
Aspect-Oriented Testing of a Rehabilitation System

 Külli Sarna and Jüri Vain

Department of Computer Science

Tallinn University of Technology

Tallinn, Estonia

Kylli.Sarna@eliko.ee; Juri.Vain@ttu.ee

Abstract— The paper focuses on modularizing test models by

adapting aspect-oriented modelling techniques. Model-based

testing is an unavoidable part of contemporary model-driven

software processes. The essence of model-based testing is to

provide methods and tools to validate software systems by

generating test cases systematically from models. From the

practical usage point of view, it is critical to construct models

that capture the essential aspects of the system under test. The

proposed test design approach allows systematic separation of

testing concerns, that, in turn, helps to overcome the

complexity issues. Also, verification conditions are proposed to

ensure the correctness of derived aspect test models and their

compatibility with base test models. We demonstrate the

technique of test model construction using timed automata

models and illustrate it with a home rehabilitation system case

study.

Keywords-aspect-oriented testing; model-based testing; test

model design; test generation.

I. INTRODUCTION

In the current practice of software testing, including
Model-Based Testing (MBT), the test cases are frequently
insufficiently structured and specified. The test designers
use component-based or hierarchical state models.
However, these modelling approaches provide poor support
for isolating crosscutting features, specifically, functions
that are spread across the software modules and tangled with
other functions. We use the principles of Aspect-Oriented
Modelling (AOM) to modularize such crosscutting
functions into aspects. The AOM approach has evolved
from aspect-oriented programming [2] to produce well-
structured and well-encapsulated software. We enhance
MBT design methodology with aspect handling capabilities
taken from AOM [3]. Using the principles of AOM we can
encapsulate typical cases like specifying requirements (use
cases) that do not specify one property (scattering) or
different functionalities (tangling). In this paper, we will
explain how to conceptualize concerns into aspects and how
to extract test cases from these aspect test models.

In MBT, the tests are generated from formal models of
the System Under Test (SUT). The AOM technique
introduced by Sarna and Vain [9] models SUT using timed
automata and defines aspect models as refinements of the
base model. The structural test coverage criteria considered
are the same as those commonly used in state models, i.e.,
state, and transition coverage. As a novelty, in this paper we
demonstrate how a test suite can be generated according to

structural units that are specific to AOM. This gives us new
test coverage criteria that address implemented features –
aspect, advice, join-points coverage, etc. - and provide more
intuitive reference to the parts of SUT to be tested for those
features.

Another advantage of Aspect-Oriented (AO) MBT is the
possibility of easy modification of the test suite. When new
requirements arise, new advice models can be woven into
the test suite without redesigning the existing base model.

Applying the principles of AOM does not provide
compositional testing techniques per se. Compositionality of
proposed AO testing is achieved by imposing extra
constraints on how the advice models are constructed and
model weaving operations defined. We define these rules in
the semantic framework of Uppaal timed automata [6] and
formulate the proof obligations to be model-checked. Our
approach is illustrated with a home rehabilitation system
testing framework.

The rest of the paper is structured as follows. We
introduce the technical background in Section 2. Section 3
describes AO MBT. In Section 4, the home rehabilitation
system is introduced. Finally, Section 5 concludes the paper.

II. BACKGROUND

A. Aspect-oriented modelling

AOM is a way of modularizing crosscutting concerns
much like object−oriented programming is a way of
modularizing common concerns. Crosscutting concerns
generally refer to non-functional properties of software,
such as security, synchronization, mobility, resilience, etc.
In addition, every system may contain its own application
specific crosscutting concerns [5].

Cottenier et al. [4] and Rashid [8] have admitted that
AOM technologies have the potential to simplify software
deployment, and the ability to improve the categorization of
crosscutting concerns. Also, AOM aids in modular
extension of object systems, where the treatment of
crosscutting concerns is encapsulated in separate modules
called aspects. We use concepts taken from AOM, such as
Aspect, Advice, Join-points, Pointcut, and Weaving.
 An aspect consists of two parts: the code/model
associated with treatment of the concern (called advice), and
a predicate defining when the advice should be applied
during system executions (called a pointcut). The points in
the code/model that are identified by a pointcut are called
join-points.

