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Abstract— The paper focuses on modularizing test models by 

adapting aspect-oriented modelling techniques. Model-based 

testing is an unavoidable part of contemporary model-driven 

software processes. The essence of model-based testing is to 

provide methods and tools to validate software systems by 

generating test cases systematically from models. From the 

practical usage point of view, it is critical to construct models 

that capture the essential aspects of the system under test. The 

proposed test design approach allows systematic separation of 

testing concerns, that, in turn, helps to overcome the 

complexity issues. Also, verification conditions are proposed to 

ensure the correctness of derived aspect test models and their 

compatibility with base test models. We demonstrate the 

technique of test model construction using timed automata 

models and illustrate it with a home rehabilitation system case 

study.  

Keywords-aspect-oriented testing; model-based testing; test 

model design; test generation. 

I.  INTRODUCTION 

In the current practice of software testing, including 
Model-Based Testing (MBT), the test cases are frequently 
insufficiently structured and specified. The test designers 
use component-based or hierarchical state models. 
However, these modelling approaches provide poor support 
for isolating crosscutting features, specifically, functions 
that are spread across the software modules and tangled with 
other functions. We use the principles of Aspect-Oriented 
Modelling (AOM) to modularize such crosscutting 
functions into aspects. The AOM approach has evolved 
from aspect-oriented programming [2] to produce well-
structured and well-encapsulated software. We enhance 
MBT design methodology with aspect handling capabilities 
taken from AOM [3]. Using the principles of AOM we can 
encapsulate typical cases like specifying requirements (use 
cases) that do not specify one property (scattering) or 
different functionalities (tangling). In this paper, we will 
explain how to conceptualize concerns into aspects and how 
to extract test cases from these aspect test models. 

In MBT, the tests are generated from formal models of 
the System Under Test (SUT). The AOM technique 
introduced by Sarna and Vain [9] models SUT using timed 
automata and defines aspect models as refinements of the 
base model. The structural test coverage criteria considered 
are the same as those commonly used in state models, i.e., 
state, and transition coverage. As a novelty, in this paper we 
demonstrate how a test suite can be generated according to 

structural units that are specific to AOM. This gives us new 
test coverage criteria that address implemented features – 
aspect, advice, join-points coverage, etc. - and provide more 
intuitive reference to the parts of SUT to be tested for those 
features.  

Another advantage of Aspect-Oriented (AO) MBT is the 
possibility of easy modification of the test suite. When new 
requirements arise, new advice models can be woven into 
the test suite without redesigning the existing base model. 

Applying the principles of AOM does not provide 
compositional testing techniques per se. Compositionality of 
proposed AO testing is achieved by imposing extra 
constraints on how the advice models are constructed and 
model weaving operations defined. We define these rules in 
the semantic framework of Uppaal timed automata [6] and 
formulate the proof obligations to be model-checked. Our 
approach is illustrated with a home rehabilitation system 
testing framework. 

The rest of the paper is structured as follows. We 
introduce the technical background in Section 2. Section 3 
describes AO MBT. In Section 4, the home rehabilitation 
system is introduced. Finally, Section 5 concludes the paper. 

II. BACKGROUND 

A. Aspect-oriented modelling 

AOM is a way of modularizing crosscutting concerns 
much like object−oriented programming is a way of 
modularizing common concerns. Crosscutting concerns 
generally refer to non-functional properties of software, 
such as security, synchronization, mobility, resilience, etc. 
In addition, every system may contain its own application 
specific crosscutting concerns [5]. 

