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Abstract— Simultaneous Localization and Mapping (SLAM)
algorithms are one of the elements that have great relevance
for autonomous driving in order to locate the vehicle, even in
areas in which other methods have difficulties, or to improve
the positioning given by these other systems. It also offers
knowledge of the scenario in which the vehicle moves,
information that can have multiple uses. There are several
solutions to the SLAM problem using Light Detection and
Ranging (LiDAR), but these algorithms require a high
computational cost. However, certain environments with a
specific structure allow the use of more simplified algorithms.
Specifically, this paper shows a SLAM algorithm where only
the LiDAR signal is used and vertical planes are taken as
reference (perpendicular to the ground plane). This solution is
quite effective in some scenarios, such as indoor parking areas.
In addition, various alternatives are explored to increase the
robustness of the results of positioning and mapping
reconstruction. The algorithm has been tested in real scenarios
with satisfactory results.
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I.  INTRODUCTION

One of the biggest difficulties of autonomous vehicles is
the ability to react correctly and safely to the eventualities
that may occur during driving. Consequently, these vehicles
must be equipped with sensors capable of responding in a
very short time and a computer capable of interpreting all
this information in real time. Among these sensors are
cameras, radars, Global Positioning System (GPS), LiDAR
sensors, infrared sensors, etc. Specifically, LiDAR has
advantages that make it particularly suitable for autonomous
driving [1]. One of the main advantages of LiDAR sensors
versus computer vision is that the latter are very sensitive to
light changes or environmental conditions [2]. In addition,
cameras are directional and only detect objects in the
direction in which they are placed, and LiDAR sensors offer
most of the time a 360° field of view, obtaining a complete
point cloud from the vehicle's surroundings. On the other
hand, a drawback of the LiDAR sensors is that the density of
points decreases with distance due to the divergence between
the laser beams.

Solving the SLAM problem consists in the estimation of
the movement of the ego-vehicle and the mapping of the
environment in which it is located simultaneously. Among
the possible applications of this technique, we can highlight
its use for autonomous vehicle guidance systems and the
creation of three-dimensional models of the environment in a
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fast and accurate manner. The growing interest in self-
driving cars has caused researchers to once again seek a
solution to the problem of SLAM, a problem that appeared in
robotics more than 25 years ago. This concern to achieve an
accurate SLAM solution is fundamentally due to the need for
an error positioning of centimeters and an understanding of
the environment for a proper path-planning and decision
making. As far as the SLAM techniques are concerned, there
are many branches to tackle this problem. From the classical
techniques used in robotics, or new approaches using range
sensors, or techniques based on artificial intelligence, to new
trends, such as multivehicle SLAM [3].

When talking about the problem of vehicle localization,
the solution is not trivial using a GPS. GPS has shown great
performance for the location, however, cannot guarantee an
error below centimeters in all cases, even when using D-GPS
with a positioned base station. A classic approach would be
to make use of inertial units, encoders on the wheels, etc.
However, all of them produce an incremental error in time,
which makes a correct localization impossible. Another
classic approach could be the localization of the ego-vehicle
using the line markings on the road, but these are not enough
when the vehicle approaches complex scenarios, like a
crossing or merging lanes. Finally, we always look for a
trade-off, merging different approaches into a fusion.

Other approaches would be techniques based on Visual-
SLAM or LiDAR-based SLAM, both make use of the
extraction of characteristic points of the environment, or
landmarks. After the extraction of these landmarks, a
matching and calculation of the relative movement are
carried out. The prediction of the new position of the vehicle
can be estimated, on one hand, by filter techniques, e.g.,
Extended Kalman Filter (EKF) [4]-[6] or Particle Filter [7]—-
[9]. On the other hand, we could also find another approach
for the same task, this time using optimization methods, such
as Bundle Adjustment [10] among others.

