UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Intelligent Agent-Based Approach for Real-Time Reconfiguration
of Cloud Application

Walid Bouzayen*!, Hamza Gharsellaoui*!, Mohamed Khalgui*$
*LISI, INSAT Institute, Carthage University, Tunisia
TFST, Tunis El Manar University, Tunisia
iENI-Carthage, Carthage University, Tunisia
§SystemsControl Lab, Xidian University, China
Email: {walid.bouzayen, gharsellaoui.hamza, mohamed.khalgui} @ gmail.com

Abstract—This paper deals with the problem of reconfiguration of
Internet of Things (IoT) and Cloud Computing (CC) applications
which have been widely studied recently. They are composed of
a set of interconnected software components running on real-
time on remote virtual machines. Virtualization is one of the
building blocks for cloud computing and provides the mechanisms
to implement the dynamic allocation of resources. Once cloud
applications are deployed, they need to be reconfigured in order
to react to any disturbance created by the removal or modification
of virtual machines or components that make up these machines.
In this paper, the original approach proposed for handling
these reconfiguration scenarios must preserve the application
consistency, feasibility, computing time, low power consumption
and respect important architectural invariant related to real-time
properties and to software dependencies. Finally, the challenges,
advantages of the proposed cloud architecture and future works
for the application and implementation are discussed.

Keywords—Cloud Computing; Reconfiguration Technology; In-
ternet of Things.

I. INTRODUCTION

This work touches areas of Internet of Things (IoT) and
Cloud Computing (CC). A system is made of interconnected
Virtual Machines (VMs) where each one runs a set of pro-
cesses. It is usually necessary to reconfigure a process, com-
ponent or any object of the cloud, which also requires the
reconfiguration of the whole system at run-time. CC aims
to build a virtual infrastructure providing users with remote
computing and storage capacity. CC is rapidly gaining traction
in industrial and business ethics. It offers businesses online
services on demand and allows them to reduce costs on
software, hardware and information technology support [2].
On one hand, dealing with this new technology, CC analyzes
the informational duties of hosting companies that own and
operate CC datacentres (e.g., Amazon). On the other hand,
it considers the cloud services providers leasing “space in the
cloud” from hosting companies (e.g., Salesforce, Dropbox) and
it examines the private ’clouders” and the business using these
services.

IoT is a concept of communication between people and
smart objects and the CC technology is based on the virtual-
ization. In literature, Srivastava [15] states that IoT represents
the greatest level of technological convergence that we can
currently imagine. Moving from an Internet of user-generated
content to thing-generated content will produce a new level
of sensory awareness, with the ultimate goal of increasing
our control over time and space. The vision that characterizes
the IoT is one where things are connected that we would not
previously have considered relevant to computation or feasible

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

to integrate with a network. This change will allow various
forms of data to be collected from all kinds of objects around
us, from the use of appliances and lighting to door locks,
clothes or toothbrushes [16]. Therefore, in the domain of CC,
we must deal with two key issues: computing and storage. This
latter is increasingly considered as a major research field in the
area of CC. Indeed, more and more data intensive applications
are attracted by the cloud since cloud storage can provide
high scalability, fault tolerance, security, availability and cost-
effective data services [1]. The huge number of users of the
cloud and the devices makes the control of the performance
of different storage nodes very difficult or impossible to the
network manager. The cloud network has a huge amount of
data written to it by different users on storage devices; a great
percentage of this data might be similar or identical. Almost
90% of the data stored in cloud is duplicated [3].

In order to optimize the storage over cloud, many methods
and techniques have been used: compression, snapshots and
deduplication. Data compression [24] is a technique to reduce
storage cost by eliminating redundancies in different files.
There exist two types of compression, lossy and lossless. The
technology of Snapshot [21] is defined as a virtual copy of a set
of files. This technique solves several data backup problems,
including backing up large amounts of data and recovering cor-
rupted data. Data deduplication [22] is a technique for reducing
the amount of storage space by eliminating redundant data.
This is called intelligent compression. Many works related
to the cloud reconfiguration have been proposed. Duran and
Salaun [20] proposed a reconfiguration scenario on a simple
Web application that includes three VMs with the following
components: Apache, Tomcat, MySQL. The first drawback is
that the reconfiguration scenario poses no major problem and
the order of the shutdown and the restart of components/VM
is obvious. The other drawback, which seems obvious in the
solution proposed in [20] is the systematic shutdown of all
components and machines that support them. This solution
seems a bit exaggerated and unrealistic. It would be wiser to
stop only the components that should be stopped and let those
which cannot be stopped run.