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

 A pointcut selects a subset of join-points based on
defined criteria. The criteria can be explicit function names,
or function names specified by wildcards. Pointcuts can be
composed using logical operators. Customized pointcuts can
be defined, and pointcuts can identify join-points from
different aspects. The process of adding aspects to a base
system is called weaving; and the result is referred to as the
woven system [5]. AOM techniques use the term advice for
the action an aspect will take and join-points for where these
actions will be inserted in the base system model. Pointcuts
are used to specify the rules of where to apply an aspect.
Advice, join-points, and pointcut are specified as one entity,
called an aspect [7].
 As in AOM, AO testing uses a base test model and
several aspect test models. An example of a base test model
is depicted in Figure 1 (for better understanding of the
relationship between the models, we use an Automatic
Teller Machine (ATM) as an example of a well-known
system). The ATM test model specifies the use case of
withdrawing money from an ATM. Crosscutting features
are treated as patterns described by aspect advice models,
and common features are described in the base model. The
result of weaving the base model with advice models is
called the composed aspect model. An advice model can be
woven with the base model in many places and in different
ways. The Transaction advice model is defined as location
refinement of both ATM and Customer automata. The
details of advice model construction in the test design level
are presented in [9].

Figure 1. The base test model of ATM.

 The base model of an ATM depicted in Figure 1 includes
interacting Customer and ATM automata. Refinements in
Figure 2 specify aspects of interest: (i) the Transaction
advice model is defined as location refinement of both ATM
and Customer automata; (ii) edge refinement of ATM. The
aspect behaviour is launched from the base model explicitly
with the help of channels. We model in Uppaal
(www.uppaal.com), a tool box for modelling, simulation
and verification of timed automata. In Uppaal [12], the
synchronization mechanism is a hand-shaking
synchronization: two processes go through a transition at the
same time, one will be labelled x !, and the other x ?, where
suffixes ?, and ! after the channel name x distinguish
sending and receiving synchronization information
respectively. A system is composed of concurrent processes,
each of them modelled as an automaton. The automaton has
a set of locations and edges to specify the control flow. A
transition specified by an edge is enabled if its guard and
synchronization conditions are satisfied. The transaction
automaton in Figure 2 introduces the EnquireBalance aspect

Figure 2. The aspect model “Transaction”.

advice. Since the refinement (ii) introduces a new

interaction between ATM and a new actor Server (not

shown in the model) the edge introduced is labelled with the

‘balanceCheck!’ channel. When the aspect related tests have

to be generated from the composed model of SUT that

includes the automata in Figures 1 and 2, we can ignore all

the transactions that the aspects of interest do not depend on.

For instance, when testing the balanceCheck! transaction

between ATM and Server the tester model is extracted from

the composition Customer || Customer(Transaction) by

algorithm of [1] so that the test sequence <card!,

choseTransaction!, transaction_type := enquire, start-

Transaction!, wait,[finishTransaction?| timeout >= const1,

TESTFAIL], choseExit!, card?, TESTPASS > can be

executed.

B. Model-based testing

MBT uses abstract behavioural models for specifying
the expected behaviour of the SUT and for automatically
generating tests to check if the behaviour of SUT conforms
to the model. The SUT is an executable implementation
which is considered as a black-box during the testing
process, i.e., only inputs and outputs of the system are
visible externally. The SUT is tested incrementally by
applying test cases. A test case in MBT is defined as a
sequence of test stimuli paired with expected SUT outputs.
A specified set of test cases constitutes a test suite.

C. Uppaal timed automata

Assume a finite alphabet  ranged over by a, b,... stands
for actions and a finite set C of real-valued variables ranging
over by x, y, z, standing for clocks.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

A guard is a conjunctive formula of atomic constraints of
the form x ~ n for c  C, ~  {, , =, >, <} and n  N. We
use G(C) to denote the set of guards, ranged over by g.

Definition 1 (Timed Automaton) [6]
A timed automaton A is a tuple N, l0, E, I where
– N is a finite set of locations (or nodes),
– l0  N is the initial location,
– E  N  G(C)    2C  N is the set of edges and
– I: N  G(C) assigns invariants to locations (here we
restrict to constraints in the form: x  n or x < n, nN. For
shorthand we write l g,a,r l’ to denote l, g, a, r, l’  E.
To model concurrent systems, timed automata are extended
with parallel composition. In the UPPAAL modelling
language, the CCS parallel composition operator is used,
which allows interleaving of actions as well as hand-shake
synchronization. The parallel composition of a set of
automata is the product of the automata.
The semantics of timed automata is defined as a transition
system where configuration consists of the current location,
valuation of state variables and the current values of clocks.
There are two types of transitions between states: the
automata may either delay for some time (delay transition),
or follow an enabled edge (action transition).
 To keep track of the changes of clock values, we use
functions known as clock assignments mapping C to the
non-negative reals R+. Let u, v denote such functions, and u
 g means that clock values denoted by u satisfy the guard
g. For d  R+ let u + d denote the clock assignment that
maps all x  C to u(x) + d and for r  C let [r ↦0] denote
the clock assignment mapping all clocks to 0 and agree with
for the other clocks in C\r.