More recently, the use of artificial intelligence
techniques, specifically deep learning, has gained great
interest due to the great advance of computing capacity and
the development of several quality databases (e.g., KITTI
dataset [11], Ford Campus [12] or Malaga Urban data [13]).
The use of Convolutional Neural Networks (CNNs) is very
suitable for the recognition of images and for the extraction
of characteristics. On the other hand, CNNs have not only
been used to extract image characteristics but also to
estimate continuous signals when dealing with regression
problems. Therefore, we can find several developments
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where they take advantage of these benefits to apply to the
SLAM problem [14]-[17].

Although the SLAM problem is not new and there are
many developments in the field, it still presents some issues.
The first one is the drift that occurs when the trajectory
increases, and on the other hand, the construction of the map
in any weather condition, traffic or time of year [18].

In indoor scenarios, the GPS signal is not available or is
not sufficiently reliable and its accuracy is low, so it cannot
be used as the only reference for the positioning of
autonomous vehicles. Autonomous vehicles are equipped
with perception systems, being the LiDAR one of the best
ones regarding robustness and information provided. This
sensor has been used in common SLAM problems, although
these algorithms require a high computational cost.
However, certain environments with a specific structure
allow the use of more simplified algorithms. Specifically,
this paper shows a SLAM algorithm where only the LiDAR
signal is used, and vertical planes are taken as reference
(perpendicular to the ground plane). In addition, various
alternatives are explored to increase the robustness in the
result of positioning and scenario reconstruction.

The rest of the paper is structured as follows. In Section
2, the SLAM algorithm developed in this paper is described.
In Section 3, results from several tests both indoors and
outdoors are depicted. Finally, in Section 4, conclusions and
future works are presented.

II. SLAM ALGORITHM

The proposed algorithm for scenarios where the vertical
planes can be taken as reference includes 3 phases:
e Detection of the characteristic elements of the
environment (vertical planes)
e  Determination of the trajectory (the planes detected
are projected on the horizontal plane and the lines

resulting from those projections and their
intersections are used)
e Reconstruction of the environment (three-

dimensional reconstruction by superimposing point
clouds)

A. Characteristic elements detection

The characteristic elements are those elements that have
certain properties that allow them to differentiate themselves
from other elements of the environment. Therefore, the
repetitiveness with which they are detected will be very
important to ensure that each of them is detected in
successive time intervals.

In this way, they can be tracked over time and the
trajectory of the vehicle can be determined from the relative
movement of the detected characteristic elements.

Therefore, the detection of these elements is the starting
point of the algorithm, and the precision in their detection
determines the accuracy of the trajectory obtained.

In the urban and industrial environment, for which this
algorithm is designed, walls and columns of rectangular
section can be found abundantly. Therefore, the
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characteristic elements to be detected are vertical corners and
vertical planes.

However, due to the difficulty of detecting the vertical
corners directly, only the vertical planes will be detected, and
the corners will be extracted from them.

Method 1: Lines detection in each laser layer

For the detection of characteristic elements, a coefficient
has been implemented, proposed in [19], which evaluates the
smoothness of a surface, with the aim of detecting vertical
corners. However, this coefficient has finally been discarded
because all those rough objects that were detected in the
environment could be detected as possible landmarks.

As an alternative, for the detection of sudden changes of
curvature in the different sections, the angle formed by the
segment between two consecutive points with the horizontal
axis of the XY plane has been analyzed.

A more accurate way to detect these lines is to calculate a
local line for each point. Then, those points that are placed a
certain distance away from the line are removed, and the
equation of the line is obtained with the others and the
average square error is recalculated. If the error is less than a
certain threshold value, the line is accepted. This process is
repeated for all laser layers. Once all the lines have been
extracted, they are compared with each other to detect
possible matches between one layer and the others.

Method 2: Planes detection from points clouds

Another method involves extracting the planes in a direct
way from the point cloud in 3D. For this purpose, the M-
estimator SAmple Consensus (MSAC) algorithm has been
used [20]. The MSAC algorithm is a variant of the RANdom
SAmple Consensus (RANSAC) algorithm. Once the model
that we want to fit is known, in this case a plane, this
algorithm optimizes according to the number of inliers and
outliers with the cost function (1):

Cost = Z p (e?)
i

2 2 2
2y _ (e e <T
p(e)_{TZ e > T2

(1

)

Where T is the threshold for considering inliers and e?
provides the error for the point data.