Our contribution in this paper is to model and propose an
intelligent agent-based architecture, able to manage applica-
tions/services with integrated Cloud IoT while meeting perfor-
mance criteria based on performance running time and power
consumption. This work proposes an online reconfiguration
algorithm that optimizes both the cost of storing and memory
performance. For this reason, we opted for the modeling of a
dependency graph whose vertices are the components/objects

166

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

and edges are connections between these different compo-
nents/objects, that can be executed on the same VM or different
VMs. We also formalized a method of scheduling compo-
nents/objects such that the start/stop components or objects
is done in a consistent manner. As a result, we propose to
use a weighted graph. On each arc, we add information that
specifies if the shutdown of destination component imposes or
not the shutdown of the source component. In this case, when
a component needs to be stopped, stopping the component
that precedes it will no longer be required, which allows a
performance gain. To the authors knowledge, the first work
that deals with the real-time reconfiguration of IoT and CC
applications is what we propose in this paper which allows a
performance gain in storage and power and for this reason we
consider it as original work.

The remainder of the paper is organized as follows. Section
2 presents a brief overview of the application and recon-
figuration of IoT and CC applications in manufacturing and
embedded systems. In Section 3, we present our proposed
solutions and implementation. Section 4 describes our case
study and Section 5 discusses our experimental studies. Finally,
Section 5 concludes this paper and gives avenues for future
work.

II. STATE OF THE ART

Even though, the proposed approaches that offer cost mod-
els for storage devices are known to be particularly difficult,
they have attracted the interest of many researchers. In [4],
Kim et al. propose a model which optimizes the storage system
based on the consumption of energy. Despite having applied
this approach to several types of storage devices from the Hard
Disk Drive (HDD) to the Solid-State Drive (SSD) [5][6] it
seems to be difficult to apply the presented approach on VMs.
Indeed, the VMs depend on several factors such as the type of
the virtualization, the hypervisor and the VM reconfiguration
(adding, deleting and modifying components/ objects) [4]. The
model proposed by Kim et al. runs under devices which causes
a limited memory, so our main challenge is to propose an
intelligent agent-based approach for real-time reconfiguration
of cloud applications that will guarantee the storage capacity
as a performance factor.

Many other domains such as the transformation of the
graph [7], meta-modelling [8], reconfiguration patterns [9],
software architectures [10][11] have been addressed by many
works in literature. In this sense, the works of Darwin [10]
and Wright [11] help users to formally develop dynamic
applications. The main characteristics of these formal models
are the dynamic reconfiguration (adding or removing links)
of component-based systems [17]. The protocol proposed by
Salaun et al. [13] has the advantage of knowing the number
of VMs, components and their relationships. However, the fact
that this protocol is deployed in a cloud environment in a de-
centralized way does not guarantee the majority of applications
that will require reconfiguration due to new requirements, scal-
ing on demand or application techniques for recovery failures.
Boyer et al. [14] propose a robust reconfiguration protocol
to disconnect ports and to change the state of components.
Despite the correctness of the protocol which is proven by the
authors in their work, this approach has the inconvenient that
all components are hosted on a same VM. In the same sense,
a single centralized manager is used to ensure the steps of the
reconfiguration protocol.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

Other architectures are proposed in the literature and are
based on a life cycle model that consists of basic states
with a direct implication on the VMs and the Infrastructure
As A Service (IAAS) layer. This framework supplies cloud
services such as those proposed in Slim [5] and Claudia [11].
These frameworks take into account the configuration and
infrastructure establishment on demand through the process
of service deployment.

However, none of the existing works presents a practical
model to reconfigure the cloud applications at run-time by
using a modeling formalism, a graph of dependencies and the
use of intelligent agents.

