SLAs.
To automatically provide the exact amount of required instances,
our approach enables the detection of resource dependencies and
the automated scaling of them without the need for observing the
utilization of every single instance. For that reason, we introduce
a model addressing resource dependencies and a self-calibration
process of the dependency graph used by a regulation method
for the dynamic management of dependent resources.

Keywords—Resource Management, Dependencies, Cloud.

I. INTRODUCTION

Although Cloud Computing has set new standards regard-
ing redistribution of virtual machines [1], especially dynamic
integration of physical resources, some challenges remain
[2], [3]. In particular, the allocation and shut down of these
resources as well as their distribution on the same hardware
requires a minimum of time [4]. Since a Cloud service does
not know in advance when a client plans its usage, an efficient
resource planning is not fully automated until now [5] and rule-
based mechanisms need to be conducted by the Cloud user [6].
However, in industrial environments, deterministic behaviour is
a fundamental requirement and resource availability should be
guaranteed for every service, even though they share a pool
of physical hardware. Negotiated Service Level Agreements
(SLAs) have to be fulfilled and high quality of service should
be ensured to satisfy Cloud user interests in time. There is
still an enormous need of automated and efficient reaction upon
variable resource demands to reduce the amount of precaution-
ary allocated machines, which may then be underutilized most
of the time in normal operation causing unnecessary costs.

In this context, resources of Cloud service deployments
often show high complex dependencies among each other, as
they have a multi-layer structure [7] and avail themselves of
other services on the same layer (i.e., composite services).
Thereby, a service normally consists of external facing nodes
(e.g., Web servers) and internal dependent resources which
are required to provide the service. Additionally, resources
are shared between the single services, for the purpose of

an optimized service-oriented architecture. These dependencies
are essential to be considered in service offerings.

Consequently, the question raises how to manage these
services while causing less administrative overhead in complex
Cloud environments. The goal is to offer a proactive automatic
instance management of dependable resources. To achieve
this, we enable the automated detection of resource capacity
dependencies for supplying the requesting clients with an
exact amount of resources required during operation. Then, the
scaling process can be done based on the dependency model
without having to observe the utilization of each instance.

The paper is organized as follows: Section II gives an
overview about research on load management and depen-
dencies in Clouds. The fundamental developed protocol for
reservation and feedback based load management through a
Service Load Manager (SLM) is pointed out in Section III.
The construction of the treated environment and its dependency
model is described in Section IV. Section V explains our
approach for deducting the capacity demands for dependable
resources with the self-calibration and resource regulation
methods. Section VI outlines the implementation and results
and Section VII concludes and demonstrates future work.

II. RELATED WORK

Load management is important in Clouds and studied by
many researchers. The ‘SigLM’ system, e.g., concentrates
on exact resource allocation in shared Cloud environments
through fine-grain signatures [8] and Chen et al. use patterns
to forecast load (not automated by now), which means trusting
historical data and predicting the future [9]. However, without
considering dependencies of resources which cover emerging
loads on service usage, they waste potential for cost savings.

Brandic [10] wants to support applications according to
predefined schedules. While minimizing user interaction with
services, she focuses on failure minimization instead of effi-
ciency and performance – we intent to improve the latter. A
resource provisioning algorithm for the generation of reserva-
tion plans and for the reduction of total provisioning costs is
formulated by Chaisiri et al. [11] However, cost factors are here
the driving force and again performance issues are disregarded.

Takahashi et al. [7] identify issues emerging under the
multi-layered resource environment of Clouds, while concen-
trating on problems caused by the damage of a single resource

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 76 / 98

Fig. 1: Load progress of aggregated client requests without delay

affecting other resources, which (in-)directly use the faulty one.
While creating a dependency graph, as we do, they focus on
the aspect of failure tolerance when parts of the system break
down. Furthermore, Takahashi et al. build on a very inflexible
basis that requires an administrator to monitor all resources and
their dependencies. In contrast, we implement active booting
and shut down by automatic processes to save these efforts.

The SWAP system, developed by Zheng and Nieh [12],
enables automatic dependency detection, too. They use system
operation histories to determine resource dependencies among
processes and consider them in scheduling. However, their
scheduler only has fixed resource pools and scaling processes,
which we are concentrating on, are not considered. Also the
analyzed algorithms in [13], which are implemented to support
optimal provisioning for multiple a priori known tasks, do not
consider that the resource pool is changed during operation.
In [6] auto-scaling scheduling is proposed, which finishes
submitted jobs within specified deadlines considering costs.
However, they need to constantly monitor workload changes
and, again, newly submitted jobs are ignored in their test
bed. Though an automated scheduling architecture managing
changes in the Cloud workflow, especially in peak-load situa-
tions, is presented by [14], this work lacks the scheduling of
tasks regarding their dependencies – unlike we do.

The optimization of scheduling mechanisms have been
studied for decades, as in [15]–[17], etc. However, on these
approaches, relatively static directed acyclic graphs [18] are
assumed, which are given by administrators and elasticity and
fast changing environments as common in Cloud Computing
are not supported. To sum it up, load management still lacks
of fully automated and highly efficient scaling processes, and
more studies are needed within this research field.

III. LOAD SMOOTHING BY THE PROTOCOL REFELOMAP

In the proposed solution for automatic scaling in Cloud
environments, we base on our developed environment already
described in [19] and [20], and extend this approach by
the possibility to deduct capacity demands for dependable
resources. In previous work, we created a technique to dynam-
ically manage the load of Cloud services based on resource
reservation and service feedback and a method to influence
the behaviour of service usage by the service itself. The
implemented light-weight protocol ReFeLoMaP handles the
communication between the Cloud services and their clients
via a service load manager, which coordinates the actual

Fig. 2: Load progress with delay of client requests and scaling processes

resource demands and their availability. In the following, we
build on this procedure and define a self-calibration method
before the process as well as a resource regulation algorithm
of the SLM during active operation.

As outlined in [20], the mediating SLM initially aggregates
all incoming client requests, and in this way, the load process
can be depicted in a graph as shown in Figure 1. In highly
distributed systems, client requests which exceed the actually
provided resource capacity are normally refused in high load
peak times in order to remain operational until additional
resources are allocated. To avoid this ineffective manner of
operation our protocol ReFeLoMaP delays specific requests
about a defined time interval as agreed upon with the corre-
sponding clients. After having delayed these client requests,
one can observe less underutilized machines. Respectively,
scaling processes are less frequent needed in order to cover
all clients’ demands. Consequently, we are enabled to smooth
load peaks, which leads to better instance utilization and less
frequent scaling demands, as illustrated in Figure 2.

The dependencies among every single resource need to be
well known in order to be capable of deciding automatically
which and how many virtual instances can be booted or shut
down on these resources. More precisely, the ratio of running
machines on each specific layer must be computable. That
way, it is possible to scale the instances of a service with
its respective dependable resources at once without having
to evaluate the utilization of each resource in case of load
variations and unpredicted load peaks.

IV. CONSTRUCTION OF SERVICE ENVIRONMENT
AND ITS DEPENDENCY MODEL

In order to get a better understanding of the typical multi-
layered composite service architecture of Clouds, imagine a
service environment consisting of several Web and Worker in-
stances as well as databases for storing persistent information.
Instances of the same type can be clustered to groups - called
roles. Such a system may look as depicted in Figure 3 (a),
wherein a shared database and a composite service are located
- the latter comprising one Web role, two Worker roles and
exactly that database. More abstractly, in this example, the
service environment exists of five different services S1 to S5.

At first, we define which services are related to which
others in order to build up a dependency graph for scaling
processes. For that purpose, every service indicates its relation-
ships to others on the initial registration at the SLM. The SLM

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 77 / 98

Fig. 3: Service environment (a) and its abstraction stored at the SLM (b)

stores these connections and sets up attributes about the passed
on minimal and maximal amount of instances per each scalable
resource (Min./Max. # Instances) and the time, a service needs
for starting and stopping of new instances (Inst. Start/Stop
Time). With reference to our example, on registration at the
SLM, the Web role (represented by service S1) indicates a
dependency to the Worker role (service S2), S2 a relation
to another Worker role (service S3) as well as to the shared
database (service S4). Another Web role (service S5) states a
direct dependency to this database S4, too (see Fig. 3 (b)).

In order to organize the dependencies of all listed services
at the SLM, we start up from common Directed Acyclic
Graphs (DAG) G = (V,E), where V is a set of vi nodes and
E is a set of ei directed edges. In [18], DAG-nodes represent
tasks and the weight w of a node ni is called the computation
cost w(ni). An edge is represented by (ni, nj) and its weight
(communication cost) is given by c(ni, nj) =

w(ni)
w(nj)

. Based on
this, we apply the traditional DAG and modify its usage. In
our implementation the nodes are the different Web, Worker
or database roles registered at the SLM and their weight is
the number of running instances of a role. In our example,
we have a node set of V = {S1, ..., S5}. The weight of an
edge represents the ratio between the two associated roles. If
the Web Role S1 has, e.g., four running instances and the
underlying Worker Role S2 needs two instances, their ratio of
running instances is 4:2 with leads to a ratio of 2.

For the automated graph generation, shared resources must
not be influenced by other related ones, because the instances
can not be used simultaneously by different roles at the same
time. Therefore, in the detection process, resource S5 should
be inactive when defining the graph of S1, S2, S3 and S4. Vice
versa the services S1 to S4 must be idle on the graph creation
of S5, because, with using the same instances, the different
sequence threads can not be parallelized. When defining the
capacity demands for the resources, we then can guarantee
always the same workload and no sum of load at each resource.

V. DEDUCTION OF CAPACITY DEMANDS FOR
DEPENDABLE RESOURCES

Having defined the essential fundamentals of the distributed
system, we got a starting point for the further solution. Our
following approach consists of two procedures to automate
the scaling of dependable resources in service provisioning
of Cloud Computing systems. First, we implemented a self-
calibration process at the SLM before productive operation.
This technique for generating the dependency graph as well
as setting up the initial amount of resources on each system
layer is explained in Subsection V-A. Secondly, we describe

Fig. 4: DAG of the service environment at the SLM

the resource regulation method of the SLM during the active
operation in Subsection V-B.

A. Self-calibration before Operation at the SLM

In order to be capable of scaling the whole composite
service without monitoring every single instance utilization,
the SLM sets up the dependencies between the resource-
instances on the different layers in a DAG (see Figure 4(a)).
The ratio between the instances of dependable resources can
be either defined manually by an administrator or, as in our
approach, automatically with boundary conditions. With this
management by the generated dependency graph, organiza-
tional efforts can be minimized, as we do not have to constantly
observe each resource utilization by an administrator. For
automatic ratio detection of the instance amount per each
dependable resource, the SLM specifies a target value for each
resource-instance regarding, e.g., the average CPU or RAM
utilization. For instance, it can be determined that the average
CPU load must not exceed 50%. Although, in real scenarios,
the server utilization in a datacenter is estimated to range only
from 5% to 20% [21], [22], we are able to offer a higher
utilization because of better knowledge of future resource
demands based on our developed protocol ReFeLoMaP [20].

In a second step, the SLM defines a default value in the
configuration file for each service and boots according to
that value the amount of resources. The minimal amount of
instances of service S1 (Min. # Instances S1) is, e.g., two
virtual machines: wmin(S1) = 2. Then the regulation process
starts: a fictional load is generated on the first node of the
graph (root node), which is the external facing resource of
the service, and it passes, thereby, the depending load to
behind nodes. As stated before, the load of shared resources
is only generated at the first node in order to not falsify the
measurement, and then, passed on by the first service node.
So, we can exclude accumulated load values and guarantee
reproducible test scores. This implies that other services are
not active during the automated detection of the amount of
needed instances for achieving the target value.