Cottenier et al. [4] and Rashid [8] have admitted that 
AOM technologies have the potential to simplify software 
deployment, and the ability to improve the categorization of 
crosscutting concerns. Also, AOM aids in modular 
extension of object systems, where the treatment of 
crosscutting concerns is encapsulated in separate modules 
called aspects. We use concepts taken from AOM, such as 
Aspect, Advice, Join-points, Pointcut, and Weaving. 
     An aspect consists of two parts: the code/model 
associated with treatment of the concern (called advice), and 
a predicate defining when the advice should be applied 
during system executions (called a pointcut). The points in 
the code/model that are identified by a pointcut are called 
join-points.  
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     A pointcut selects a subset of join-points based on 
defined criteria. The criteria can be explicit function names, 
or function names specified by wildcards. Pointcuts can be 
composed using logical operators. Customized pointcuts can 
be defined, and pointcuts can identify join-points from 
different aspects. The process of adding aspects to a base 
system is called weaving; and the result is referred to as the 
woven system [5]. AOM techniques use the term advice for 
the action an aspect will take and join-points for where these 
actions will be inserted in the base system model. Pointcuts 
are used to specify the rules of where to apply an aspect. 
Advice, join-points, and pointcut are specified as one entity, 
called an aspect [7]. 
     As in AOM, AO testing uses a base test model and 
several aspect test models. An example of a base test model 
is depicted in Figure 1 (for better understanding of the 
relationship between the models, we use an Automatic 
Teller Machine (ATM) as an example of a well-known 
system). The ATM test model specifies the use case of 
withdrawing money from an ATM. Crosscutting features 
are treated as patterns described by aspect advice models, 
and common features are described in the base model. The 
result of weaving the base model with advice models is 
called the composed aspect model. An advice model can be 
woven with the base model in many places and in different 
ways. The Transaction advice model is defined as location 
refinement of both ATM and Customer automata. The 
details of advice model construction in the test design level 
are presented in [9]. 

Figure 1.  The base test model of ATM. 

     The base model of an ATM depicted in Figure 1 includes 
interacting Customer and ATM automata. Refinements in 
Figure 2 specify aspects of interest: (i) the Transaction 
advice model is defined as location refinement of both ATM 
and Customer automata; (ii) edge refinement of ATM. The 
aspect behaviour is launched from the base model explicitly 
with the help of channels. We model in Uppaal 
(www.uppaal.com), a tool box for modelling, simulation 
and verification of timed automata. In Uppaal [12], the 
synchronization mechanism is a hand-shaking 
synchronization: two processes go through a transition at the 
same time, one will be labelled x !, and the other x ?, where 
suffixes ?, and ! after the channel name x distinguish 
sending and receiving synchronization information 
respectively. A system is composed of concurrent processes, 
each of them modelled as an automaton. The automaton has 
a set of locations and edges to specify the control flow. A 
transition specified by an edge is enabled if its guard and 
synchronization conditions are satisfied. The transaction 
automaton in Figure 2 introduces the EnquireBalance aspect 

Figure 2.  The aspect model “Transaction”. 

advice. Since the refinement (ii) introduces a new 

interaction between ATM and a new actor Server (not 

shown in the model) the edge introduced is labelled with the 

‘balanceCheck!’ channel. When the aspect related tests have 

to be generated from the composed model of SUT that 

includes the automata in Figures 1 and 2, we can ignore all 

the transactions that the aspects of interest do not depend on. 

For instance, when testing the balanceCheck! transaction 

between ATM and Server the tester model is extracted from 

the composition Customer || Customer(Transaction) by 

algorithm of [1] so that the test sequence <card!, 

choseTransaction!, transaction_type := enquire, start-

Transaction!, wait,[finishTransaction?| timeout >= const1, 

TESTFAIL], choseExit!, card?, TESTPASS > can be 

executed. 

B. Model-based testing 

MBT uses abstract behavioural models for specifying 
the expected behaviour of the SUT and for automatically 
generating tests to check if the behaviour of SUT conforms 
to the model. The SUT is an executable implementation 
which is considered as a black-box during the testing 
process, i.e., only inputs and outputs of the system are 
visible externally. The SUT is tested incrementally by 
applying test cases. A test case in MBT is defined as a 
sequence of test stimuli paired with expected SUT outputs.  
A specified set of test cases constitutes a test suite. 

 

C. Uppaal timed automata 

Assume a finite alphabet  ranged over by a, b,... stands 
for actions and a finite set C of real-valued variables ranging 
over by x, y, z, standing for clocks.  
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A guard is a conjunctive formula of atomic constraints of 
the form x ~ n for c  C, ~  {, , =, >, <} and n  N. We 
use G(C) to denote the set of guards, ranged over by g. 
 