III. PROPOSED CONTRIBUTION

In this section, we present our proposed contribution im-
plemented by a multi-agent architecture.

A. Motivation

In CC, we encounter two major problems: computing
and storage, and what interests us most is storage. In this
case, we have the memory allocation and the devices status
(free or busy). In this paper, two aspects will be dealt with
consequences that are storage and memory performance factor
where the goal of our contribution is to minimize the power
consumption and the computing time. For storage, there are
many works addressing these three methods: Deduplication,
Compression (dealing with files) and Snapshot (treating de-
vices while ensuring safety).

According to the work of Meyer and al. [22], the dedu-
plication method is used to remove duplicated files. In this
case, this method provides a gain of space of, e.g., X% and
if we combine it with the compression method that is used
to compress the files after deduplicating them, then it will
guarantee a Y% gain. To deal with the problem of memory
capacity, we will use the method of reconfiguration by propos-
ing the use of a dependency graph to show the relationships
between objects or components in VMs, with a weight of all
dependencies (arcs) that predict the starting or not of these
components and ultimately ensure the order of scheduling of
these components or objects with topological sort. In this case,
we must be able to propose a formal solution that ensures that
the order to stop and start the components/objects or VMs must
be coherent. We have to construct a graph of dependencies
between components. This graph G = (V, E) is oriented where
the vertices (V) are the components and arcs (E) are pairs of
components (C;,C;). The starting, stopping, or removing of
a component C; should depend on the component C;.

To construct the sequence diagram, we proceed to the
topological sort of the dependency graph. The order of nodes
indicates the coherent order of stopping or starting components
or objects. The topological sort imposes Depth First Search
(DFS) of the dependency graph. Then, we propose the use of
a weighted graph G = (V, E, c¢) where c is the cost function
defined by: ¢ : E = {0,1}, where for each arc (C;,C};)
we associate 1 the stopping of C; requires stopping C; and
0 otherwise. For each arc of the dependency graph, we add
an information that specifies if the shutdown of destination
component of this arc imposes or not the shutdown of the
source component. In this case, when a component needs to be
stopped, stopping the component that precedes will no longer
be required, which allows a performance gain in memory. We

167

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

take an example of n VMs composed of n components as
shown in Fig. 1. Then, we apply the graph of dependencies,

1)
VM1
oA \ 2)
} c2
|
VM2 o 3)
-+ C3 é/ C6 c7
p L. S P,
Figure 1. Example of components running in many VMs. 4)
5)

presented in Fig. 2. After that, we apply the second method
of the topological sort as shown in Fig. 3.

As A Service (SAAS). We define five agents managing recon-
figuration scenarios, as follows:

Hypervisor Agent (AH) in charge of creating VMs
and controlling the cloud manager agent,

Cloud Manager Agent (ACM) in charge of the re-
configuration process and monitoring the status of
deployed VMs, by controlling and assuring the inter-
actions between the rest of the agents (the decisive
agent, the evaluation agent and the executive agent),
EValuation Agent (AEV) which subsequently sends
the request of reconfiguration operation to the ex-
ecutive agent and indicates success or failure against
the following performance criteria: minimized energy
criterion, maintenance and storage.

Decisive Agent (AD) according to the result of AEV,
the AD decides to reconfigure again or not.
EXecutive Agent(AEX) runs components or oper-
ations in each VM and controls the relationships
between them.

The proposed architecture of CC based on intelligent agents is

cz o €1
i % AN
I / \‘ i
&y s .
cs cs ‘-.\ o2 53
1
I‘. /,-'
'\\ /

Figure 2. The graph of dependencies.

C1
Ccé

C4

c8

shown in Fig. 4. Our architecture of IoT based on CC can be

B .

Software As A Service: "
Hypervisor Agent

software environnement

-Executive Agent
-Decisive Agent
Platform As A Service -Evaluation Agent

Infrastructure ASA < Add .
Service: Hardware
~ objects/icomponents

Rem Cloud Manager
Mod Agent

Figure 4. Architecture of cloud computing based on intelligent agent.

illustrated as shown in Fig. 5, where we take a smart hospital

as a use case.