Afterwards, the SLM allocates instances on the according
resource (role) until the previously set target value is reached
and stores the corresponding amount of running instances
(wact(ni)) in the nodes as its weight (w(ni)). Analogous to
that, the SLM proceeds for all depending resources on lower
layers and adjusts the instance amount for each of them. In our
implemented test scenario (see section VI), the Web role S1

holds four instances and the underlying Worker role S2 needs
two instances. This Worker role requires one active instance
at the lower Worker role S3 and two running machines at the
database service S4 in order to achieve the corresponding target

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 78 / 98

values regarding CPU utilization and storage occupancy. In a
second iteration, the required amount of instances in Web role
S5 can be set on two with an according process. By means
of the list of the instance amount of every single layer, the
role ratios can be defined. In our case, Web role S1 holds four
instances (w(S1) = 4) and the underlying Worker role required
two (w(S2) = 2). Consequently, their ratio is 2, which is also
the weight of the corresponding edge:

c(S1, S2) =
w(S1)

w(S2)
=

4

2
= 2 (1)

This Worker role has a weight of 2, similar to the other
Worker role S3 (c(S2, S3) = 2

1 = 2) and a ratio of 1 to the
database (c(S2, S4) =

2
2 = 1). The ratio of the Web role S5

to the shared database S4 is 1, too (c(S5, S4) =
2
2 = 1). As

shown in Figure 4(b), the ratio and the amount of instances
are inscribed at the edges and in the nodes of the dependency
graph. Following this, the basic dependency graph is completed
with concrete values by the SLM after the registration period.

After this completion, the regulation process is stopped and
the required instances per each resource can be scaled during
operation based on the dependency graph. The self-calibration
procedure can be triggered periodically in order to correct the
specified dependency values as appropriate.

B. Resource Regulation Process of the SLM

With this dependency graph, the SLM is able to regulate
the resource amount during operation, described as follows.
First, all composite services (meaning all depending resources)
are reduced on one virtual resource. As a result, the cor-
responding limits regarding the minimum and maximum of
instance amount and their booting and shut down time are
well known for all composite services. In the case, there are
shared resources (as database S4), the maximum aggregated
limit between the dependable resources is additionally defined.

In every single regulation step, the SLM:

1) accumulates all of the client requests on each virtual
provided service, then,

2) controls the limit checks on basis of the external
facing node accessed by the client and

3) checks the aggregated limits of the dependable ser-
vices in case of shared resources.

The SLM modulates the role instance counts according to
the relations between the roles and their defined weights of
nodes and edges, as long as the aggregated instance counts
stay within defined limits. Thereby, the SLM does not deceed
the minimal amount of resource-instances predefined by the
services themselves before their actual execution – nor exceed
their corresponding maximum. For instance, we define a mini-
mal amount of least two and maximal ten instances at resource
S1. Then S1 will always run with at least two instances, even
though, one would be sufficient to cover the actual load. That
way, it is possible to react on unexpected load peaks if needed.
If anon in S2 we have at least one and maximal four instances,
the maximum of four instances in S2 is not extended, even
though S1 is scaled up to five and higher instance amounts.

In the case, aggregated limits of shared resources would be
exceeded, a load release occurs according to the determined

Fig. 5: Implementation of the Automated Scaling Process

service priority defined by the protocol ReFeLoMaP. On equal
priority the sharing is defrayed in equal proportions. Thereby,
we can additionally focus on maximization of throughput,
meaning the service delays specific client requests about a
defined interval. This is possible even then the client is running
in a higher priority class of the service level agreement as long
as the client allows its procrastination by the manipulation of
the service load manger. Thereby, also lower prioritized client
requests need not to be dropped. For further information about
the concrete implementation and the benefits of the protocol
ReFeLoMaP, see our paper [19].

If no aggregated limits are exceeded but particular service
limits of virtual external facing nodes, the client load manage-
ment feedback is generated on basis of this maximum load in
order to distribute the load in a way that load dropping through
request refusing can be avoided.

VI. IMPLEMENTATION AND RESULTS

Having defined the dependency graph and regulation
method, the SLM is now able to regard dependable resources
during the instance management process. Figure 5 provides an
implementation overview of this control algorithm. As shown,
an external server, which runs the SLM, generates a fictional
load on Role 1. Role 1 now boots new instances (I1, ..., In)
until the target value of 50% CPU and RAM workload is
achieved and stores the number of running instances with
their average utilization in an internal log file. The load is
passed on to all subsequent roles (Role 2, ..., Role X) and
they proceed accordingly. After having completed the log files,
they are transferred to a complex event processing engine,
which analyses the data streams from the resources about the
happening events, consolidates all values and passes it on to the
SLM. The SLM integrates this data in the dependency graph
and starts scaling corresponding to this. If an instance brakes
down, it is replaced by a self-healing routine of the roles.

In a first simulation for testing the time constraints about
the generation of a corresponding dependency graph, we could
make the following observations. We successively simulated
the registration of 5, 10, 20, 30 and 50 services at the SLM.
All of them indicated random dependencies to each other. As
shown in Figure 6, we took the measurements after which time
the complex event processing engine announces the completion
of the dependency graph generation. With an amount of 5
services it took 3 seconds until all dependencies were stored in
the graph with their corresponding weights regarding instance

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 79 / 98

Fig. 6: Simulation of the Graph Generation Process

amount and ratios to each other. With 10 services, the time-
demand linearly rises to 4 seconds, and with 20 services, to
5 seconds. On the registration of 30 services at the SLM, we
measured 6 seconds and with 50 services we had 8 seconds for
the graph creation. On the first glance, these values increase
more and more. However, we assume that after the initial
graph generation the time demand for dependency detection
even with more services will not increase too extensively as
the values do only rise sparsely. Furthermore, since we are
concentrating on services with no real-time requirements, we
can hazard these consequences and accept this delay to benefit
from the more efficient service provisioning as a whole.

In a further realized scenario, we simulated an rising load
requirement at the external facing node of the clients (i.e.,
Web service S1), which results in a new demand of two
additional instances on the resource of S1 (wact(S1) = 6).
Consequently, an upregulation of the related services S2, S3

and S4 (Worker roles and database service) is needed, too.
Following the regulation by the dependency graph, the SLM
initiates the booting of an additional instance in the Worker
role S2 on the second layer, because the initial defined weight
of their relation is 2 (see Formula 1) and the weight with the
additional two instances on service S1 is now 3:

cact(S1, S2) =
wact(S1)

wact(S2)
=

6

2
= 3 6= 2 = c(S1, S2) (2)

That means the actual running virtual machines of the Worker
role S2 need support by a further resource-instance in order to
achieve the given weight of 2 (w(S2) = 3).

Since the load is passed on to the lower lying database
service S4 also in this resource a new instance is started
in order to fulfill the determined weights of the dependency
graph (w(S4) = 3). Although the load is also transferred
to the Worker role of layer three (S3), here no additional
instances are required: with three instances in S2 and one
already running instance in S3 the ratio is yet sufficient because
its weight is smaller then four (see Formula 3), on which
an up-scaling of the resource-instances would be necessary
(wact(S3) = w(S3) = 1).

cact(S2, S3) =
wact(S2)

wact(S3)
=

3

1
= 3 < 4 (3)

With a second scenario, we covered the case that S5 is the
most stressed service in the system. The high load generated
on service S5 leads to an up-scaling of the database service S4

through S5 and S1 according to the process described before.
After a specific time, the internal maximal limit of instances is

reached. As a consequence, the maximal amount of instances
in the back-end reduces also directly the maximal instance
amount of the front-end, and additional instances in S1 as well
as in S5 cannot be supported by the fully exhausted resource
pool of S4. This situation is recognized by the complex event
processing engine with the aggregated information of the log
files from each resource and a corresponding warning is send
to the SLM in order to take countermeasures. The SLM is
now able to interrupt on its higher management level and
can counteract an inefficient service provisioning which only
supports one part of the composite service while neglecting the
majority of the entire resource environment. For that reason,
it throttles service S5 in order to keep the whole composite
service functional and reliable.

So, a predictive detection of resource bottlenecks can be
conducted. With the aid of the defined resource limit values,
the SLM is able to proactively respond to congestions by
delaying client requests in times of overload. This prescient
bottleneck identification is also possible with shared resources
by using the computation of the accumulated resource loads
of the composite service. On this basis the SLM can decide
which service is postponed according to the specified service
priority when exceeding the limit of the shared resource.

By means of the anticipatory recognition of the composite
resource limitations caused by dependencies, it is possible
to make an assumption of the limits for the virtual external
facing node directly accessed by the client. In our example, at
its registration, the external facing node S1 in the root level
states that it needs at least two and maximal ten instances
(wmin(S1) = 2 and wmax(S1) = 10). This resource S2 has
anon at least one and maximal four instances (wmin(S2) = 1
and wmax(S2) = 4). As calculated before, the dependency
ratio of S1 to the hidden resource S2 is 6:3 (proved by Formula
2). So, with the defined dependency ratio c(S1, S2) = 2 (see
Formula 1), S1 is allowed to double the instance amount of
S2 as long as it does not exceed its own maximum. Following
this reasoning, we can conduct these minimum evaluations:

min{wmin(S1), [2 ∗ wmin(S2)]} = min{2, [2 ∗ 1]} = 2 (4)

min{wmax(S1), [2∗wmax(S2)]} = min{10, [2∗4]} = 8 (5)

Consequently, S1 is restricted in its instance amount by
its dependency to service S2 which has less capacity. So,
the virtual resource S1 has the actual instance limit range
of minimal two (see Formula 4) and maximal eight running
instances (see Formula 5). Thereby, it is recognizable that an
utilization of the technically possible amount of ten instances
in S1 would not create added value.

Another resulting benefit of our approach is the possibility
to make estimations, until when the additional capacity is
available at the highest level on booting new instances. How
long the entire starting time interval is, can be calculated
already before based on a maximum evaluation along the
dependency graph. In our scenario, booting new Web role
instances in S1 and S5 needs a time interval of three minutes.
An extra Worker role instance in S2 and S3 is available
after five minutes each and the start of an additional database
instance takes nine minutes for installing the base image and
the particular software of the tenants. Consequently, in our
scenario, it requires a start time consideration of nine minutes
for the up-scaling of the whole service, which is the maximum

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 80 / 98

of these parallel booting instances. Thereby, we are able to give
estimations about the time point when the required instances
are available earliest and the entire composite service is highly
functional, again. On the other hand, it is calculable how
long the release of redundant instances takes until unnecessary
expense decreases.

In summary, we could observe an enhanced pro-active
reaction of system resources upon proactively derived load
demands. This is achieved by deriving load for dependable
hidden resources from front-end resources instead of following
an approach where roles manage their instance counts on
local utilization monitoring. Hidden resources can be adjusted
directly based on the metrics of the front-end nodes (depen-
dency root nodes) and the dependency graph. This results in
a significant improvement of the overall system load reaction.