Definition 1 (Timed Automaton) [6] 
A timed automaton A is a tuple N, l0, E, I where 
– N is a finite set of locations (or nodes), 
– l0  N is the initial location, 
– E  N  G(C)    2C  N is the set of edges and 
– I: N  G(C) assigns invariants to locations (here we 
restrict to constraints in the form: x  n or x < n, nN. For 
shorthand we write l g,a,r l’ to denote l, g, a, r, l’  E. 
To model concurrent systems, timed automata are extended 
with parallel composition. In the UPPAAL modelling 
language, the CCS parallel composition operator is used, 
which allows interleaving of actions as well as hand-shake 
synchronization. The parallel composition of a set of 
automata is the product of the automata.  
The semantics of timed automata is defined as a transition 
system where configuration consists of the current location, 
valuation of state variables and the current values of clocks.  
There are two types of transitions between states: the 
automata may either delay for some time (delay transition), 
or follow an enabled edge (action transition). 
      To keep track of the changes of clock values, we use 
functions known as clock assignments mapping C to the 
non-negative reals R+. Let u, v denote such functions, and u 
 g means that clock values denoted by u satisfy the guard 
g. For d  R+ let u + d denote the clock assignment that 
maps all x  C to u(x) + d and for r  C let [r ↦0] denote 
the clock assignment mapping all clocks to 0 and agree with 
for the other clocks in C\r. 
 
Definition 2 (Operational Semantics) [6] 
The semantics of a timed automaton is a transition system 
(also known as a timed transition system) where states are 
pairs l, u and transitions are defined by the rules: 
– l, u d  l, u + d if u I(l) and (u + d)  I(l) for a non-
negative real d  R + 
- l, u a l’, u’ if l g,a,r l’, u  g, u’ = [r ↦0]u and 
u’I(l’). 
To increase the modeling power keeping the analysis  
traceable for planner synthesis we lift  the model class to 
rectangular timed automata where guard conditions are in 
conjunctive form with conjuncts including besides clock 
constraints also constraints of integer variables.  

Similarly to clock conditions, the integer variable 

conditions are of the form k ~ n for k  Z, ~  {, , =, >, <} 

and n  N. The advantage of this extension is that the model 
has rich enough modelling power to represent real-time and 
resource constraints being same time efficiently decidable 
for reachability analysis. 

III. ASPECT-ORIENTED MODEL-BASED TESTING 

In this section, we explain the concepts of AOM 
applicable in aspect-oriented MBT. The AOM allows the 
models to be organized so that they address particular 
requirements (including crosscutting ones) and 
corresponding test cases. The AO test model includes a base 
model and aspect-related advice models. Aspects may 
contain sub-aspects that require sub-advices and their own 
test cases. Sub-aspect models have to be easily inserted into 

their parent aspect models. In our examples, we use name 
prefixes that refer to the parent models so that they are 
convenient to comprehend and maintain. 
     AO testing can also be considered as an example of 
compositional testing where the test results of the composed 
system can be inferred from the test results of its 
components. In the MBT context, it means that the test 
cases are determined only by the context of the aspect 
advice models and the interface behaviour of their 
composition. AOM also provides a conceptual basis for 
defining test coverage criteria in terms of aspect related 
model elements. The hierarchy of those criteria is depicted 
in Table I. 

TABLE I.  AO TEST COVERAGE CRITERIA 

             Coverage  

Type       constraint   

of coverage  

entity 

Strong 

(universal) 

coverage 

 

Weak 

(existential) 

coverage 

 

Discriminati

ng predicate 

Aspect   

A 

All aspects of the 

model 

 A  A. ... 

Some aspects of 

the model 

 A  A. ... 

Predicate on 

aspect 

constants 

/variables 

i-th join point 

jp(A, i) 

All join points of 

aspect A 

 jp(A, i)JP(A) 

. ... 

Some join points 

of aspect A 

 jp(A, i) JP(A) 

. ... 

Point cut 

condition 

Entry-exit path  

of an advice model 

MA'
 

 Paths(MA') 

All paths 

initiated at 

i-th join point 

  Paths(MA') 

Some paths 

initiated at  

i-th join point 

 Paths(MA') 

Path 

predicate, 

e.g. 

constraint on 

path length 

Model element of 

type T (location, 

transition, 

function, data, etc) 

included in the 

path 

 Paths(MA') 

All elements of   

type T in MA' 

Some elements 

of  

type T in MA' 

Predicate on 

the 

attributes of  

type T 

 

    The criteria shown in Table I can be expressed as closed 

1st order logic formula in prenex normal form, where the 

signature includes variables of particular types of structural 

elements of Uppaal Timed Automata (UPTA) (template, 

location, transition, label, function, data, etc.). The prefix of 

the prenex formula includes bound variables in a fixed order 

that is determined by the natural hierarchy of modelling 

entities: aspect, join-points, and path. These entities model 

the structural elements of UPTA, where the structural 

elements can be referred to directly by name or indirectly by 

constraints on their attributes. The matrix part may include 

discriminating predicates of all the above listed types. 