Cc1 o] C4 Cc7 cs Cc3 c2 C5

Figure 3. The topological sort.

B. Multi-Agent Architecture

To handle all possible types of reconfigurations, predictable
or unpredictable, we propose an approach based on an in-
telligent agent-based architecture for real-time reconfiguration
of CC and IoT applications. Our architecture is based on a
hardware part composed of objects/components, a software
part composed of VMs and the third part is cloud services
including TAAS, Platform As A Service (PAAS) and Software

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

Smart
Hospital

Figure 5. Architecture of IoT based on CC.

168

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

C. Formalization

We describe four dimensions of reconfigurations at run-
time: reconfiguration of VMs, reconfiguration of objects or
components, reconfiguration of relations (bindings) and re-
configuration of environment. Also, we consider the follow-
ing reconfiguration operations: instantiation or destruction of
VMs, addition or removal of a component to/from an existing
VM, and addition or removal of liaisons. Now, let Sys be a
distributed reconfigurable system composed of n VMs noted
V' M,,, where each VM is composed of m objects/components
denoted C,,,. We denote NbCp_i the number of components
in each VM. Let A, be the agents to handle heterogeneous
reconfiguration scenarios with rs = [HLEX,EV,D,CM] (rs:
reconfiguration scenario). Let E be a finite set of states of
each VM as follows: Active, Inactive or Suspended where E
= [A, I, S]. Let R be the different reconfiguration operations:
Addition, Removal, or Modification, where R = [Add, Rem,
Mod]. Given the following matrix of size (n, 5) which defines
scenarios that can be applied simultaneously by the different
agents where each line corresponds to a reconfiguration sce-
nario and the columns correspond to the V M;, E, R, A, and
NbCp_i as described in Table I: We denote in the following

TABLE I. ARCHITECTURE DESCRIPTION

VM; E R Ays NbCp_i
VM, I Mod/Add A, 10
Mod Agy 2

VM, A

by: (1) I nstanéﬁn: a reconfiguration scenario applied by AH,
(ii) Reconf{*{M: a reconfiguration scenario applied by ACM,
(iii) Recon f(}M : a reconfiguration scenario applied by AEX,
(iv) Recon f{j‘]@n : a reconfiguration scenario applied by AEV,
(v) Recon f{;‘ﬁn: a reconfiguration scenario applied by AD.

Let Reconf be: Recon f{;‘;};%’jﬂd: a reconfiguration sce-
nario applied by agents under two conditions: the finite state
E and the different reconfiguration operations R, where i = [1,
n] and j = [1, m]. A priority level must be defined between
the different agents given as follows: (i) Ay its priority is
1; (i) Agyys: its priority is 2; (iii) Agy: its priority is 3; (iv)
Ap: its priority is 4; (v) Agx: its priority is 5; We also define
INT a set of interactions, where we distinguish two phases
shown in Fig. 6: (i) Trigger phase: an agent which decides
what direct interaction to launch and with which agent to
interact, (ii) Interaction resolution phase: when an interaction
is instantiated, to collectively choose an action from those
proposed by the interaction, this action will be called the result
of the interaction and its implementation will change the state
of the overall system. For this reason, we must also define
a transition function Tr between different VMs and that we
characterize as follow:

If Sending Then Tr(VM, VM, _1) =1

Else Tr(VM, VM,_1) = 0. An example is following:

Ist step: Instan{’

2nd step: AEX may apply the following reconfiguration
scenario :

Reconf} f/[XC? " \where Cond = [A, Rem], A corresponds to
the state machine (Active) and Rem is the removal reconfigu-

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

Trigger Phase Decision Reconfiguration/evolution system

AH
instantiate> ACM

- »AD s AEX W_}
g

Figure 6. Interaction between agents.