VII. CONCLUSION

Load management is a driving force for comprehensive
research in the area of Cloud Computing. Although this field
already has its roots in basic Utility Computing and ranges
from High Performance Computing (HPC) over Grid Com-
puting to the today’s era of Cloud Computing, there are still
unsolved problems showing space for improvements regarding
cost savings and resource efficiency. In Cloud Computing
environments, providers offer a theoretically unlimited pool
of resources, which Cloud services can benefit from. Thereby,
a lot of heterogeneous workloads emerge and one has to react
on enormous load variations in time in order to comply with
the SLAs concluded with the Cloud clients. For this reason,
Cloud systems provide elasticity meaning an easy booting and
release of instances while relaxing strong SLAs.

On closer examination, in Clouds sophisticated and in-
tricate dependencies among the involved resources can be
observed while offering specific services both on its one and in
its entirety as a composition. This is because of the multi-layer
structure of Cloud services and leads to considerable efforts
regarding administration, costs and time. Within this approach,
we offer a management of Cloud services with less adminis-
trative overhead within complex Cloud environments. Thereby,
we want to offer a proactive automatic instance management
of dependable resources. For this purpose, we detect resource
dependencies automatically to supply requesting clients the
exact amount of required resources. The corresponding scaling
process is conducted on basis of the dependency model without
the need for observing each instance utilization.

While building on the previously developed protocol for
reservation and feedback based load management through
a SLM, we constructed a Cloud service environment and
described its dependency model. Our approach deducts the
capacity demands for dependable resources, while introducing
a self-calibration mechanism before the standard operation and
a resource regulation procedure by the SLM during operation.
We proof the concept by an implementation and simulation.
In future, we aim to expand the described load management
to offer a functional entity for adding and releasing instances
while guaranteeing low costs and SLA compliance by reliable
service provisioning. Furthermore, we will prove our approach
by additional evaluation with a practical use in Cloud Com-
puting environments. Afterwards, we will compare our results
with cloud scaling algorithms based on utilization values.

REFERENCES

[1] M. Assunção, A. Di Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using cloud computing to extend the capacity of clusters,” in
18th ACM Int’l Symposium on High Performance Distributed Comput-
ing, 2009, pp. 141–150.

[2] M. Armbrust and et al., “Above the clouds: A berkeley view of cloud
computing,” University Berkley, USA, pp. 141–150, 2009.

[3] M. Armbrust, et al., “A view of cloud computing,” Commun. ACM,
vol. 53, pp. 50–58, 2010.

[4] M. Mao and M. Humphrey, “A performance study on the VM startup
time in the cloud,” in 5th Int‘l Conference on Cloud Computing. IEEE,
2012, pp. 423–430.

[5] K. Alam, E. Keresteci, B. Nene, and T. Swanson, “Multi-tenant appli-
cations on windows azure: Dokumentation,” http://cloudninja.codeplex.
com/releases/view/65798, 2011, last access 20.6.2013.

[6] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE,
2011, pp. 1–12.

[7] T. Takahashi, Y. Kadobayashi, and H. Fujiwara, “Ontological approach
toward cybersecurity in cloud computing,” in 3rd Int’l Conference on
Security of Information and Networks. ACM, 2010, pp. 100–109.

[8] Z. Gong, P. Ramaswamy, X. Gu, and X. Ma, “Siglm: Signature-driven
load management for cloud computing infrastructures,” in 17th Int‘l
Workshop on Quality of Service. IEEE, 2009, pp. 1–9.

[9] J. Chen, W. Li, A. Lau, J. Cao, and K. Wang, “Automated load curve
data cleansing in power systems,” Transactions on Smart Grid, vol. 1,
no. 2, pp. 213–221, 2010.

[10] I. Brandic, “Towards self-manageable cloud services,” in 33rd Software
and Applications Conference, vol. 2. IEEE, 2009, pp. 128–133.

[11] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provi-
sioning cost in cloud computing,” Transactions on Services Computing,
vol. 5, no. 2, pp. 164–177, 2012.

[12] H. Zheng and J. Nieh, “Swap: A scheduler with automatic process
dependency detection,” in 1st Symposium on Networked Systems Design
and Implementation. USENIX Association, 2004, pp. 145–158.

[13] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and
deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds,” in Conference on High Performance Computing, Network-
ing, Storage and Analysis. IEEE Computer Society, 2012, pp. 1–11.

[14] T. Dornemann, E. Juhnke, and B. Freisleben, “On-demand resource
provisioning for BPEL workflows using amazon’s elastic compute
cloud,” in 9th Inte’l Symposium on Cluster Computing and the Grid.
IEEE, 2009, pp. 140–147.

[15] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole, “A feedback-driven proportion allocator for real-rate
scheduling,” in 3rd Symposium on Operating Systems Design and
Implementation. USENIX Association, 1999, pp. 145–158.

[16] F. Dong and S. Akl, “Scheduling algorithms for grid computing: State of
the art and open problems,” School of Computing, Queen’s University,
Kingston, Ontario, Tech. Rep., 2006.

[17] M. Aggarwal, R. Kent, and A. Ngom, “Genetic algorithm based
scheduler for computational grids,” in 19th Int’l Symposium on High
Performance Computing Systems and Applications, 2005, pp. 209 – 215.

[18] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, Dec. 1999.

[19] A. Schwanengel and G. Kaefer, “Light-weight load management proto-
col based on reservation and feedback loops,” in 23rd Int’l Conference
on Parallel and Distributed Computing and Systems. ActaPress, 2011,
pp. 165–172.

[20] A. Schwanengel, G. Kaefer, and C. Linnhoff-Popien, “Improved
throughput and response times by a light-weight load management
protocol,” Journal of Parallel and Cloud Computing, vol. 1, pp. 1–9,
2012.

[21] K. Ragan, “The cloud wars: $100+ billion at stake,” Tech. Report,
Merrill Lynch, 2008.

[22] L. Siegele, “Let it rise: A special report on corporate it,” The Economist,
vol. 389, pp. 3–14, 2008.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 81 / 98

How to Run Scientific Applications with DIRAC in Federated Hybrid Clouds

Víctor Méndez Muñoz
LHC Tier-1 Computing Production.
Port d'Informació Científica (PIC).

Universitat Autònoma de
Barcelona (UAB).
Bellaterra, Spain.

Email: vmendez@pic.es

Adrian Casajús Ramo and
Ricardo Graciani Diaz

Department of Structure and
Constituents of Matter.

Universitat de Barcelona (UB).
Barcelona, Spain.

Víctor Fernández Albor
Particle Physics Department.
Universidade de Santiago de

Compostela (USC).
Santiago de Compostela, Spain.

Abstract---Nowadays, the eScience big issue in Cloud Com-
puting is how to leverage on-demand computing in scientific
research. For this purpose, the specifics requirements of the
complex scientific applications have been addressed with DIRAC,
which has the motto the interware, because it is a proven
scientific community solution, currently providing transparent
access and interoperability between different distributed infras-
tructures, such as European Grid Infrastructure (EGI), Open
Science Grid (OSG), computing clusters, standalone hosts, and
cloud infrastructures. In this context, Federated Hybrid Clouds
are emerging as a model of coordinated service access and
delivery to multiple Infrastructure as a Service (IaaS) providers.
The term hybrid comes from the integration of community
clouds and commercial clouds in a federated manner, which
also requires the use of additional services, such as federated
authentication, accounting or monitoring. This paper explains
how DIRAC is providing Software as a Service (SaaS) for
generic scientific computational purposes. The cloud extension of
DIRAC (VMDIRAC) is used to instantiate, monitor and manage
Virtual Machines (VMs) in multiple IaaS aggregations of Amazon
EC2, OpenNebula, OpenStack and CloudStack. Furthermore,
DIRAC and VMDIRAC extension can provide SaaS of any
scientific application through a contextualization management of
few golden VM images, which automates the necessary context
to run transparently in multiple IaaS providers, as well as the
required software and tools for any eScience application.

Keywords---Cloud Computing; Federated Hybrid Cloud; on-
demand Cloud Computing models

I. INTRODUCTION

VMDIRAC is the chosen tool in Cloud Computing matters
for the scientific computing of LHCb[1] and Belle [2] in high
energy physics (HEP) and the different Virtual Organizations
(VOs) of the France Grilles[3] using the DIRAC portal, with an
important community of life science. There is work in progress
for the adoption of a DIRAC portal including the VMDIRAC
extension for Federated Clouds in the context of National Grid
Initiatives (NGIs) of the European Grid Infrastructure (EGI),
as well as DIRAC portals of some scientific communities, like
BES[4] and CTA [5] in astrophysics, or ILC[6] (HEP).

The proposed solution represents a big step forward in
terms of scope. Any adopter is able to target cloud com-
puting resources transparently, while the storage is supported
by third-party solutions. Moreover, this allows the users to
take advantage of the virtualization assets, mainly the VM
encapsulation opening an opportunity window in the multi-
core running [7], to exploits the latest many cores hardware
without dependency on the platform, which becomes user

specific. Additional opportunities for user requirements in
High Performance Computing (HPC) are also addressable by
HPC Cloud providers [8], [9], [10].

The term VMDIRAC is used for the specific features of
the federated cloud extension, while the term DIRAC is used
for the general features or components.

This paper is focused on the IaaS provider and user
communities requirements to deploy Federated Hybrid Clouds
with DIRAC. It is organized as follows. Section 2 defines
how to aggregate an IaaS provider to a DIRAC Federated
Hybrid Cloud. Section 3 is focused on the DIRAC setup to
run a generic eScience application using the available IaaS
providers. Section 4 describes the Web interface for cloud
management. The paper finishes with a conclusion section.

II. HOW TO AGGREGATE AN IAAS PROVIDER TO
DIRAC

The first step is to have a DIRAC portal with a VMDIRAC
extension installed, or request the VMDIRAC installation to
the portal administrators. The installation, configuration and
operational maintenance of a DIRAC portal is not a trivial
matter, so the easy way would be to ask to your NGI for this
purpose. Currently, some NGIs have their own DIRAC portals:
France Grilles DIRAC portal[11] and also Ibergrid portal[12],
which is the Spanish and Portuguese common infrastructure.
Other NGIs are considering to deploy they own DIRAC portal,
therefore NGI would be the first place to ask for support. For
medium and big eScience communities interested in having a
DIRAC portal, the official DIRAC webpage[13] may provide
instructions for further support.

Once there is a DIRAC portal with a VMDIRAC extension
installed, there are few IaaS provider requirements. This sec-
tion describes the minimal requirements to deploy a Federated
Hybrid Cloud using DIRAC, then, the supported IaaS cloud
managers and some basic specifications and recommendations
to the IaaS providers.

A. MINIMAL REQUIREMENTS TO DEPLOY A FEDER-
ATED HYBRID CLOUD WITH DIRAC

Federated hybrid cloud computing model [14] is consider-
ing commercial and community cloud end-points as resources.
An overall federated cloud model is including federated ser-
vices which are necessary in a scientific community. Such
federated services definition is usually related with Metadata

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 82 / 98

repository of images, Information System, Accounting and
Monitoring, as well as third-party services, which are offshore
of the Federated Hybrid Cloud infrastructure, for example
authentication and authorization or external storage.

To facilitate the aggregation of IaaS providers in a fed-
erated manner, VMDIRAC is able to deal with minimal
requirements that do not require external services, but include
manually the necessary information in the DIRAC Config-
uration Server. This is a compromise solution to allow a
fast deployment of the Federated Hybrid Cloud having only
the IaaS providers end-points, then VMDIRAC is able to
extend and automate specific implementations of such external
federated services.