Definition 2 (Operational Semantics) [6]
The semantics of a timed automaton is a transition system
(also known as a timed transition system) where states are
pairs l, u and transitions are defined by the rules:
– l, u d l, u + d if u I(l) and (u + d)  I(l) for a non-
negative real d  R +
- l, u a l’, u’ if l g,a,r l’, u  g, u’ = [r ↦0]u and
u’I(l’).
To increase the modeling power keeping the analysis
traceable for planner synthesis we lift the model class to
rectangular timed automata where guard conditions are in
conjunctive form with conjuncts including besides clock
constraints also constraints of integer variables.

Similarly to clock conditions, the integer variable

conditions are of the form k ~ n for k  Z, ~  {, , =, >, <}

and n  N. The advantage of this extension is that the model
has rich enough modelling power to represent real-time and
resource constraints being same time efficiently decidable
for reachability analysis.

III. ASPECT-ORIENTED MODEL-BASED TESTING

In this section, we explain the concepts of AOM
applicable in aspect-oriented MBT. The AOM allows the
models to be organized so that they address particular
requirements (including crosscutting ones) and
corresponding test cases. The AO test model includes a base
model and aspect-related advice models. Aspects may
contain sub-aspects that require sub-advices and their own
test cases. Sub-aspect models have to be easily inserted into

their parent aspect models. In our examples, we use name
prefixes that refer to the parent models so that they are
convenient to comprehend and maintain.
 AO testing can also be considered as an example of
compositional testing where the test results of the composed
system can be inferred from the test results of its
components. In the MBT context, it means that the test
cases are determined only by the context of the aspect
advice models and the interface behaviour of their
composition. AOM also provides a conceptual basis for
defining test coverage criteria in terms of aspect related
model elements. The hierarchy of those criteria is depicted
in Table I.

TABLE I. AO TEST COVERAGE CRITERIA

 Coverage

Type constraint

of coverage

entity

Strong

(universal)

coverage



Weak

(existential)

coverage



Discriminati

ng predicate

Aspect

A

All aspects of the

model

 A  A. ...

Some aspects of

the model

 A  A. ...

Predicate on

aspect

constants

/variables

i-th join point

jp(A, i)

All join points of

aspect A

 jp(A, i)JP(A)

. ...

Some join points

of aspect A

 jp(A, i) JP(A)

. ...

Point cut

condition

Entry-exit path 

of an advice model

MA'

 Paths(MA')

All paths

initiated at

i-th join point

  Paths(MA')

Some paths

initiated at

i-th join point

 Paths(MA')

Path

predicate,

e.g.

constraint on

path length

Model element of

type T (location,

transition,

function, data, etc)

included in the

path

 Paths(MA')

All elements of

type T in MA'

Some elements

of

type T in MA'

Predicate on

the

attributes of

type T

 The criteria shown in Table I can be expressed as closed

1st order logic formula in prenex normal form, where the

signature includes variables of particular types of structural

elements of Uppaal Timed Automata (UPTA) (template,

location, transition, label, function, data, etc.). The prefix of

the prenex formula includes bound variables in a fixed order

that is determined by the natural hierarchy of modelling

entities: aspect, join-points, and path. These entities model

the structural elements of UPTA, where the structural

elements can be referred to directly by name or indirectly by

constraints on their attributes. The matrix part may include

discriminating predicates of all the above listed types.

 The semantics and scoping of AO coverage constraints is

defined by the hierarchy and type structure of AO model

elements (left most column in Table I). Thus, the scope of

constraints on bound variable in the formula matrix part is

defined by the position of the bound variable in prefix. For

instance, the scope of a path constraint is defined by the

join-point and aspect constraints because these elements

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

precede path variable in the prefix. When not explicitly

expressed in coverage constraint the default scoping means

existential quantification over all those variables preceding

in the prefix of coverage constraint. For characterization of

coverage criteria in terms of Uppaal query language, we

assume that the aspect model M is constructed according to

the rules described in [9]. The idea is to use Uppaal model

checker queries for selecting traces that constitute the test

paths of the given test case. Uppaal query based online test

generation methods are described by Vain et al. [1] and

Hessel et al. [10].