Data:

Result:

1 begin

2 date = 0; stack.init(); foreach x € S do
3 c[z] = WHITE;

4 L plz] = NULL;

5 foreach z € S do

6 if ¢[x] = WHITE then

L | DFS(z);

Figure 7. Topological sort algorithm.

ration operation on the corresponding V M, of the component
C;. We have to associate the following interactions between
the different agents involved in the reconfiguration operation
as follows:
Intapvap. Intapapx if Te(VM;, VM;_1) = 1.
3rd ste}): C; = 0 (component is stopped) Case I:
Recon firBX Femti. is 4 reconfiguration scenario of links
V M;,C; g

where Rempg,: is the removal of links R;. Case 2:
Recon fé‘ﬁf’éjemc] , where Remg, is the removal of the
component Cj.
4th Step: C; = 1 (component is active) Case I
Recon féf/[f’ccjnd, where Cond = [A, Add]. Case 2
Recon féﬁxg ddR’i,

i g

D. Implementation

In this section, based on the proposed work [25], we
implement the DFS algorithm which models our protocol
described by the topological sort present in Fig. 7. The strategy
of the DFS is to search in depth in the graph whenever
possible. The path of a graph ends when all nodes have been
visited. DFS will process the vertices first deep and then wide.
After processing a vertex it recursively processes all of its
descendants. The complexity of this algorithm shown in Fig.
8 is: T(n) = O(n + m), where n is the number of vertices
(components) and m is the number of edges (liaisons between
components).

IV. CASE STUDY

In this section, we present an evaluation of our proposed
contribution by a case study in the healthcare filed.

A. Presentation

Healthcare is an example where I[oT technologies are
used to accelerate and coordinate management of medical

169

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Data: x : a node

Result:
1 begin
2 | c[z] = GREY;
3 date = date + 1;
4 d[x] = date;
5 foreach y € a[z] do
6 if ¢[y] = WHITE then
7 L plyl =
8 DFS(y)

9 c[x] = BLACK;
10 date = date + 1;
11 stack.push(x);
12 flx] = date;

Figure 8. DFS algorithm.

information and patient care. Our use case is composed of:
(1) Different services (cardiology, pediatric, etc.).

(ii) For each service, there are different applications. Some
examples include the pacemaker which is in charge of the
measurement and regulation of the patients heart beats, an
electronic bracelet to track Alzheimers patients, etc.

Our proposed architecture of this use case is a private cloud
where we modeled every service by a VM and each application
is modeled by objects/components, as shown in Fig. 9. Each
object (e.g. electronic bracelet) has an agent that controls
the application composed of various agents to be distributed.
These agents interact with asynchronous messages to exchange
necessary information for starting/stopping the component.
Each application has two FIFO buffers, one for incoming
messages and one for outgoing messages. These applications
interact together in a point to point mode (no broadcast or
multi-way communication). Based on the case study discussed
above, a simulation and a performance evaluation will be
presented later.

—

VM2 “Add
El Rem Creation/destruction

. Execute operations
_—

AH

AEX —
binding
VM1
Rem
. | pacemaker —
AD \
VM4

decides to reconfigun
again or not e\

Arterial
pressure

>
B N T cM
. Evaluate criterea T Add T
AEV Of performance o

"~ Mod

Figure 9. Architecture of smart hospital (Private Cloud).

We present a reconfiguration scenario shown in Fig. 10 and
illustrated by the following steps:
(i) 1st step: AH instantiates all VMs and controls the ACM.
(ii) 2nd step: AEV failures on the balance of storage perfor-

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

N With: 1sisn

Figure 10. A reconfiguration scenario.

mance, as a consequence, AD demands to the AEX to recon-
figure again. Then, AEX adds the required liaisons between
the VMs.

(iii) 3rd step: AEX removes the component C;. (1) Case
1: AEX sends messages to VM2 for the removal of R;. (2)
Case 2: AEX sends messages to VM1 for the removal of
R;. (3) Case 3: AEX stops the execution of component Cy
and removes R;. (4) Case 4: AEX stops the execution of
component Co and removes Rs. (5) Case 5: AEX stops the
execution of component Cj.

(iv) 4th step: (1) Case 1: AEX adds a new C;. (2) Case 2:
AEX executes the component C’;. (3) Case 3: AEX adds a
new relation R). (4) Case 4: AEX executes the component
Cs. (5) Case 5: AEX adds a new liaison R}. (6) Case 6:
AEX executes the component Cf.