The minimal requirements for a Federated Hybrid Cloud
can be deployed in DIRAC as follows:

● Including a metadata repository of images, with the
necessary contextualization. Any third-party auto-
mated image distribution can be used or manually
uploaded to the different IaaS providers, the corre-
sponding metadata of these images is described in the
DIRAC Configuration Server.

● The IaaS providers information about the end-points
is defined in the DIRAC Configuration Server. This
information is usually published in the Information
System.

● VM Monitoring for the eScience community users by
the VM Browsing of the Web interface, to monitor
VM history logs and plots related with transfers, jobs
and CPU loads. See Fig. 1.

● External IaaS provider monitoring of the VM run-
ning on their site can be included using VM con-
textualization to deploy the monitoring client. For
example, monitoring and notification based on Na-
gios alarms[15] or VM statistics monitoring with
Ganglia[16]. This is an IaaS provider requirement,
which is optional to VMDIRAC.

The mentioned third-party services are transparent from
DIRAC point of view, because the interaction with them is not
directly assumed by VMDIRAC. Thus, scientific applications
can use external storage resources. The current approaches are
using Grid and Cloud Storage, such as standards gridftp[17]
and Cloud Data Management Interface (CDMI[18]), a pay-per-
use storage like Amazon S3[19] or external storage resource
interfaces [20] [21]. Some of these storage resources can be
supported as part of the IaaS resources. Authorization and
authentication methods associated to different user access to
the end-points, requires from DIRAC a minor support because
Configuration Server has the information related to the user,
X509 proxy or other user identifications. At the same time,
VMDIRAC is not interacting with the third-party authentica-
tion service but with the IaaS provider, which transparently
supports the authentication and authorization. In general terms,
the IaaS auth is managed on VO basis, the VM are created and
ownered by the VO, not by a particular user. Once the VM is
created DIRAC takes control supporting DIRAC user policies.
VM can run multiple jobs and each one is corresponding to
a particular DIRAC user. This job auth management is fully
supported by DIRAC, which eventually may contact external

services for proxy or token authorization and it is decoupled
from the IaaS auth management.

Fig. 1: DIRAC VM Monitoring for the eScience community

B. SUPPORTING IAAS PROVIDERS IN DIRAC

Current VMDIRAC release supports the following cloud
managers APIs for commercial and private clouds:

● Amazon EC2

● OpenNebula OCCI 0.8

● OpenStack Nova 1.1

● CloudStack 2

It is necessary to have at least one of such end-point deployed
in the cloud manager server. The VM needs to have out-bound
connectivity to the VMDIRAC server.

From the scaling test in some IaaS providers [22] [23] [24],
there are some known lessons that should be considered:

● To scale up in the IaaS site it is necessary to have
a snap-shot image management, just to accelerate the
instance creation in the host hypervisors. This has been
particularly tested with OpenNebula, which can use
qcow2 and NFS for the image distribution and creation
in the host hypervisors.

● The opportunistic use of the hypervisor memory
among the VMs it is highly discouraged. This has been
particularly tested with KVM hypervisor. The result

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 83 / 98

shows the average performances are not improved,
while the dispersion on the performances is increased.

● The hypervisor kernel flags should be compatible with
the software to run. In particular, KVM hypervisor is
using lib viewer, which is working transparently on
Intel platform for the wide range of scientific software
tested, however, AMD processor architecture uses a
different subset of kernel flags, which currently are not
implemented on lib viewer. The platform compatibility
of lib viewer roadmap should be checked before the
IaaS deployment.

● The optimum VM network interface to work with
VMDIRAC is an authomatic network configuration
with private IP and out-bound connectivity.

● VMDIRAC is able to deal with static network con-
figuration. This can be used for testing purposes,
but the maintenance of such approach in production
level is problematic, any minor change in the IaaS
network configuration, should have the corresponding
adjustment in DIRAC Configuration.

● OpenStack floating IP assignment to a previously
created VM is not recommendable because there is
a gap in the responding time between the time the
VM is booted and the time the network interface is
available and routable [14].

Moreover, there are different ways to provide the scientific
software and tools to be deployed at the VM. This part is
related to the contextualization of the next section, but at
the same time is a matter of the IaaS provider. For image
maintenance reasons and also for performance reasons it is
recommended to allocate the required software and tools in a
cvmfs repository [25] and to setup a site http proxy for the
VMs use of the cvmfs repository.

III. DIRAC SETUP TO RUN A GENERIC SCIENTIFIC
APPLICATION AMONG THE IAAS PROVIDERS

Two main topics are related to DIRAC setup for the
VMDIRAC extension: the image and contextualization setup,
and the VM horizontal auto-scaling setup, which are the
possible policies to create and stop VMs. Once the setup is
ready, VMDIRAC is able to create and stop VMs among the
IaaS providers and to contextualize those VMs in a transparent
manner to provide computing resources to run user jobs. Such
jobs can be any scientific software which is able to run
decoupled jobs in distributed resources.

A. IMAGE AND CONTEXTUALIZATION SETUP

There are three steps to setup at DIRAC Configuration
Server: Running Pods, Images and End-points. VMDIRAC
defines the Running Pod as a logical abstraction of a particular
running conditions. A Running Pod is matching an Image
with the corresponding cloud end-point list to run VMs of
such Image. VMDIRAC concept of an Image, is including
a boot image and, optionally, the contextualization of such
image. This approach can deal with ad-hoc image ready to
run without further contextualization, this image has to be
prepared to run in a specific endpoint and a particular DIRAC
configuration. Additionally, VMDIRAC can manage context

images that use a golden image and the necessary information
for a particular contextualization method. The use of a golden
image allows to simplify the image management [26], because
all the specifics of the endpoint and scientific application
environment is in the contextualization part, while the golden
image can be distributed to the different IaaS providers without
modification. On the latter contextualization, VM is deployed
for a particular scientific application environment. HEP has
a contextualization approach, namely HEPiX, using CernVM
images and contextualization methods supported by OpenStack
and OpenNebula. This CernVM approach can also be used
with other scientific applications. Instead of a golden image
depending on the CernVM platform, VMDIRAC also supports
a generic golden image, which can be configured using a ssh
contextualization, if an in-bound connectivity is available in
the VM for ssh and sftp operations. A DIRAC image setup can
be an ad-hoc image or the following contextualized images:

● HEPiX - OpenNebula: DIRAC image context is in-
cluded in an ISO context image, which has to be
previously upload to the IaaS provider to be mounted
by the CernVM init process. The end-point context
is passed to the VM at submission time. VMDIRAC
gets the parameters from the corresponding end-point
section and set this environment using the OpenNeb-
ula context section, which creates an on-the-fly ISO
image, then CernVM mounts it and loads the end-point
context.

● HEPiX - OpenStack: DIRAC image context is pro-
vided by amiconfig tools, sending the scripts in nova
1.1 userdata. End-point context is provided through
nova 1.1 metadata, which is specific for each Open-
Stack IaaS end-point and selected on submission time
from the DIRAC Configuration Server.

● Generic contextualization, using any platform for
golden image with a ssh demon listening in a port
with in-bound connectivity in the VM. The VM boots,
the VMDIRAC polls the active sshd port, runs the
DIRAC and the end-point configuration using sftp and
ssh connections.

In this manner, a VM golden image is contextualized to deploy
DIRAC on multiple IaaS providers, following methods of
the industry and research image contextualization, and also
considering a generic contextualization valid for any VM
images with ssh connectivity.

B. VM HORIZONTAL AUTO-SCALING SETUP

VMDIRAC can be configured with different policies for
the creation and stoppage of the VMs. Each end-point has
associated a VM allocation policy and a VM stoppage policy.

The VM allocation policy can be elastic or static. The
static VM allocation is used when a IaaS provider defines
a constant number of VM slots that can be accessed. The
elastic allocation is used to create new VMs when there are
jobs queued in DIRAC. For this purposed the Running Pod
configuration section has the CPUPerInstance option, which
defines the minimal overall CPU of the DIRAC jobs waiting
in the task queued to submit a new VM. The parameter is
used for the tuning of the VM delivery elasticity. Therefore,

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 84 / 98

a CPUPerInstance can be set to a longer time to use the
available resources in a more efficient manner, saving creation
overheads, and to a shorter time to setup an exhaustive use
of the available resources aiming to finish the production
in a shorter total wall time, but with higher resource costs
due to additional overhead. In regular basis, CPUPerInstance
references, from shorter to longer values, could be defined to:

● Zero to submit a new VM with no minimal CPU in
the jobs of the tasks queue.

● A longer value could be the average required CPU
of the jobs as a compromise solution between VM
efficiency and total wall time.

● A very large value to maximize the efficiency in terms
of VM creation overhead, for the cases where the
production total wall time is not a constrain.

The VM stoppage policy can be setup to elastic or never.
Elastic policy stops the VM if there are no more jobs running
in the last VM halting margin time, which is an option to
be setup. Anyway, VMs can be stopped by the VMDIRAC
admin or by the HEPiX stoppage in the CernVM images
(responsibility of each IaaS provider). If a running VM is
required to be stopped, then the VM orderly stops, declaring
the running job stopped in DIRAC (which can be resubmitted),
then halting the VM.

IV. DIRAC WEB INTERFACE FOR CLOUD
MANAGEMENT

DIRAC supports the job management that can be setup
to run in Cloud or other distributed resources. This includes
a wide number of tools to submit jobs, design workflows for
eScience productions, manage execution, plots, accounting and
all the necessary for eScience communities [27]. The Config-
uration Server Web interface allows to setup the Federated
Hybrid Cloud as well as different Running Pods, Images and
End-points to use transparently such IaaS infrastructure.

VMDIRAC, the DIRAC cloud extension, is also providing
a Web interface for the management of the Cloud. There is a
VM Browsing to monitor the VMs and take history logs and
plots of each VM as it was shown above in Fig. 1. Furthermore,
there is a VM Overview to plot the main statistics: running VM
by end-point in Fig. 2, overall running VMs in Fig. 3, started
jobs, average load, transfer data and transfer files.

Fig. 2: Running VMs by End-point

Fig. 3: Overall Running VMs

Fig. 2 and 3 are plots of the same run. The running
application is LHCb simulation of proton-proton collision.
The IaaS providers are USC with CloudStack, CC.IN2P3
is supported by OpenStack and PIC by OpenNebula. The
VM allocation policy is elastic for the three IaaS providers.
Contextualization is an ad-hoc image with Centos, while PIC
and CC.IN2P3 are using CernVM golden image and the
corresponding contextualization. The VM stoppage policy is
elastic in the three IaaS providers.

DIRAC configuration has a maximum number of 10 VMs
for USC, once the threshold is reached there is a plateau until
the end of the workload (green line in Fig. 2). For the case of
CC.IN2P3 and PIC IaaS providers the maximum number of
VMs has not been reached.

Fig. 3 shows the overall aggregation of the three IaaS
providers. VM allocation and stoppage policy is corresponding
to a scale-up when there are jobs pending in the DIRAC task
queue, and a scale-down when there are no more jobs in the
task queue and the VMs workload is finished.

Some of the operations, like the Configuration Server
management or the manual VM stoppage, are only authorized

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 85 / 98

for the VM administrator, who can also monitor all the jobs. A
general DIRAC user is authorized to monitor his or her jobs,
and the VM Web interface without operate with the VMs.