Aspect Coverage criteria impose to execute all or some

aspects in a woven model at least once. In Strong Aspect

Coverage (SAC), given an aspect model M, all possible test

paths must be covered by the tests. To implement the Strong

Aspect Coverage we use the parameterized UPTA templates

where the template parameter pi ranges over indexes [1, n]

that identify the aspect. Let P(i) be a predicate updated to

true whenever the i-th aspect advice model is entered. Then

the traces of M (pi) under Strong Aspect Coverage criteria

should satisfy the query: E<> forall (i: int [1,n])

P(i). Note that given query is valid only for paths that

include traversal of all aspects' advice models. In general,

the model M may not be fully connected and a single path

including all aspects may not exist. Therefore, we introduce

an auxiliary reset- transition into M that guarantees that if n

advice models are reachable in M then at most with n

traversals all of them are visited. The reset-transition

connects the final location of M with its initial location. Due

to this construct the Uppaal model checker is able to

generate a trace that includes visits of all advice models.

The tests paths for a final test case can achieved simply by

"cutting" that trace at reset- transitions to many shorter sub

traces.

Weak Aspect Coverage (WAC) refers to the case where at

least one advice model of some aspect is traversed by the

test path. The query E<> forall (i:int [1,n]) P(i)

differs little from the strong coverage constraint but it does

not require including reset-transitions in the model M.

Join Point Coverage criteria impose to execute all or some

join points of each aspect in a woven model at least once.

Strong Join Point Coverage (SJPC) presumes similarly to

strong aspect coverage introduction of an auxiliary reset-

transition into M. Regardless the prefix (SAC or WAC) of

the query the SJPC contributes a conjunct of form ...forall

(j: int [1,m]) P(i) && R(j) where j is ranging

over join point indexes of the aspects referred in the prefix

of that query and R(j)is a Boolean variable at each join

point updated to true, whenever this join point is visited.

Weak Join Point Coverage (WJPC) is satisfied if there is at

least one trace for given formula prefix satisfying ...exists

(j: int [1,m]) P(i) && R(j). Here, like in WAC,

auxiliary reset-transition is not needed.

Aspect Path Coverage criteria impose to execute all or

some paths of each aspect in a woven model at least once.

Assume the entry and exit transitions of each advice models

are decorated with entry(i, j,k) and exit(i, j,l) predicates

where i, j, k, l range over the set of aspects, join points, and

their advice entry and exit points respectively. Whenever the

transition is executed these predicates evaluate to true.

Then, the Strong Aspect Path Coverage (SAPC) contributes

a conjunct to the query prefixed with aspect and join point

constraints as follows: ... forall (k: int [1,K])

forall (l: int [1,L]) P(i) && R(j) && [(k=1,K

entry(k)) (l=1,L exit(l)). SAPC, like earlier strong

coverage criteria, presumes the reset-transitions related

construct. Weak Aspect Path Coverage (WAPC) comparing

to SAPC replaces universal quantifiers with existential ones

for variables k and l, the coverage constraint becoming to ...
exists(k: int[1,K]) exists(l: int[1,L]) P(i)

&& R(j) && [(k=1,K entry(k))  (l=1,L exit(l)).

The Model Element Coverage criteria impose constraints

on the types of UPTA elements to be covered in the advice

model or set the specific constraints on the attributes of

those elements, e.g. Strong (resp. Weak) Model Element

Coverage can be parameterized with the element type, e.g.

Transition and universally (resp. existentially)

quantified over given type. More specific coverage

constraints can be constructed using type discriminating

predicates on, e.g., local data variables of an advice model.

IV. EXAMPLE: TESTING HOME REHABILITATION SYSTEM

 The AO MBT approach described in Section 3 has been
applied in testing a Home Rehabilitation System (HRS). The
model-based testing is needed in the medical domain
because of the safety critical nature of the systems and non-
trivial combination of functional, performance and security
features [11]. The HRS is an application which drives sensor
devices, analyses the gathered data, interacts with the patient
and submits relevant information to the hospital through the
Internet. HRS software contains the following
subcomponents: dedicated health hub as communication
gateway; vital signals' sensor system for patient
measurements; movement tracking sensor system for fall
detection, physical activity and exercise monitoring.

There are three actors, namely, Patient, Plan and Sample,
interacting in the "home exercising" use case. The
composition of automata Plan and Sample constitute the
base model that can be woven with different advice models
depending on what body characteristic (pulse, blood
pressure, etc.) is monitored. For instance in Figure 3, the use-
case exercising is refined with two advice models that are
instances of the same automaton template. The advice
models linked to the base model are location refinements of
the unnamed location in the automaton Sample. Channel
Sample ensures that the advice models are executed
synchronously with the edge departing from location
Measure in the automaton Sample. A weak join point

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

coverage of completing exercising can be specified now

using query E<>exists(Screen=UB_warning[1]).
The test case ensures that while a patient is exercising, a
warning will be shown on a screen when the patient’s pulse
is greater than the number in U_bound. On the other hand
U_bound is the upper value of pulse that the patient may
have during exercising and this is specific to each patient.
For example if the U_bound is 140 then a warning on a
screen goes red and warns “wait until your pulse will be
normal”. We measure the pulse under “measurement [1]”
and an upper bound and a lower bound are indicated. A
normal pulse measurement have to be between U_bound and
L_bound.