B. Application

In this section, we discuss the performance of our original
proposed approach by simulation tests and we discuss its effi-
ciency and effectiveness. We assume an environment of cluster
with 27 heterogeneous physical machines (PMs) where three
VMs are hosted. This environment includes 9 LENOVO hosts
with AMD Athlon(tm) 64 X2 3600+ 1.9GHz, 9 DELL hosts
with Intel(R) Core(TM)2 Duo 2.83GHz and 9 DELL machines
with Intel(R) Core(TM)2 Duo 2.33GHz. We are varying our
test parameters from 50 to 300 components and applying the
test for each value and every result is the average of 20
trials of the experiment. This paper just discusses computing
time and power consumption for each online reconfiguration
scenario. Note that how to choose the most suitable values for
each experimentation test is beyond the scope of this paper.
Each type of the three VMs is simulated where each type of
applications deployed in is referred to TPC-W benchmark [23].

C. Evaluation of Performance

In this section, we evaluate the efficiency and effectiveness
of our online reconfiguration of IoT and CC applications
approach. In Fig. 11, we show our proposed approach takes
less computing time than the computing time required in
[26]. Also, if we consider the A,; parameter as a modifi-
cation operation and the other three parameters (£, R and
NbCp_i) are assigned to fixed values, the computing time
of our proposed approach is almost linearly increasing with
the increase of interactions, which confirms that our approach
has high scalability. Also, our online reconfiguration conserves
the power consumption by up to 20% compared to the related
approach of Tang et al. [27], as shown in Fig. 12.

170

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Running time

Figure 11. Running time evolution.

Figure 12. Power consumption evolution.

V. CONCLUSION AND FUTURE WORK

This paper dealt with the performance criteria based on
computing time and power consumption. We proposed an in-
telligent agent-based real-time reconfiguration able to manage
applications in cloud and modeling formalism with algorithm
to optimize these criteria. Our work assumes different applica-
tions deployed on VMs dependent on each other which is valid
in reality and especially for current applications hosted in CC
data centers and IoT applications. In our future work, we will
continue our research taking into account real-time constraints
that will occur in the capture of data from the sensors, storage
capacity and security performance.

REFERENCES

[11 N. Khanghahi and R. Ravanmehr, ”Cloud Computing Performance
Evaluation: Issues and Challenges”. IJCCSA, vol.3, no.5, pp. 29-41,
2013.

[2] B. de Bruini and L. Floridi, "The Ethics of Cloud Computing”. Sci.
Eng. Ethics, pp. 1-19, 2016.

[3] I. Malhotra and J. Bakal, A Survey and Comparative Study of Data
Deduplication Techniques”. IEEE Inter. Conf. on Pervasive Computing
(ICPC), pp. 1-5, 2015.

[4] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam,
“Hybridstore: A Cost-Efficient, High-Performance Storage System Com-
bining SSDs and HDDs”. in IEEE 19th Inter. Symp. on MASCOTS’11,
pp. 227-236, Singapore, 2011.

[5S] Z. Li, A. Mukker, and E. Zadok, ”On the Importance of Evaluating
Storage Systems Costs”. 6th USENIX Workshop on HotStorage’ 14, pp.
6-6, Philadelphia, 2014.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

[6] Y. Li and D.D.E. Long, "Which Storage Device is the Greenest?
Modeling the Energy Cost of I/O Workloads”. IEEE 22nd Inter. Symp.
on MASCOTS’14, pp. 100-105, Paris, 2014.

[71 N. Aguirre and T. Maibaum, ”A Logical Basis for the Specification of
Reconfigurable Component-Based Systems”. In Proc. of FASEO3, vol.
2621 of LNCS, pp. 37-51. Springer, 2003.

[8] A. Ketfi and N. Belkhatir, A Metamodel-Based Approach for the
Dynamic Reconfiguration of Component-Based Software”. In Proc. of
ICSRO04, vol. 3107 of LNCS, pp. 264-273. Springer, 2004.

[9] T. Bures, P. Hnetynka, and F. Plasil, "SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model”. In Proc. of SERA06, pp.
40-48. IEEE Comp. Society, 2006.