     The semantics and scoping of AO coverage constraints is 

defined by the hierarchy and type structure of AO model 

elements (left most column in Table I). Thus, the scope of 

constraints on bound variable in the formula matrix part is 

defined by the position of the bound variable in prefix. For 

instance, the scope of a path constraint is defined by the 

join-point and aspect constraints because these elements 
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precede path variable in the prefix. When not explicitly 

expressed in coverage constraint the default scoping means 

existential quantification over all those variables preceding 

in the prefix of coverage constraint. For characterization of 

coverage criteria in terms of Uppaal query language, we 

assume that the aspect model M is constructed according to 

the rules described in [9]. The idea is to use Uppaal model 

checker queries for selecting traces that constitute the test 

paths of the given test case. Uppaal query based online test 

generation methods are described by Vain et al. [1] and 

Hessel et al. [10].  

 

Aspect Coverage criteria impose to execute all or some 

aspects in a woven model at least once. In Strong Aspect 

Coverage (SAC), given an aspect model M, all possible test 

paths must be covered by the tests. To implement the Strong 

Aspect Coverage we use the parameterized UPTA templates 

where the template parameter pi ranges over indexes [1, n] 

that identify the aspect. Let P(i) be a predicate updated to 

true whenever  the i-th aspect advice model is entered. Then 

the traces of M (pi) under Strong Aspect Coverage criteria 

should satisfy the query: E<> forall (i: int [1,n]) 

P(i). Note that given query is valid only for paths that 

include traversal of all aspects' advice models. In general, 

the model M may not be fully connected and a single path 

including all aspects may not exist. Therefore, we introduce 

an auxiliary reset- transition into M that guarantees that if n 

advice models are reachable in M then at most with n 

traversals all of them are visited. The reset-transition 

connects the final location of M with its initial location. Due 

to this construct the Uppaal model checker is able to 

generate a trace that includes visits of all advice models. 

The tests paths for a final test case can achieved simply by 

"cutting" that trace at reset- transitions to many shorter sub 

traces. 

Weak Aspect Coverage (WAC) refers to the case where at 

least one advice model of some aspect is traversed by the 

test path. The query E<> forall (i:int [1,n]) P(i) 

differs little from the strong  coverage constraint but it does 

not require including reset-transitions in the model M. 

 

Join Point Coverage criteria impose to execute all or some 

join points of each aspect in a woven model at least once. 

Strong Join Point Coverage (SJPC) presumes similarly to 

strong aspect coverage introduction of an auxiliary reset- 

transition into M. Regardless the prefix (SAC or WAC)  of 

the query the SJPC contributes a conjunct of form ...forall 

(j: int [1,m]) P(i) && R(j) where j is ranging 

over  join point indexes of  the aspects referred in the prefix  

of that query and R(j)is a Boolean variable at each join 

point updated to true, whenever this join point is visited. 

Weak Join Point Coverage (WJPC) is satisfied if there is at 

least one trace for given formula prefix satisfying  ...exists 

(j: int [1,m]) P(i) && R(j). Here, like in WAC, 

auxiliary reset-transition is not needed. 

Aspect Path Coverage criteria impose to execute all or 

some paths of each aspect in a woven model at least once. 

Assume the entry and exit transitions of each advice models 

are decorated with entry(i, j,k) and exit(i, j,l) predicates 

where i, j, k, l range over the set of aspects, join points, and 

their advice entry and exit points respectively. Whenever the 

transition is executed these predicates evaluate to true. 