V. CONCLUSION

This paper has described how to run eScience applications
in Federated Hybrid Clouds using DIRAC. This includes
instructions and recommendations to the IaaS providers to be
aggregated in a federated manner. It also has been defined
how to setup the image and context management to run
scientific applications, also considering the VM deployment
of the scientific software and tools. At the same time, it
has been shown the necessity of two roles: administrator of
the configuration system and VMs, and the scientific user,
who uses DIRAC submitting jobs, which transparently run in
Federated Hybrid Clouds.

The deployment of DIRAC portals including the cloud
extension VMDIRAC, is a proved tool to aggregate IaaS
providers in the level of NGIs supporting multiple VOs, and
also in medium and big scientific communities.This schema
provides solutions to the deployment and management of
SaaS of a wide range of scientific communities, from small
communities which can be federated to face the DIRAC
portal operations, to big communities who may exploit their
own DIRAC portal or integrates in a multiple VO portal.
Thus, the proposed strategy is addressing the sustainability
through industrial concentration of the management of SaaS in
Federated Hybrid Clouds, and at the same time allowing local
development by the aggregation of distributed IaaS resources.

ACKNOWLEDGMENT

PIC is maintained through a collaboration between the
Generalitat de Catalunya, CIEMAT, IFAE and the Universistat
Autónoma de Barcelona. This work was supported in part by
grants of the Ministerio de Educación y Ciencia, Spain:
FPA2007-66152-C02-01/02 and FPA2010-21816-C02-01/02,
assigned to PIC. Additional support was provided by the
EU 7th Framework Programme INFRA-2007-1.2.3: e-Science
Grid infrastructures Grant Agreement Number 222667, En-
abling Grids for e-Science (EGEE) project and INFRA-2010-
1.2.1: Distributed computing infrastructure Contract Number
RI-261323 (EGI-InSPIRE).

This work was also supported by projects FPA2007-66437-
C02-01/02 and FPA2010-21885-C02-01/02,
assigned to UB and USC.

We are greatly in debt with France Federated Cloud, in
particular with the Centre de Calcul of the IN2P3 for providing
part of the VMs used in the presented test results.

References
[1] Lhcb computing with dirac

. [Online]. Available: http://lhcb-comp.web.cern.ch/lhcb-comp/DIRAC/
[2] R. Graciani Diaz, A. Casajus Ramo, A. Carmona Aguero, T. Fifield, and

M. Sevior, ``Belle-dirac setup for using amazon elastic compute cloud,''
Journal of Grid Computing, vol. 9, pp. 65--79, 2011, 10.1007/s10723-
010-9175-7. [Online]. Available: http://dx.doi.org/10.1007/s10723-010-
9175-7

[3] France grilles et du cloud
. [Online]. Available: http://www.france-grilles.fr/-Presentation-

[4] Bes collaboration
. [Online]. Available: http://bes.ihep.ac.cn/

[5] Cta observatory
. [Online]. Available: http://www.cta-observatory.org

[6] Linear collider collaboration
. [Online]. Available: http://www.linearcollider.org

[7] D. Wentzlaff, C. Gruenwald, III, N. Beckmann, K. Modzelewski,
A. Belay, L. Youseff, J. Miller, and A. Agarwal, ``An operating
system for multicore and clouds: mechanisms and implementation,''
in Proceedings of the 1st ACM symposium on Cloud computing, ser.
SoCC '10. New York, NY, USA: ACM, 2010, pp. 3--14. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807132

[8] A. Gupta, D. Milojicic, and L. V. Kalé, ``Optimizing vm placement
for hpc in the cloud,'' in Proceedings of the 2012 workshop on
Cloud services, federation, and the 8th open cirrus summit, ser.
FederatedClouds '12. New York, NY, USA: ACM, 2012, pp. 1--6.
[Online]. Available: http://doi.acm.org/10.1145/2378975.2378977

[9] G. Mateescu, W. Gentzsch, and C. J. Ribbens, ``Hybrid computing
- where hpc meets grid and cloud computing.'' Future Generation
Comp. Syst., vol. 27, no. 5, pp. 440--453, 2011. [Online]. Available:
http://dblp.uni-trier.de/db/journals/fgcs/fgcs27.html#MateescuGR11

[10] B. Kocoloski, J. Ouyang, and J. Lange, ``A case for dual stack
virtualization: consolidating hpc and commodity applications in
the cloud,'' in Proceedings of the Third ACM Symposium on Cloud
Computing, ser. SoCC '12. New York, NY, USA: ACM, 2012, pp. 23:1-
-23:7. [Online]. Available: http://doi.acm.org/10.1145/2391229.2391252

[11] France grilles dirac portal
. [Online]. Available: http://dirac.france-grilles.fr/DIRAC/

[12] Ibergrid dirac portal
. [Online]. Available: http://dirac.ub.es/DIRAC/

[13] Official dirac webpage
. [Online]. Available: http://diracgrid.org/

[14] V. Méndez, A. Casajus, V. Fernández, R. Graciani, and G. Merino,
``Rafhyc: An architecture for constructing resilient services on federated
hybrid clouds,'' Journal of Grid Computing, 2013.

[15] Nagios infrastructure monitoring
. [Online]. Available: http://nagios.org

[16] Ganglia monitoring system
. [Online]. Available: http://ganglia.info

[17] Globus gridftp
. [Online]. Available: http://www.globus.org/toolkit/docs/latest-
stable/gridftp/

[18] Cloud data management interface (cdmi)
. [Online]. Available: http://www.snia.org/cdmi

[19] Amazon simple sotorage service (s3)
. [Online]. Available: http://aws.amazon.com/es/s3/

[20] A. Alvarez, A. Beche, F. Furano, M. Hellmich, O. Keeble, and
R. Rocha, ``Dpm: Future proof storage,'' in Computing in High
Energy and Nuclear Physics 2012, 2012. [Online]. Available:
http://cdsweb.cern.ch/record/1458022

[21] F. Furano, P. Fuhrmann, R. B. da Rocha, A. Devresse, O. Keeble, and
A. A. Ayllon, ``Dynamic federations: storage aggregation using open
tools and protocols,'' in EGI Technical Forum Book of Abstracts, 2012.
[Online]. Available: https://indico.egi.eu/indico/conferenceDisplay.py/
abstractBook?confId=1019

[22] V. Mendez, A. Casajus, R. Graciani, and G. Merino, ``Use case:
Running monte carlo lhcb simulations using dirac with egi federated
cloud,'' in EGI Tehcnical Forum Book of Abstracts, 2012. [Online].
Available: https://indico.egi.eu/indico/conferenceDisplay.py/
abstractBook?confId=1019

[23] V. Méndez, V. Fernández, R. Graciani, A. Casajus, T. Fernández,
G. Merino, and J. J. Saborido, ``The integration of cloudstack
and occi/opennebula with dirac,'' Journal of Physics Conference
Serires, 2013. [Online]. Available: http://iopscience.iop.org/1742-
6596/396/3/032075

[24] V. F. Albor, J. J. S. Silva, F. Gómez-Folgar, J. López-Cacheiro, and
R. G. Diaz, ``Dirac integration with cloudstack,'' in Proceedings of 3rd
IEEE International Conference on Cloud Computing Technology and
Science (IEEE CloudCom 2011), 2011, pp. 537--541.

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 86 / 98

[25] V. F. Albor, V. Mendez, J. López-Cacheiro, R. G. Diaz, J. J. S. Silva,
and T. F. P. na, ``User access to cvmfs software repositories on ibergrid,''
in IBERGRID, 6th Iberian Grid Infrastructure Conference Proceedings,
2012, pp. 39--49.

[26] P. Bunic, C. Aguado-Sanches, J. Blomer, and A. Harutynunyan,
``Cernvm: Minimal maintenance approach to the virtualization,''
Journal of Physics Conference Serires, 2011. [Online]. Available:
http://iopscience.iop.org/1742-6596/331/5/052004

[27] A. Tsaregorodtsev, M. Bargiotti, N. Brook, A. Casajus Ramo,
G. Castellani, P. Charpentier, C. Cioffi, J. Closier, R. Graciani Diaz,
G. Kuznetsov, Y. Y. Li, R. Nandakumar, S. Paterson, R. Santinelli,
A. C. Smith, M. S. Miguelez, and S. G. Jimenez, ``Dirac: a community
grid solution,'' Journal of Physics: Conference Series, vol. 119,
no. 6, p. 062048, 2008. [Online]. Available: http://stacks.iop.org/1742-
6596/119/i=6/a=062048

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 87 / 98

GraphTool - a new System of Graph Generation

Iwona Ryszka, Ewa Grabska
Faculty of Physics, Astronomy and Computer Science

Jagiellonian Universisty
Krakow, Poland

e-mail: iwona.ryszka@uj.edu.pl, ewa.grabska@uj.edu.pl

Abstract—The purpose of this paper is to present a new
software tool for graph edition and generation. The project
focuses on providing a graphical editor for defining different
types of graphs and rules describing their transformation. The
idea of graph grammar systems has been adopted to extend
graph derivation functionality. The system architecture with
implementation details is described. To illustrate the features of
the tool the examples of a graph building and generation are
attached.

Keywords—graph, graph grammar, graph grammar system, tool
for graph generation

I. INTRODUCTION

The concepts of a graph and graph transformations are
applied to model structures and also to simulate flows or
behaviours. The base definition presents a graph as a set
of nodes and a binary relation defined on this set. Each
element of the relation being a pair of nodes defines an
edge that can be directed or undirected. A graph grammar
enables the application of local transformations by means of
rules called productions to subgraphs of derived graphs. An
order of productions application is determined by so called
control diagram. A process of graph generation by means of
productions is called a derivation. The possibility of attributes
assignment extends the graph model by defining an additional
semantic layer.

The basic representation of the graph that includes nodes
and edges does not require any dedicated graphical software
product. However, taking into consideration the requirements
for graph grammars and the process of graph derivation, a
new application GraphTool [1] has been proposed in order
to provide an unified graphical environment supporting graph
operations. The motivation for implementing a new tool is
to provide the editor for custom types such as composite
graphs or layered graphs. Additionally, the new approach for
defining a grammar system as a grouping mechanism for graph
grammars has been addressed within the project. Furthermore,
the GraphTool application deals with the area of attributes
operations.

Section II provides the overview of existing applications
supporting graph defining and automatic rewriting. The pur-
pose of Section III is to present the functionality of the
GraphTool and it is followed by the Section IV that provides
example usage of the application for different types of graphs.
The Section V describes the implementation details.

II. RELATED WORKS

There exist a number of tools for generating graphs but
they are usually specialized for experts of a particular subject
and focus on different areas.

PROgrammed Graph REwrting Systems (PROGRES) [2]
offers a visual and operational specification language for
defining graphs, transformation rules that is combined with the
environment for executing specifications in this language. A
transformation rule can be formatted as a simple one when only
left-hand and right-hand sides are defined. There is an option
to define a combined rule that describe several rules by textual
control structures, e.g., loops. Additionally, the framework
UPGRADE is available and its purpose is to display the flow of
applying graph transformations with some formatting options.

A custom graphical language is also introduced by the
Graph Rewriting and Transformation (GReAT) and is dedi-
cated for graph transformations in the area of domain-specific
modelling languages (DSMLs). The rules specify rewriting
operations in the form of a matching pattern (closely related
to UML class diagram). The application focuses on model
transformations, but there is no verification if the generated
graph is correct according to target language.

The area of attributed graphs with the theory on confluence
and termination properties is investigated by the Attributed
Graph Grammar System (AGG) [3]. The application supports
attributes of algebraic data types, including Java expressions.
The graph derivation process can be both manual and auto-
matic, the intermediate steps are not stored. The GTXL format
based on XML is used to export generated graphs.