A strong join point coverage of completing exercising

can be specified using query E<>forall
(Screen=normal[1])measurement[1]>=L_bound

[1]&&measurement[1]<=U_bound[1]. That means
the screen indicates in green that everything is alright and the
patient can continue exercising because their pulse is within
the allowed range. By this strong join point test coverage, we
ensure that our system is able to give the right warnings
whenever necessary.

V. CONCLUSION

In this work, we have introduced an aspect-oriented
approach to model-based testing in the context of Uppaal
timed automata specifications. We advocate the view that
aspect-oriented models help in constructing models of
system under test in a systematic and user friendly way, thus
helping to defeat the perennial problems of MBT -
complexity of construction and maintenance of test models.
It has been shown how the aspect related test coverage
criteria can be formalized in a systematic way in Uppaal
query language Timed Computation Tree Logic (TCTL) and
the feasibility of test suites verified on aspect models before
real tests are deployed and executed.
 Our focus on how a test case can be generated according
to structural units that are specific to AOM is novel. This
gives new test coverage criteria that address implemented
features – aspect, advice, join-points, etc., and provide more
intuitive reference to the parts of SUT to be tested for those
features.
 Another contribution for enhancing MBT by aspects is
the possibility of easy update of test case related models. If
new requirements arise, new advice models can simply be
incorporated by well-defined composition rules. This is
especially relevant in regression testing.

ACKNOWLEDGMENT

This research was supported by the European Social
Fund’s Doctoral Studies and Internationalisation Programme
(DoRa), and by the Competence Centre Programme of
Enterprise Estonia.

REFERENCES

[1] J. Vain, M. Kääramees, and M. Markvardt, “Online testing of

nondeterministic systems with reactive planning tester,” in: L.

Petre, K. Sere, and E. Troubtsyna (Eds.). Dependability and

Computer Engineering: Concepts for Software-Intensive

Systems. Hershey, PA: IGI Global (2012), pp. 113-150.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J. - M. Loingtier, and J. Irwin, “Aspect-Oriented

Programming”, ECOOP’97, June, 1997, pp. 220-242.

[3] J. Kienzle, A. Wisam, F. Fleury, J. Jezequel, and J. Klein,

“Aspect-Oriented Design with Reusable Aspect Models.”

Transactions on Aspect-Oriented Software Development,

vol7, 2010, pp. 279-327.

[4] T. Cottenier, A. van den Berg, and T. Elrad, “Stateful

Aspects: The Case for Aspect-Oriented Modeling.”

Proceedings of the 10th AOM Workshop, 2007, pp. 7-14.

[5] E. Katz, and S. Katz, “User queries for specification

refinement treating shared aspect join points.” Proceedings of

the 8th IEEE, 2010, pp. 73-82.

[6] J. Bengtsson, and W. Yi, “Timed automata: Semantics,

algorithms and tools.” Lecture Notes on Concurrency and

Petri Nets, Lecture Notes in Computer Science vol. 3098,

2004, pp. 87-124.

[7] S. Clarke, and E. Baniassad, Aspect-Oriented Analysis and

Design: The Theme Approach. Addison-Wesley Professional.

2005.

[8] A. Rashid, “Aspect-Oriented Requirements Engineering: An

Introduction”. In Proceedings of 16th IEEE, 2008, pp. 173-

182.

[9] K. Sarna, and J. Vain, “Exploiting Aspects in Model-Based

Testing,” in Proceedings of 11th FOAL. ACM, New York,

NY, USA, 2012, pp. 45-48.

[10] A. Hessel, K. G. Larsen, P. Pettersson, and A. Skou,” Testing

Real-Time Systems Using UPPAAL.” Lecture Notes in

Computer Science vol. 4949. 2008, pp. 77-117.

[11] A. Kuusik, E. Reilent, K. Sarna, and M. Parve, “Home

telecare and rehabilitation system with aspect-oriented

functional integration.” Biomedical Engineering, DOI:

10.1515/bmt-2012-4194 (accessed 01.08.2014).

[12] K. Larsen, P. Pettersson, and W.Yi. UPPAAL in a nutshell.

Journal on Software Tools for Technology Transfer, 1997, pp.

134-152.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

Figure 3. Composing the primary test models and advice model in parallel.

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