The adjustment is executed and the points of the
extracted plane are eliminated for the next execution. From
the set of all the extracted planes, only those perpendicular to
the horizontal plane of the vehicle are of interest for the
calculation of the trajectory. Therefore, planes that do not
meet this condition or those whose average error is too high
are removed.

B. Trajectory calculation

The landmarks that are used to calculate the trajectory are
the vertical planes of the environment. These planes are
projected on the horizontal plane and, in order to determine
the trajectory we work with the lines resulting from that
projection.
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In addition to the lines that result from the projection of
the vertical planes, the points of the intersections of these
lines are also used for the calculation of the trajectory. Some
of these points correspond to the real corners of the planes
that share a corner in the field of vision of the LiDAR, while
the rest correspond to the virtual corners that result from the
prolongation of those planes.

The mathematical representation of intersecting lines is
presented with 2 notations based on their orientation:

Type 0: y =myx +n,
{Type I x=my+n G)

Once the straight lines have been calculated, for the
calculation of the intersections (Figure 1), the four possible
pairings have been considered according to the type of line.
The number of intersections for a number n of lines is
determined by the following expression:

“

n
Njptersections — 2 ‘(n—1)

Figure 1. Lines intersections

Intersections located further than 100 m are eliminated.

To determine the trajectory of the vehicle, three different
methods have been developed to obtain the values of
displacement and rotation.

Method A:

The first one uses a function called estpos which
calculate the displacement and the rotation of the vehicle
simultaneously, from the relative movement of the
intersections previously calculated, by solving a linear
system of equations.
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First, those points that have been detected in two
consecutive frames are identified and matched. Therefore,
the points of the previous instant, called points0O, are
displaced and rotated with the values of dx,, dy, and ¢,
calculated at the previous instant. Then, the nearest point of
the current frame is searched for each of the points already
displaced. If the distance is less than a threshold, both points
are considered to correspond to the same characteristic
element and the pair of points is saved.

Once the points detected in the two frames have been
determined, the longitudinal and lateral displacements and
the yaw angle are calculated. For this, the following system
of equations is solved.

—sin (p] %o dx] _ "
cos @ [y()] + dy| — [yl]

Where x; and y, correspond to the coordinates of the
points in the current frame, and x, and y, correspond to the
coordinates of the points in the previous frame. The
unknowns of this system are: ¢, dx and dy.

This system is a non-linear system and for its resolution,
it would be necessary to resort to iterative calculation
methods. However, since the time interval between two
consecutive frames is very small, it can be considered that
the angle ¢ will also take small values.

In this way, simplifications can be considered and the
system becomes linear. The simplified system is as follows.

cos @
sin @

)

dx
1 0 —Yo _ X1 — Xo
0 1 x ] dyl N [3’1 _J’O] (6)
@Q
Method B:

The second method is a variation of the previous one, and
instead of solving the linear system of equations, it uses the
Iterative Closest Point (ICP) algorithm to obtain the
displacement and rotation values. The pairing of the points
occurs identically.

Method C:

Finally, the third method calculates the rotation and
displacement of the vehicle independently. On the one hand,
the angle rotated is calculated using the equations of the
straight lines and later, the displacement of the vehicle is
calculated from the intersections.

To do this, the first step is to match each line with its line
equivalent to the previous frame. This process is identical to
the pairing of points, with the difference of using the
equation of the line instead of the coordinates of the point.

C. Scenario reconstruction

In this step, it is necessary to transfer and rotate the point
cloud obtained in each of the frames, and in this way
generate a single three-dimensional image that includes all
the points in absolute coordinates.

This reconstruction is of special interest because it is
used to quantify the precision of the trajectory calculation
and, in this way, to be able to compare the different
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algorithms used and the influence of the improvements
introduced in them.

D. Algorithm improvements

On the previous algorithm, 2 improvements have been
proposed:

e  Weighting of points and lines.

e Correction of the possible inclination of the laser

with respect to the ground.