GRaphs for Object-Oriented VErification (GROOVE) [4]
project focuses on the verification of object-oriented systems
by means of a graph transformation tool set that uses labelled
graphs and single push-out (SPO) transformation rules. There
is a component for graphical editing of rules and graphs, a
generator responsible for creating temporary graphs during
the derivation. Additionally, the Model Checker component is
available for verification whether the derived system satisfies
specific properties.

III.APPLICATION OVERVIEW

GraphTool is a What You See Is What You Get (WYSIWYG)
editor. The functional areas that are addressed by the tool cover
support for creating different types of graphs, building graph
grammars by defining productions and a control diagram.
Additionally, the process of graph derivation can be simulated
and controlled by the user. As an extension the functionality
of building grammar systems is offered.

The base application view is presented in Figure 1.
Following working areas can be marked within the view:

1) GraphTool Navigator is a component responsible for
presenting the structure of grouped objects created by
the user. By means of the context menu, new elements
can be added.

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 88 / 98

Fig. 1: The main perspective of GraphTool application

2) Properties is a section providing the functionality
of editing properties selected objects in Graphical
editors area.

3) Graphical editors are areas used to build graphs,
productions and control diagrams. A dedicated palette
with context-specific elements is available.

4) Problems represents a supporting section that is used
to notify the user about existing issues or warn-
ings automatically detected inside the objects created
within graphs.

5) Outline is a view showing a hierarchy of objects
defined in active Graphical editiors area.

A. Graph building process

The compulsory action in the process of creating a graph
is to specify a project. This entity is used by the application to
define a context that will be common for all graphs attached
to the given project. Such a specification cover:

• the type of the graph: standard graph, hypergraph
(included also the option to create hierarchical graphs
[10]), composite graphs [5],

• the type of the edge: directed, undirected.
Building a graph is understood as creating nodes, edges and
assigning them labels and optionally attributes. In order to
simplify the construction process, a feature to add previously
defined graphs within the same project as a subgraph is also
available. The folder graphs is used to store defined objects.

Graph objects defined with GraphTool can be exported to
XML files using GraphML format [6]. It supports all types
of graphs covered by the tool. Using its flexible extension
mechanism to add application-specific data the information
about attributes and structure of the graph (sizes and locations
of nodes) are also optionally available in the exported file.

B. Attributes

GraphTool application offers the support for attributed
graphs. An attribute is defined as a function assigning the value
from its domain to an object. Within each project there is a file
called custom.attributes that is used for creating declaration of
attributes that can be later assigned to any object defined within
the project. The declaration of a new attribute is understood as
specification of an unique name and its domain (the available

types are integer numbers, float numbers, strings, enums and
arrays). Additionally, the user can specify the default value.

Having defined attributes, their instances can be assigned
with values to nodes, edges and graphs. There is a rule that
each element of given type and having the same label contains
the same attributes.

The application offers an additional functionality in the
area of attributes which is called a template attribute. During
assignment to an element such an attribute it receives a
template value (variable). It can be used within a production
to represent values which are not known at the moment of
creating the production and during the graph derivation they
are replaced with with the real one. The next usage of this type
of attributes is defining predicates for productions and similarly
they are replaced with the current values from a graph when a
production is to be applied to this graph. The template attribute
can be defined as an expression containing variables including
a conditional expression, for example having atti defined as
integer attribute following template attributes are valid:

• atti = var1 + var2 interpreted as a sum of values
represented by variables var1 and var2

• atti = (var1 > var2) ? var2 : var3 In case when the
value of variable var1 is greater than var2, the atti
gets the value of var2. Otherwise the value of variable
var3 is assigned to atti.

C. Graph grammars

The concept of the project in the GraphTool application is
additionally used in the process of defining a graph grammar
that is specified as a set of productions and a control diagram.

A production entity is represented by two graphs that are
called left and right side, respectively. The former describes
a subgraph of a derived graph that after application of the
production is transformed to the latter. In the GraphTool
application the user can build a production by defining both
sides from the beginning or using graphs available within the
project. A folder productions is designed to store user’s defined
productions within GraphTool project.

Fig. 2: An example production defined in GraphTool

The application offers the feature of an usability predicate
for a production. The predicate represents a logical expression
and its value is calculated just before application of the
production during a graph derivation process. The expression
can refer to values of attributes of objects available in the

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 89 / 98

context of the production: a graph currently derived, its nodes,
its edges and also a graph from left side of production.

Having defined transformations, the user builds a control
diagram that represents productions’ flow. The diagram is a di-
rected graph where nodes represent productions. Additionally,
there are two marked nodes called start and stop node that
point respectively to the node initializing derivation process
and the node completing this process. The diagram is valid
when at least one path exists from the start to the stop node. It
is stored in the file called grammar.diagram within the project.

D. Graph derivation process

In order to derive a new graph, a grammar with a control
diagram and an initial graph are needed. Therefore, in the
GraphTool application the user creates a configuration that
involves selecting a project and one of the graph available in its
graphs folder as an initial graph. The process of derivation can
be managed by the user by means of selecting next production
from the set of available productions according to the control
diagram.

The current state of implementation covers the derivation
process only for the composite graphs.

E. Grammar systems

As an extension to a graph grammar, the concept of
grammar system can be introduced. The main purpose of the
system is to combine a set of graph grammars and introduce
an upper level control diagram that is responsible for switching
the context between graph grammars during a graph derivation
process. Therefore, the nodes in such a diagram represent
graph grammars. Thus, the derivation process is controlled by
two diagrams: the grammar system control diagram points to
a graph grammar that should be used and derivation follows
the control diagram associated with this grammar. When the
stop node is achieved, the control is returned to the grammar
system control diagram and next grammar can be used. An
example derivation within a grammar system is presented in
Figure 3.

In the GraphTool application the grammar systems can be
build from the beginning by defining all graph grammars or by
using existing one. The process of graph derivation includes
also defining a configuration like in a graph grammar case.

IV.EXAMPLES OF GRAPHTOOL USAGE

In this section, the examples of advantages of GraphTool
for solving computational issues or modeling the structure are
presented.

A. Graph grammar system for h-modeling finite element
method

There were several attempts to adopt graphs and graph
grammars to model h-finite element method [5]. GraphTool
application has been used as a support tool to construct a
grammar system for modeling three dimensional finite element
method (3D FEM) with tetrahedral finite elements [7]. Com-
posite, attributed and undirected graphs have been selected to
model a finite element mesh.

The system contains a grammar that is responsible for
generating the mesh. Its productions represent the mesh trans-
formation. One of them is shown in Figure 4.

The presented production is an example of usage tem-
plate attributes as the values of integer attribute fn can be

Fig. 3: An example of graph generation process using a
grammar system defined in GraphTool

Fig. 4: A mesh generation as a production defined for
h-modeling finite element method using GraphTool

incremented when the production is applied. By means of
the template attributes, the number of productions could be
reduced.

The next example of graph grammar within the system
contains productions that focus mainly on attributes operations.
By means of this process some logic operations such as
calculating a solution vector can be performed. Thus, array
attributes with variable lengths are useful to store information
about such a vector. An example of such a production is shown
in Figure 5.

The proposed system proves additionally the advantage of
introducing the support for graph attributes. Such objects are
used as a global memory in the given grammar system. The
memory is initialized during defining a graph that is used in

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 90 / 98

Fig. 5: A production for assigning values to array attributes
s, err for node with label I together with a predicate

specified using attributes

the derivation process as an initial one. During this process
the variables and their current values can be used to calculate
values of predicates for productions or values for template
attributes. For the grammar system for modeling 3D FEM the
memory is defined as two attributes: error max and accuracy.
For the production shown in Figure 6, the value of its predicate
depends on the current value of the attribute error max that is
assigned to the generated graph and the value of the attribute of
a node in the graph according to the left side of the production.

Fig. 6: A production for virtual h-refinement

B. Hierarchical graphs for generating virtual Grids

The Grid can be regarded as the implementation of the dis-
tributed computing concept. The structure of the environment
that contains grouped components can be modeled by means
of hierarchical graphs. The graph derivation process can be
used to simulate building the grid environment.

The approach proposed by Lu and Dinda [8] suggests sep-
arating topology generation from annotations. The application
of hierarchical graphs with attributes for the grid generation
was proposed in [9] and the concept has been enhanced with
the new structure including layers in [10].

GraphTool offers the environment to construct hierarchical
graphs. It can be used to create graphs representing the gird
structure together with attributes as presented in Figure 7. The
application is able to verify the correctness of hierarchical
graphs for example in the area of edges that cannot connect
a node with its internal nodes. Additionally, the hierarchy can
be built for hypergraphs where both nodes and hyperedges can
be nested.

Fig. 7: A hierarchical graph representing a grid

V. IMPLEMENTATION DETAILS

GraphTool is an application based on Java Platform SE
7. It has been created as a plugin for Eclipse Integrated
development environment. The required release is at least
Eclipse Helios version 3.6.1, available at [11]. The tool can be
also shipped as a standalone rich client application. Supported
operating systems are both Windows and Unix based and
the only additional requirement is an installed Java Runtime
Environment in 1.7 version, available at [12].

The plugin uses several open sources libraries. The first is
Graphical Editing Framework technology [13] that is regarded
as a middleware for providing graphical layer within Eclipse
editors and views. For transforming objects between Java and
XML JAXB version 2.2.3 is used. Additionally, JUNG library
[14] in version 2.0.1 is used to model basic structure of graphs
and perform operations on them such as finding shortest path.

The current state of implementation covers the functionality
for deriving graphs using both graph grammars and graph
grammar systems for the composite graphs. This type of graph
uses a constant embedding transformation during a production
appliance. Therefore, there is no need to specify any additional
conditions for the production. The character of the composite
graphs add additional requirements for finding a subgraph
during applying a production when the bonds of the edge have
to be checked. Additionally, the parsing and calculating values
of the expression in attributes JavaScript engine is used.

VI. CONCLUSION

In this paper, a new software application for editing and
generating graphs has been presented. The design of the tool
with the focus on task-oriented modules results in the support
for creating different type of graphs, including attributed ones
and productions for their generation. The concept of template
attributes has been also described. By means of grammar
systems the process of creating new graphs has been enhanced.
The functionality of the GraphTool application has been il-
lustrated on the example concerning defining graph grammar
systems for modeling three dimensional finite element method
and the hierarchical graph representing the grid environment.

Further research in the application development can cover

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 91 / 98

support for grammar systems where particular grammars rep-
resent different types of graphs. Such a feature introduces a
possibility of exploration in the area graphs transformations
between specific representations. The idea of templates for
attributes can be a source for further investigation as it enables
to add logic to the graph structure and during the graph
derivation process some calculations can be performed.

REFERENCES

[1] I. Ryszka, “Implementation of graphs model generation and their appli-
ance”, PhD Thesis, Jagiellonian University, in press.

[2] A. Schürr, A. J. Winter and A. Zündorf, “Graph Grammar Engineering
with PROGRES”, ESEC 1995, pp. 219-234.

[3] G. Taentzer, C. Ermel, and M. Rudolf, “The AGG approach: Language
and tool environment” in “Handbook of Graph Grammars and Computing
by Graph Transformation”, volume Volume 2: “Applications, Languages
and Tools. World Scientific”, 1999, pp. 163–246.

