
Comparing IoT Platforms under Middleware Requirements in an IoT Perspective

An fulfillment analysis of IoT middleware requirements in IoT Platforms that uses REST to
communicate with external applications

Artur Oliveira, Daniel Melo, Geiziany Silva, Thiago Gregório
CESAR – Centro de Estudos e Sistemas Avançados do Recife

Recife, Brazil
e-mail: artur@arturluiz.com, danielfarias.ti@gmail.com, geiziany.mendes@gmail.com, thiago.gregorio@gmail.com

Abstract—The increasing number of heterogeneous objects in
IoT and the different kinds of software that consume data
generated by those objects, have created an opportunity for
middleware software to arise acting like an adapter,
simplifying communication among them. As Representational
State Transfer (REST) is broadly used as communication
protocol by Web applications, this paper aims to analyze the
fulfillment of Internet of Things (IoT) middleware
requirements in IoT Platforms that use REST to communicate
with external applications.

Keywords-IoT; REST; Middleware Requirements; IoT
Platforms.

I. INTRODUCTION

Internet of Things (IoT) means everything connected to
the Internet, such as sensors, smart objects, clothes, toys,
anything at all. The condition is that those things can
produce something meaningful. The good news is that, with
all people’s creative imagination, almost any data may have
a meaning under certain circumstances and can become
useful information. To show how the IoT is going to be a
world changer, it is predicted that the quantity of things in
IoT would reach an astonishing number of 212 billion things
generating constant data about practically everything in real
world [3].

But not all those things (the ‘T’ from IoT) talk the same
language, as they are made by different companies or groups.
It is normal that they do not have a common interface to
transmit their data directly to services and would be
unfeasible that the services have an internal component to
understand a wide variety of different components. Having
this in mind, middleware software receives this
responsibility. In addition to providing a large understanding
how to talk to things, it also translates the data to a known
language (protocol) by external applications.

Representational State Transfer (REST) is an
architectural style based on Hypertext Transfer Protocol
(HTTP) and an approach to communications, which has been
widely used in integrations between different applications.

This paper’s main purpose is to analyze the fulfillment of
IoT middleware requirements in IoT Platforms that use
REST to communicate with external applications. We start in
Section II by presenting concepts related to the Internet of

things. Section III continues by presenting an overview of
the REST architectural style. Then, Section IV described the
concepts of middleware and its different types that have
emerged over time. In Section V, the functional and non
functional requirements of middleware for IoT are listed. In
Section VI, we analyze the fulfillment of IoT middleware
requirements in IoT Platforms that use REST. Finally,
Section VII concludes the paper.

II. INTERNET OF THINGS

The future of communication and Information
technology (IT) is represented by the technological
revolution of the Internet of Things [2]. The IoT was
leveraged by technological advances in wireless
communications, Radio-frequency identification (RFID), and
the strong growth of the World Wide Web (www). The main
objective of the IoT is to allow anything existing in the world
can be identified, addressed, controlled and monitored by the
Internet anytime and anywhere, interconnecting the physical
and the virtual world through communication between two
new dimensions: human-to-thing (H2T) and thing-to-thing
(T2T), both promoted by IoT [1].

Through the interconnection of virtual and physical
worlds, sensors play a vital role in achieving the connecting
bridge between these worlds. The sensors are designed to
collect data from their environment, with the intention to
generate information about the context, allowing monitoring
and controlling anything that can be connected to the
environment [2].

Smart objects of IoT are expected to reach 212 billion
entities deployed worldwide by the end of 2020. The
expectation is that the Machine to Machine (M2M) traffic
flow constitutes 45% of all Internet traffic [3]. So, the
implantation of the IoT paradigm directly impacts the daily
lives of people that will be motivated by the use of new
technologies based on the interaction of physical devices [1].

III. REPRESENTATIONAL STATE TRANFER (REST)

The architectural style REST emerged in the mid-2000s,
proposed by Roy Thomas Fielding through the doctoral
dissertation: "Architectural Styles and the Design of
Network-based Software Architectures" [4][5]. This style
made people feel encouraged to use protocols and Web
features to map requests in various representations, providing

138Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the resource management and processing by means of a
uniform interface operation [6]. The REST style is based on
HTTP protocol, Uniform Resource Identifier (URI),
Extensible Markup Language (XML) and HyperText
Markup Language (HTML) [7]. The main features around
the REST architecture are described below.

A. The Uniform Resource Identifier (URI)

The creation of an identifier for Web resources is
necessary in order for anything can be considered as a Web
feature, an audio, a video, or an encapsulated process, for
instance. The URI is used to identify and address each Web
resource, directly navigating to the specific resource. The
relationship between resources and URI is that a resource
may correspond to multiple URIs, but a URI corresponds
only to a single resource that characterizes a relationship of
one-to-many [6].