The first correction is based on the fact that not all data is
extracted with the same reliability. Therefore, a confidence
value is assigned to each of the points or the lines, depending
on certain characteristics that may affect the accuracy with
which they have been calculated.

This weighting is carried out by increasing the number of
points based on a confidence value. In this way, those points
with a higher confidence coefficient will be repeated a
greater number of times than those with a lower coefficient.

For the definition of the value of the confidence of the
points, two factors have been taken into account: the distance
of the points from the vehicle and the angle formed by the
lines with which the point has been calculated.

The distance of the points has been quantified by the
inverse of the distance. Since x,, and y, are the coordinates
of the points, the weighting coefficient has been defined as

follows:
1

NexEsn

In this way, the points near the vehicle will have a greater
weight compared to those further away.

On the other hand, because the points have been obtained
by intersecting the lines corresponding to the planes
detected, the greater the angle formed by these lines, the
greater the precision with which the point has been
calculated. To quantify this effect, the angle formed by these
lines has been calculated and the following coefficient has

been used.
2-(3-9)

T

¢ = (7)

C=1- ®)

where « is the angle formed by the lines with which each
point has been calculated.

Finally, a third coefficient that combines the previous
two has been implemented.

C3 = Cl . CZ (9)

On the other hand, the lines resulting from the projection
of the detected planes are weighted taking into account two
factors: the number of points contained in the plane and the
error in obtaining it.

In this way, a confidence value has been defined that is a
function of the value of the mean square error when
obtaining the plane and the number of points of the same.

C = Npoints * (1-¢)

(10)
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Where n,,in¢s are the points of each of the planes and e
is the mean square error calculated by the pcfitplane
function.

Regarding the second improvement, it is intended to
correct the lack of parallelism between the plane of the laser
and the ground. Generally, in garages, placing the laser level
on the roof of the car, the planes detected are perpendicular
to the horizontal plane of the laser. However, this inclination
is not negligible. To avoid this effect, a plane is defined that
remains constant regardless of the possible rolling and
pitching movements of the wvehicle, or the possible
inclination of the terrain. Therefore, a reference plane is
defined as perpendicular to the detected vertical planes.

To sum up, the flowchart of the implemented algorithm
is depicted in Figure 2.

— Input data ‘

\. J

!
" Characteristic elements |
detection

T
~ correction

~ —

\[/ch
" Correction of the deviation |
of the planes with respect to
L the laser J

— Lines detection
‘ !
Obtaining intersections

, ! X
Calculation of the translation
and rotation of the vehicle

|

1+
Figure 2. Algorithm flowchart

III. TESTS AND RESULTS

Different tests have been carried out not only in outdoors
scenarios, but also in indoor scenarios using an instrumented
vehicle that includes a 3D laser scanner Velodyne VLP-16.
The LiDAR sensor was placed on top of the car in order to
acquire a 360° field of view.

The tests have been carried out in 3 different scenarios:

e INSIA laboratory (Figure 3a). It is a particularly
suitable environment for the calculation of the
trajectory since it is an environment with a large
number of vertical walls and some columns. In this
scenario, 2 types of maneuvers have been carried
out: straight manoeuvre and L-shape manoeuvre.
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a) b)
Figure 3.

e Indoor parking area (Figure 3b). This type of
environment also has columns and some vertical
walls. However, there is not much quantity of them
and being an environment with a low ceiling, a lot of
points are lost in it. In addition, parked cars are also
an obstacle to detection.

e Narrow urban street (Figure 3c). this method will
work correctly in those streets where there are a
certain number of intersections.

A. Final method selection

The first of the scenarios has been used to determine the
most appropriate method among those presented for the
calculation of the character elements, the determination of
the turn and the translation, as well as in the alternatives of
improvements over the algorithm. To do this, the bag is
taken with L-shape trajectory and 7 points have been chosen
from the main walls of the ship in which the maximum
distance between the same wall detected in different frames
is measured. The chosen points are those marked with a
yellow square in Figure 4.