[4] A. Rensink, “The GROOVE Simulator: A Tool for State Space Gener-
ation. In: Applications of Graph Transformations with Industrial Rele-
vance (AGTIVE)”, Lecture Notes in Computer Science 3062, Springer
2004, pp. 479-485.

[5] A. Paszyńska, E. Grabska and M. Paszyński, “A Graph Grammar Model
of the hp-adaptive Three Dimensional Finite Element Method. Part I”,
Fundamenta Informaticae, 114(2), 2012, pp. 149 – 182.

[6] GraphML, http://graphml.graphdrawing.org, September 2013
[7] I. Ryszka, A. Paszyńska, E. Grabska, M. Paszyński and M. Sieniek,

“Graph grammar systems for modeling three dimensional finite element
method”, in press

[8] D. Lu and P. A. Dinda, “GridG: Generating Realistic Computational
Grids”, SIGMETRICS Performance Evaluation Review, Volume 30, num
4, 2003, pp. 33-40.

[9] B. Strug, I. Ryszka, E. Grabska and G. Ślusarczyk, “Virtual ‘Computa-
tional Grid by Graph Transformations”, F. Davoli et al. (eds.), Remote
Instrumentation for eScience and Re-lated Aspects, Springer Science +
Business Media, LLC 2012.

[10] E. Grabska, W. Palacz, B. Strug and G. Ślusarczyk, “A Graph-Based
Generation of Virtual Grids, 9th International Conference on Parallel
Processing and Applied Mathematics (PPAM 2011)”, Lecture Notes in
Computer Science 7203, 2012, pp. 451 – 460.

[11] The Eclipse Foundation open source community, http://www.eclipse.
org, September 2013

[12] Java Technology, http://www.java.com, September, 2013
[13] GEF - Graphical Editing Framework for Eclipse, http://www.eclipse.

org/gef, September 2013
[14] JUNG - Java Universal Network/Graph Framework, http://jung.

sourceforge.net/, September 2013

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 92 / 98

Supporting Coding Activity by

Associating Web Bookmarks With Source Code Features

Ken Nakayama
Institute for Mathematics and

Computer Science
Tsuda College

2-1-1 Tsuda-machi, Kodaira-shi
Tokyo, Japan

e-mail: ken@tsuda.ac.jp

Eko Sakai
Department of Humane Informatics

Faculty of Letters
Otani University

Koyama-Kamifusacho, Kita-ku
Kyoto, Japan

e-mail: echo@res.otani.ac.jp

Yoshihisa Nitta
Department of Computer Science

Faculty of Liberal Arts
Tsuda College

2-1-1 Tsuda-machi, Kodaira-shi
Tokyo, Japan

e-mail: nitta@tsuda.ac.jp

Abstract— Computing tools are often provided as various
kinds of software libraries. To enjoy the benefit of the latest
technologies, a user has to continuously learn their usage. During
such learning activity, referring to various web articles is
a common practice for programmers. Although a variety of
information can be found on the web, specific information of
interest tends to exist fragmented and scattered on many web
pages. Therefore, bookmarking them in a well-organized way
is inevitable for later use. However, manually organizing
bookmarks requires extra effort for a user. To overcome the
problem, a semi-automatic bookmark manager for coding related
web pages is presented. A prototype system is implemented as a
plug-in of an integrated development environment. The system
observes bookmarking activity by a user on a web browser,
and associates each bookmark with (1) features of the source
code being edited, and (2) features of the source code editing in
current session. The target language of prototype system is Java.
User experience of the prototype is presented as preliminary
evaluation.

Keywords—programming; web bookmark; source code feature

I. I NTRODUCTION

For programmers, user-contributed contents on the web,
such as blogs, are major source of information about coding.
It is common to use an Integrated Development Environment
(IDE) and a web browser together. The coding and web ref-
erencing activities are indivisible. There exists various useful
knowledge which is not included in reference manuals. For
example, early adopters of some software library may report
bugs on the latest version, or senior programmers may post
programming tips for beginners, and so on. The fact that a
large number of users continue to contribute a wide variety
of articles at all times, is the source of the strength of those
articles. As a result, user-contributed contents cover wide range
of topics as a whole.

The fact, however, is also the cause of drawbacks. Since
such articles tend to be short, unorganized, and possibly in-
correct, almost all of them are not suitable for a programmer’s
specific situation and purpose. Therefore, the programmer has
to search and gather useful web pages with effort from his
own viewpoint.

As web pages that have been judged valuable are likely to
be viewed again by the programmer in the future, they should
be bookmarked to reduce efforts of searching them again. But

in practice, coding-related bookmarking is not so easy for
a programmer. Commonly used conventional tree-structured
bookmarking seems to be too simple to express semantically
mutually related pages. Moreover, a programmer may want to
classify web pages from a viewpoint of a specific problem
solved. This makes the semantic structure more complex. In
other words, the semantic relation and the viewpoint of the
problem solved are not necessarily orthogonal.

Although more sophisticated bookmarking methods such as
the use of tags, for example [1], (this is equivalent to putting
one bookmark into two or more folders) may be able to express
the structure, they often need a cumbersome operation to use
in practical programming. There is an attempt [2] to integrate
Stack Overflow (via [3]) crowd knowledge in the IDE, but
it is desirable that arbitrary web pages can be registered to
bookmark.

In this paper, semi-automatic tag-based bookmarking sys-
tem for coding activity is presented. Observing both an IDE
and a web browser, the system extracts features (tags) from the
source code being edited when a new bookmark is registered.
There are some literatures, for example [4], that attempt to
analyze programmer’s action on IDE, but still little is known.
Thus, the prototype system presented here adopted a simple
static method. The bookmark is added to the bookmark table
in the system together with features. Later, a programmer can
retrieve recommended bookmarks from the tagged bookmarks
using another source code as a query.

A prototype system has been implemented as a plug-in
of IDE eclipse (via [5]). The target language is Java. The
primary user interface consists of three extra buttons (start ,
end , and search) added to the IDE. The feature used in
current prototype system is identifier (e.g. class name, method
name) which appears in the source code.

In the next section, to introduce our motivation, coding-
related bookmarks “badly” organized by a nonprofessional
programmer are reviewed. We believe that most of ordinary
programmers have the similar problem in handling book-
marks. Section III describes a prototype system [6] from
a programmer’s point of view. In Section IV, the model of
bookmark registration with source code feature and edit feature
is presented, then the mechanism of bookmark retrieval is
explained in Section V. There are some implementation issues

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 93 / 98

in Section VI. Since the evaluation of the system is still under
way, preliminary user experience and discussion is presented
in Section VII. Finally, Section VIII concludes this paper.

II. CODING-RELATED BOOKMARKS

A. Original Bookmark List

We interviewed one nonprofessional programmer and have
analyzed his bookmarks. The purpose is to grasp how the
bookmark of the Web page seen during coding is classified.
There were 870 programming-related unique bookmarks in the
bookmarks added during the period of about two years and
three months .

These were only saved in order of the addition. That is,
there was no subfolder. The programmer explained the reason
as follows.

• Most of these bookmarks were added during coding.
During coding, he had to be concentrated on the
coding activities itself. And he felt it troublesome to
classify bookmarks after coding. Anyway, the book-
mark was not classified.

• If bookmarks were arranged in the added order, he
thought that the relevance between bookmarks could
be guessed by the nearness of a time stamp. However,
when the bookmark list became larger than a screen,
manual search became difficult gradually. Since only
the title of the Web page was saved in the bookmark
list, word search was useless.

After all, he did not use the bookmark list effectively.

B. Session Segmetation

It can be considered that the bookmarks with near addition
time are for the same or similar purpose. In this analysis,
a series of bookmarks added within 3 hours after the last
registration were defined as one session. As a result, 870
bookmarks were divided into 332 sessions. That is, it is
assumed that these bookmarks were added for 332 individual
purposes. During one session, 2.6 bookmarks were added on
the average. The maximum was 24 bookmarks per session.

C. Free Tagging Experiment

Next, he was asked to give tags freely in order to know how
the programmer recognizes each bookmark. He was instructed
to give tags completely in order to make it easy to look for
a bookmark for himself in the future. He was allowed to
give two or more tags like ”Java / IDE / Eclipse/JDT” to the
single bookmark. As a result, 63 kinds of unique tags were
used. It means that 2.8 tags are contained on the average in
one session (this corresponds to one purpose). The maximum
was nine tags per session. Many of relations between tags
were a main classification / ”sub classification” types, such as
”programming language/Scala”, for example. However, there
were some relations between the tags which lack consistency.
For example, although ”Java” is programming language, ”pro-
gramming language” tag is omitted.

The following comments were obtained from the program-
mer through the interview.

• ”Java” appeared repeatedly and it was obvious that it
was ”programming language.”

• Based on the estimated number of the search results by
tags, he decided the criteria ”how detailed tags should
be given.” The number of the bookmarks which he
can look through easily is 20-30. He thought that the
number of search results should not exceed this.

• He wanted to search bookmarks, using an error mes-
sage, a method name, or a class name as a query.
However, it was difficult to realize this manually.

III. PROTOTYPESYSTEM

A. User Interface

From a programmer’s point of view, the system has two
phases:coding and bookmark addition and bookmark
reference.

The primary user interface is three extra buttons (start ,
end , and search) added to an IDE as shown in the left
window of Fig. 1 (buttons are shown together with a lot of
other buttons).Start andend buttons are used in the former
phase to let the system know when a bookmark session starts
and ends. On the other hand,search button is used to view
recommended bookmarks in the latter phase.

B. Coding and Bookmark Registration

This phase is the same with ordinary coding and bookmark-
ing activity except that the programmer explicitly indicates
the semantic sections of editing and bookmarking activities
using ”start ” and ”end ” buttons to the system. The system
assumes a source code is being opened on IDE. A programmer
is supposed to clickstart button before he starts editing
with some specific intention. Once it is done, he clicksend
button. Activities betweenstart and end is a bookmark
session. The granularity of a bookmark session is up to the
programmer.

When a programmer finds some Web pages useful, he
can add bookmarks to the web browser as usual. When
the bookmark session ends, all bookmarks added during the
session are associated with features of the source code and
editing activity during the bookmark session.

Current implementation of the system requires clicking
end button on completion of one bookmark session even
if there is no bookmark registered during the session. By
clicking start button again, the programmer may start the
next bookmark session.

C. Bookmark Retrieval

When a programmer clicks thesearch button with a
source code opened on the IDE, the system recommends
bookmarks as shown in Fig. 2, if any, based on the code.
Recommended bookmarks are listed together with “Changed
Methods” and “Changed Classes” that represent edit features.
The model for each phase is detailed in the following.

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 94 / 98

(1) Select A Source File
And Press “start” Button

(2) Edit The
Source Code ...

(2) Register Bookmarks ...

(3) Press “end”
Button

Fig. 1: Start , end , andsearch buttons on an IDE.

Changed Methods

Bookmarks

Changed Classes

Fig. 2: Recommended bookmarks (shown on the Web
browser).

IV. B OOKMARK REGISTRATION USING FEATURES OF
CODE AND CODING ACTIVITY

A. Bookmark Session

A programmer usually breaks down their task into seman-
tically coherent coding activities. “Coherent” in this context
means that each activity reflects programmer’s specific editing
intention. If a bookmark can be associated with a coding
activity, and if features of such activity are obtained, these

features can be used for bookmark classification.

To split a series of programmer’s coding interactions into
semantically coherent coding activities, we ask a programmer
explicitly indicate the beginning and the end of each activity.
We call the period between thembookmark session(regard-
less of whether any bookmark is registered or not during
the period). Bookmarks that are registered between them are
associate with the corresponding coding activity.