Then, the Strong Aspect Path Coverage (SAPC) contributes 

a conjunct to the query prefixed with aspect and join point 

constraints as follows:  ... forall (k: int [1,K]) 

forall (l: int [1,L]) P(i) && R(j) && [(k=1,K 

entry(k)) (l=1,L exit(l)). SAPC, like earlier strong 

coverage criteria, presumes the reset-transitions related 

construct. Weak Aspect Path Coverage (WAPC)  comparing 

to SAPC replaces universal quantifiers with existential ones 

for variables k and l, the coverage constraint becoming  to ... 
exists(k: int[1,K]) exists(l: int[1,L]) P(i) 

&& R(j) && [(k=1,K entry(k))  (l=1,L exit(l)). 

 

The Model Element Coverage criteria impose constraints 

on the types of UPTA elements to be covered in the advice 

model or set the specific constraints on the attributes of  

those elements, e.g. Strong (resp. Weak) Model Element 

Coverage can be parameterized with the element type, e.g. 

Transition and  universally (resp. existentially) 

quantified over given type. More specific coverage 

constraints can be constructed using type discriminating 

predicates on, e.g., local data variables of an advice model. 

 

IV. EXAMPLE: TESTING HOME REHABILITATION SYSTEM 

 The AO MBT approach described in Section 3 has been 
applied in testing a Home Rehabilitation System (HRS). The 
model-based testing is needed in the medical domain 
because of the safety critical nature of the systems and non-
trivial combination of functional, performance and security 
features [11]. The HRS is an application which drives sensor 
devices, analyses the gathered data, interacts with the patient 
and submits relevant information to the hospital through the 
Internet. HRS software contains the following 
subcomponents: dedicated health hub as communication 
gateway; vital signals' sensor system for patient 
measurements; movement tracking sensor system for fall 
detection, physical activity and exercise monitoring.            

There are three actors, namely, Patient, Plan and Sample, 
interacting in the "home exercising" use case. The 
composition of automata Plan and Sample constitute the 
base model that can be woven with different advice models 
depending on what body characteristic (pulse, blood 
pressure, etc.) is monitored. For instance in Figure 3, the use-
case exercising is refined with two advice models that are 
instances of the same automaton template. The advice 
models linked to the base model are location refinements of 
the unnamed location in the automaton Sample. Channel 
Sample ensures that the advice models are executed 
synchronously with the edge departing from location 
Measure in the automaton Sample. A weak join point 
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coverage of completing exercising can be specified now 

using query E<>exists(Screen=UB_warning[1]). 
The test case ensures that while a patient is exercising, a 
warning will be shown on a screen when the patient’s pulse 
is greater than the number in U_bound. On the other hand 
U_bound is the upper value of pulse that the patient may 
have during exercising and this is specific to each patient. 
For example if the U_bound is 140 then a warning on a 
screen goes red and warns “wait until your pulse will be 
normal”. We measure the pulse under “measurement [1]” 
and an upper bound and a lower bound are indicated. A 
normal pulse measurement have to be between U_bound and 
L_bound. 

A strong join point coverage of completing exercising 

can be specified using query E<>forall 
(Screen=normal[1])measurement[1]>=L_bound

[1]&&measurement[1]<=U_bound[1]. That means 
the screen indicates in green that everything is alright and the 
patient can continue exercising because their pulse is within 
the allowed range. By this strong join point test coverage, we 
ensure that our system is able to give the right warnings 
whenever necessary. 

 

V. CONCLUSION 

In this work, we have introduced an aspect-oriented 
approach to model-based testing in the context of Uppaal 
timed automata specifications. We advocate the view that 
aspect-oriented models help in constructing models of 
system under test in a systematic and user friendly way, thus 
helping to defeat the perennial problems of MBT - 
complexity of construction and maintenance of test models. 
It has been shown how the aspect related test coverage 
criteria can be formalized in a systematic way in Uppaal 
query language Timed Computation Tree Logic (TCTL) and 
the feasibility of test suites verified on aspect models before 
real tests are deployed and executed. 
     Our focus on how a test case can be generated according 
to structural units that are specific to AOM is novel. This 
gives new test coverage criteria that address implemented 
features – aspect, advice, join-points, etc., and provide more 
intuitive reference to the parts of SUT to be tested for those 
features. 
    Another contribution for enhancing MBT by aspects is 
the possibility of easy update of test case related models. If 
new requirements arise, new advice models can simply be 
incorporated by well-defined composition rules. This is 
especially relevant in regression testing. 
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Figure 3.  Composing the primary test models and advice model in parallel.  
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