Figure 4. Control points for error calculation
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a) INSIA laboratory, b) Parking area, c) Narrow urban street

First, we analyze the 2 methods to obtain the landmarks.
It is observed as the first option of calculation of lines by
layers has limitations in the detection of the planes from a
certain distance. However, the function based on the plane-
fitting is able to identify them and with a much lower
computational time. Therefore, Method 2 is chosen from
those described in section 2A.

To calculate the displacement and rotation of the vehicle,
the three methods described above were tested, verifying that
only method C provides null errors in ideal environments
and, therefore, the best results in real environments.

Finally, the improvements proposed for the algorithm
have been analyzed. The results are shown in Table 1.

TABLE L. COMPARISON OF IMPROVEMENTS ALTERNATIVES

Improved method A:::;‘fe R:::toi:e

Base case (without improvements) 0,76 m 1,65 %
Points weighing. Distance 0,61 m 1,32 %

Points weighing. Angle 0,60 m 1,30 %

Points weighing. Combined 0,59 m 1,28 %

Lines weighing 0,86 m 1,86 %

Horizontal plane correction 0,57 m 1,24 %
Combined correction (except Lines weighing) 0,54 m 1,17 %

B. Results in real scenarios

Finally, the 3 test environments were reconstructed using
the selected method. Similarly to the preliminary trials, a set
of control points have been defined to evaluate the accuracy
of the reconstruction. Table II shows the results of this
quality indicator and Figure 5 shows the reconstructions.

TABLE IL QUALITY INDEX IN RECONSTRUCTION
Scenario Average Distance Relative
error error
INSIA lab (straight trajectory) 0,35 m 64,99 m 0,54 %
INSIA lab (L-shape trajectory) 0,54 m 46,13 m 1,17 %
Parking area 0,15m 11,94 m 1,24 %
Urban area 0,27 m 70,91 m 0,38 %

The lowest relative errors have been obtained in the
INSIA laboratory when the trajectory is straight and in the
urban circulation. Both environments are characterized by
having large vertical planes, corresponding to the high walls
of the workshop and the facades of the buildings,
respectively. In this way, these planes when detected with a
great number of points, the accuracy is higher, and thanks to
this the calculation of the trajectory is also more precise.
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a) b)

Figure 5.

It is noted that, although in all cases the measurements of a
Trimble BX935-INS multi-constellation GNSS receiver have
been available, its signal has not been reliable due to the
specific scenarios considered, so it cannot be taken as a
reference.

IV. CONCLUSION

As conclusion, the developed SLAM technique requires
specific characteristics of the environment in order to
function correctly. Specifically, it requires the presence of a
sufficient number of vertical planes, which will be used to
calculate the relative movement of the vehicle. This fact
happens in several real scenarios.

As an advantage, we could emphasize that it is a totally
autonomous method, since it uses only the data obtained
from the LiDAR, and therefore, it is not subject to the need
to receive external signals as it happens to other positioning
systems, such as GPS. Thanks to this, this algorithm can be
used anywhere, and regardless of whether the environment is
underground or outdoors, as long as it is an environment
with the characteristics described above. The SLAM
algorithm can be used to calculate the position of the vehicle
in those areas where the GPS signal does not arrive or is
weak. In addition, thanks to the simplifications introduced,
its computational load is much lower than conventional
SLAM algorithms, favoring its execution in real time.

The main limitation presented by the algorithm, as
indicated, is the inability to calculate the displacement and
rotation of the vehicle in those moments of time when the
algorithm does not detect a sufficient number of
characteristic elements. To solve these problems, it would be
interesting to incorporate additional positioning systems such
as INS, to compare the results with those obtained by the
SLAM technique. Another alternative consists in
incorporating other types of characteristic elements, such as,
for example, the edges of the vertical planes, the poles of the
traffic signs or the trunks of the trees.

Also, to facilitate detection, it could be interesting to
incorporate a second LiDAR sensor. Thus, objects would be
detected with a greater number of points, which would
facilitate their detection.
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