[10] J. Magee and J. Kramer, "Dynamic Structure in Software Architec-
tures”. In Proc. of the 4th ACM SIGSOFT Symp. on Found. of Soft
Eng. SIGSOFT96, pp. 3-14, 1996.

[11] J. Magee, J. Kramer, and D. Giannakopoulou, ”Behaviour Analysis of
Software Architectures”. In Proc. of WICSA199, vol. 12 of IFIP Conf.
Proc., pp. 35-49, 1999.

[12] R. Allen, R. Douence, and D. Garlan, “Specifying and Analyzing
Dynamic Software Architectures”. In Proc. of FASE9S, vol. 1382 of
LNCS, pp. 21-37. Springer, 1998.

[13] G. Salaun, X. Etchevers, N. De Palma, F. Boyer, and T. Coupaye,
"Verification of a Self-configuration Protocol for Distributed Applications
in the Cloud”. In SACI2 Proceedings of the 27th Annual ACM Symp.
on App. Comp., pp. 1278-1283, ACM Press, 2012.

[14] F Boyer, O. Gruber, and G. Salaun, “Specifying and Verifying the
Synergy Reconfiguration Protocol with LOTOS NT and CADP”. In
Proc. of FM11, vol. 6664 of LNCS, pp. 103-117, Springer, 2011.

[15] L. Srivastava, "The Internet of Things-Back to the Future”, 2012,
URL: http://www.youtube.com/watch?V=CJdNq.7uSdd.Mandfeature=
related, [accessed 01-08-2016].

[16] ”Green Goose”, 2012,
04-08-2016].

[17] F Boyer, O. Gruber, and D. Pous, "Robust Reconfigurations of Com-
ponent Assemblies”. In Proc. of ICSE13, pp. 13-22, IEEE/ACM, 2013.

[18] J. Kirschnick, J.M. Alcaraz-Calero, L. Wilcock, and N. Edwards, To-
wards an Architecture for the Automated Provisioning of Cloud Services”.
In Proc. of ICSE13, pp. 13-22. IEEE Commun. Mag. 48, 124-131, 2010.

[19] L.R. Merino et al., "From Infrastructure Delivery to Service Manage-
ment in Clouds”. Future Generation Comput. Syst. 26, pp. 1226-1240,
2010.

[20] F. Duran and G. Salaun, “Robust Reconfiguration of Cloud Applica-
tions”. The 17th Inter. ACM Sigsoft Symposium on CBSE’14, pp. 179-
184, France 2014.

[21] PP. Kumar, A.R. Reddy, and A. Rupa, ”Snapshot Based Virtualization
Mechanism for Cloud Computing”. 1JCSI, vol. 9, Issue 5, pp. 226-231,
2012.

[22] D.T. Meyer and W.J. Bolosky, ”A Study of Practical Deduplication”.
ACM Trans. on Storage, vol. 7, no 4, Article 14, pp. 14:1-14:20, 2012.

[23] D.A. Menasc, "TPC-W: A Benchmark for E-commerce”. IEEE
Internet Computing, vol. 6, no 3: pp. 83-87, 2002.

[24] S.R. Kodituwakku and U.S. Amarasinghe, "Comparison of Lossless
Data Compression Algorithms for Text Data”. Indian Journal of
Computer Science and Engineering, vol. 1, no 4, pp. 416-425, 2014.

[25] ”Depth-First Search (DFS)”, 2002, URL: http://www.cs.toronto.edu/
~heap/270F02/node36.html [accessed: 06-08-2016].

[26] D. Kusic, J.O. Kephart, J.E. Hanson, N. Kandasamy, and G. Jiang,
“"Power and Performance Management of Virtualized Computing Envi-
ronments via Lookahead Control”. Journal of Cluster Computing, vol.
12, no 1: pp. 1-15, 2009.

[27] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, ”A Scalable
Application Placement Controller for Enterprise Data Centers”. In Proc.
of the 16th WWW’07, pp. 331-340, NY USA 2007.

URL: http://www.greengoose.com, [accessed

171