Fig. 3 illustrates the bookmark registration in coding and
bookmark addition phase. The horizontal right arrow depicts
the operation time flow. Interaction and bookmark of a Web
browser (Google Chrome) are shown above the arrow, while
interaction and stored features of an IDE are shown below.
The time period explicitly indicated by a programmer using
start andend buttons is a bookmark session.

B. Source Code Feature and Edit Feature

To make such classification useful, the followings are
essential: (a) the definition of features, (b) the method to infer
features from a coding activity, (c) the definition of query
types, and (d) the method to get matching bookmarks with
a query.

Since the source code being edited may erroneous, even
syntactically incomplete, features should be obtained without
requiring running it. Query should be as simple as possible for
a programmer in order not to disturb coding activity.

We first definesource code featurewhich reflects the
source code being edited or browsed. The source code feature
is not directly used when registering a bookmark. Rather, we
defineedit feature as the difference of source code features at

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 95 / 98

Chrome

“Start” Button

Operation Flow

“End” Button

Eclipse

Edit

1
2
1 1

2
3

Registering Bookmarks

Added Bookmarks

Web Browser

IDE
Source
Code

Source
Code

Source Code Feature

Difference=Edit Feature

1
2
3

Bookmark (and Difference) Table

Bookmark Session

Fig. 3: The overview of the propsed system (coding and bookmark addition).

the beginning and the end of a bookmark session. We expect
the edit feature reflects a programmer’s coding activity.

Inherently, the best way should be determined experimen-
tally. Various methods exist for this purpose. For example,
the system may be track the cursor position or the editing
point which a programmer operates. However, such real-time
tracking may be difficult to realize efficiently, and may also
have a problem of execution performance. Therefore, as a
starting point, we have chosen simplest way for the prototype
system.

C. Features Used in The Prototype

Examples of source code feature and edit feature are shown
in Fig. 4.

Source code featureFS(c) :
A set of the following names (identifiers of Java program-
ming language) of a Java source filec . (1) class names
and method names defined, (2) instanciated class names, and
(3) method names used. The occurrence frequency (the number
of appearance in the code) of each name is not used. The
system statically (syntactically) analyze the code to gather
these names.

Edit featureFE(c1, c2) :
Set difference of the source code features before and after a
bookmark session, that is the sum-set of both ”the added name”
and ”the deleted name”

FE(c1, c2) = (FS(c1) ∪ FS(c2))− (FS(c1) ∩ FS(c2)) (1)

where c1 and c2 are the content of the source file at the
begininng and the end of a bookmark session, respectively.

D. Registering Bookmarks With Features

At the end of a bookmark session, bookmarks registered
during the session are associated with edit feature, and this is
added to the bookmark table (Fig. 3).

E. Behavior of The Prototype

When thestart button is clicked, with the source code
contentc1 being opened, the system performs the followings:

1) The current source code featureFS(c1) is recorded.
2) In order to detect the bookmarks added during the

editing, the bookmark list of the time is recorded.
That is, already registered bookmarks are not taken
into account. Such bookmarks are not shown in Fig. 3
for simplicity.

After that, a programmer may edit the source code. When a
programmer thinks that he completed one semantic section
of an editing, he clicks theend button. Suppose that the
content of the source code is nowc2. Activities from start
throughend is a bookmark session. The system performs the
followings:

1) The current source code featureFS(c2) is recorded.
2) The edit featureFE(c1, c2) is calculated using

recordedFS(c1) andFS(c2).
3) LetB be a set of bookmarks that are registered during

this bookmark session. This set may be empty. The
pair

S = (FE(c1, c2), B) (2)

which represents bookmarks tagged with features,
whereS corresponds to a bookmark session, is added

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 96 / 98

class Hello {

 Set<String> ts = new TreeSet<String>();

 void test() {
 Set<String> hs = new HashSet<String>();
 hs.add("Hello");
 ts.add("Hello2");
 }

}

Source Code

Source Code Feature

Instanciation

Method Definition
Method Call

Instanciation

Method Definition

Method Call

TreeSet
HashSet

test()

add()

TreeSet
HashSet

test()

add()
clear()

Deleted

Added

Difference between Source Code Features = { TreeSet(), clear() }

Start End

Public class Hello{

 void test(){
 Set<String> hs=new HashSet<String>();
 hs.clear(0);
 }
}

Instanciation

Method Definition

Method Call Deleted

Fig. 4: Souce code feature and edit feature for the prototype.

to the bookmark table. Currently, the source code
features at the time of start and end are not recorded.

V. BOOKMARK RETRIEVAL USING FEATURES

Whensearch button is clicked, the recommended book-
marks are retrieved using a source code feature, not a edit
feature, as a query. This is a bookmark reference phase.
Suppose thatN bookmark sessions

Sr = (FE r, Br) (r ∈ 1, · · · , N) (3)

are stored in the bookmark table, and the current content of
the source code in IDE isc. The source code featureFS(c)
is compared to all stored edit featuresFE r (r ∈ 1, · · · , N) to
find the maximum matchSk = (FE k, Bk) (k ∈ 1, · · · , N) ,
then it is presented to a programmer through a web browser
(Fig. 2). This is illustrated in Fig. 5.

In the current prototype system, the similarity metric be-
tween featuresmatch is defined as the number of common
elements as follows:

match(F1, F2) = |F1 ∩ F2| (4)

whereF1 andF2 are both features.

VI. I MPLEMENTATION

This prototype system is implemented using Java as a plug-
in of Eclipse IDE (via [5]). SQLite relational database (via [7])

“search” button

1
2
3 Bookmarks Shown

Web Browser

Source
Code

Source Code Feature

1
2
3

Table of Relations between Difference And Bookmark

Select the Best Match Bookmark Session

Fig. 5: The overview of the propsed system (bookmark search
phase).

is used for the bookmark table. The system reads the bookmark
file of Chrome (via [8]) (web browser) directly from a file
system. The bookmark file is represented in JSON format
(via [9]). For presenting the recommended bookmarks to a
programmer, the system has a simple HTTP server as a part
of the IDE plug-in.

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 97 / 98

The source code feature is extracted from the abstract
syntax tree (AST) which represents the syntactic structure of
a source code. The node of AST recursively represents syntax
elements, such as method declaration or a method call.

The system uses AST generated by Java Development
Tools (via [10]) (JDT) in eclipse. In JDT, each AST node
is an instance of aASTNode class. By defining the subclass
of the ASTVisitor class, all theASTNode can be scanned
in order (or ”visited”). In the subclass,visit methods with
various AST node parameter types can be defined. A desired
process can be described to the AST node class by which a
visit method is defined.

VII. D ISCUSSION

A. Edit Feature and Source Code Feature

In the prototype system, a source code feature is used
as a query for bookmark reference, while an edit feature is
recorded on a bookmark addition. In this sense, the system is
asymmetric.

This reflects our naive intuition in the early stage of our
design. The edit feature is more specific than the source code
feature. At the time of the addition of a bookmark, the more
specific feature is desirable. On the other hand, to refer to
the bookmark, the more robust feature is desirable. By using
source code feature as a query, a programmer can query
bookmarks even before editing anything, for instance, just after
opening a souce file. This of course can be extended to use
edit feature as a query.

Our experience shows that the definition of current edit
feature seems to be too specific, because only deleted or newly
created methods or classes are recognized as an edit feature.
That is, modifications within the definition of existing method
or class are not taken into account. The better source code
feature and edit feature should be explored.

B. When Should Start and End Be Clicked?

Ideally, the bookmark session should reflect a program-
mer’s subjective semantic chunk of an editing activity. Relying
on explicit clicks of start and end seems to be working
well to some degree. However, always forcing a programmer
to click these buttons is an extra burden. The means to infer
a bookmark session should be explored. At the same time,
some way to explicitly control the recognition of a bookmark
session should be provided.

C. Problems of Current Implementation

• The class name and method name used as the source
code feature are not always a fully-qualified name
(FQN) like java.util.String . If JDT provides
FQN, the system uses it. If FQN is not available, a
simple name (without qualification) is used. This may
introduce name confusion if the same name is used in
more than one context. For example, if the methods
of the same name are defined in two or more classes,
the system cannot distinguish them to each other.

• When extracting a feature, the order or the frequency
of occurrences of a class name or a method name are
not taken into consideration. This could be improved.

• In the current system, both the added method names
and the deleted method names are included in the edit
feature. Distinguishing these sets of names might be
informative.

VIII. C ONCLUSION AND FUTURE WORK

This paper has presented a semi-automatic tag-based book-
marking system for coding activity. A prototype system has
been implemented as a plug-in of Eclipse IDE. The target
language is Java. Used with a web browser, the system offers a
way to register and retrieve personal bookmarks of a program-
mer. Observing both an IDE and a web browser, the system
extracts features (tags) from the source code being edited when
a new bookmark is registered. The bookmark is added to the
bookmark table in the system together with features. Later, a
programmer can retrieve recommended bookmarks from the
tagged bookmarks using another source code as a query.

The problem of inferring programmer’s intention by ob-
serving coding activity is quite difficult. The current prototype
system can infer the intention very roughly using simple
definition of source code feature and edit feature. However,
experience with the system suggested that even such rough
intention might be useful for bookmarking. The better features
should be explored.

Another direction of improvement is multiuser collabo-
ration. The prototype system assumes the use of a single
programmer, but the bookmark table may be shared and col-
laboratively used by multiple users. For example, collaborative
code reading is a promising situation. Suitable method and
effectiveness evaluation should be further explored.

REFERENCES

[1] C. Marlow, M. Naaman, D. Boyd, and M. Davis, “HT06, tagging paper,
taxonomy, Flickr, academic article, to read,” inProceedings of the
seventeenth conference on Hypertext and hypermedia. ACM, 2006,
pp. 31–40.

[2] L. Ponzanelli, “Exploiting crowd knowledge in the IDE,” Ph.D. disser-
tation, Master’s thesis, University of Lugano, 2012.

[3] Stack Overflow, “Stack Overflow,” [retrieved: Jul 28, 2013]. [Online].
Available: http://stackoverflow.com/

[4] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,”IEEE Transactions on Software
Engineering, vol. 32, no. 12, p. 971, 2006.

[5] The Eclipse Foundation, “Eclipse integrated development environment,”
[retrieved: Jul 04, 2013]. [Online]. Available: http://www.eclipse.org/

[6] C. Tanaka, K. Nakayama, Y. Nitta, and E. Sakai, “Programming assis-
tance by associating web bookmarks with source code difference,” vol.
111, no. 470, Mar. 8–9, 2012, Technical Report of IEICE LOIS2011-
111, pp. 231–235, (in Japanese).

[7] SQLite Consortium, “SQLite,” [retrieved: Jul 04, 2013]. [Online].
Available: http://www.sqlite.org/

[8] Google, “Chrome,” [retrieved: Jul 04, 2013]. [Online]. Available:
http://www.google.com/chrome/

[9] JSON.org, “Introducing JSON,” [retrieved: Jul 04, 2013]. [Online].
Available: http://www.json.org/

[10] The Eclipse Foundation, “Eclipse Java development tools (JDT),”
[retrieved: Jul 04, 2013]. [Online]. Available: http://eclipse.org/jdt/

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Powered by TCPDF (www.tcpdf.org)

 98 / 98

http://www.tcpdf.org