B. Resource Representation Transformation

The representation of a resource defines its current
status, including the data itself and metadata. A resource can
be represented through the transformation to some known
formats: Extensible Hypertext Markup Language (XHTML),
Atom, XML, JavaScript Object Notation (JSON), Plain Text,
Comma-Separated Values (CSV MPEG-4 Part 14 (MP4) or
JPEG [6].

C. Operation Methods GET, POST, PUT or DELETE

In the Web context operations, such as GET, PUT,
POST, and DELETE are known as methods standard-based
operations on the HTTP protocol. REST emphasizes the
semantic use of such methods to perform the desired
transactions [6].

D. Stateless Communication

The stateless communication on REST defines that each
client request is treated as an independent transaction, and
contains sufficient information to be totally understood.
Using REST, any request is unrelated to any previous
request. So, the communication consists of independent pairs
of request and response [6].

E. Why use REST for IOT

The REST structure is designed to accommodate large
data transfers efficiently equivalent to hypermedia data [7].
So, through the IOT model that allows anything that exists in
the world to be connected and that its control and monitoring
is possible [1]. It is easy to see the sensors as a resource on
the Web and using RESTful Web service that is nothing
more than a simple Web service that uses the HTTP protocol
and REST principles, it is a way to combine HTTP and Web
Service easily and clearly [8].

IV. MIDDLEWARE

Several definitions have emerged in the literature about
distributed systems. One of them can summarize enough: A
distributed system is a collection of independent computers
that appears to its users as a single coherent system [9]. This
means that, transparent to the user, multiple components

(computers on the definition) require integration and
collaboration between them. In principle, distributed systems
must also have high scalability and availability. Users and
applications should not notice that parts are being replaced or
adjusted, or even that new parts are being added [9].

With the emergence of the need for more robust systems
that could operate in a distributed way, the software
engineering faced challenges during the development of
distributed systems. New problems have arisen which did not
exist in the development of centralized systems, such as
network saturation or connection problems between the
components involved [9]. An infrastructure that supports the
development and execution of distributed applications was
necessary.

The term middleware first appeared in the late 1980s
[10]. There are several definitions for middleware in the
literature. The common point between them is that
middleware can be defined as a software layer located above
the operating system and network software and below
applications as shown in Fig. 1. The middleware allows
interaction and communication between different
applications via Application Programming Interface (APIs)
and protocols supported between distributed components
[11][12][13][14] proposed the following requirements for
middleware: network communication, coordination,
reliability, scalability and heterogeneity.

Figure 1. The set of middleware in distributed system, taken from [3..7], p.
89

Middleware gained more importance in recent years for
its role in simplifying the development of new services and
integration between old and new technologies [12]. In the
literature, there are different types of middleware that have
emerged over time and according to technological evolution.
The most known are: transactional middleware, procedural
middleware, object-oriented middleware and message-
oriented middleware messages.

A. Transactional Middleware

It is a kind of middleware that is already considered old,
which supports transactions between components that are

139Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

distributed on different servers. Transactional middleware
was designed to support synchronous and distributed
transactions. Its main function is to coordinate requests
between clients and servers that can process these requests
[9]. A transaction must support the Atomic, Consistent,
Isolated and Durable (ACID) property. Atomic means that
transaction either completes or it does not. The “all or
nothing” strategy. Consistency should hold the system in a
consistent state, independent of the status of the transaction.
Isolation is the ability of one transaction to work
independently from other transactions. Durability means the
ability of the transaction to survive system failures (expected
or unexpected) [15].

B. Procedural Middleware

Remote Procedure Calls (RPC) was developed by Sun
Microsystems, the same responsible for the Java language, in
early 80s. Their use enables an application to call functions
from other applications running on remote machines. By
being a synchronous communication mechanism, the client
application waits while processing of the remote function is
completed. Another problem caused by the PRC is the high
traffic on network, requiring at that time, an evolution for the
use of networks with better performance [16]. Examples:
Tuxedo from BEA and Customer Information Control
System (CISC) from IBM.

C. Object-oriented Middleware (OOM)

It is an evolution of procedural middleware.
Communication is still synchronous between distributed
objects. The interfaces of the services are described by
specific languages and the marshalling and unmarshalling
(data representation transformation in a format compatible
for storage and transmission) are made automatically, unlike
the procedural middleware that required this transformation
was implemented [17]. Examples: Common Object Request
Broker Architecture (CORBA) from Object Management
Group (OMG), Distributed Component Object Model
(DCOM) from Microsoft and Remote Method Invocation
(RMI) from Java.

D. Message-oriented Middleware (MOM)

The information (messages) that travels between
distributed components can be processed in two ways:
message queuing and message passing. In the message
queuing way, the communication is indirect, asynchronous
and the messages are sent to queues. In the message passing
way, the communication is direct, synchronous and operates
according to the publish-subscribe model [17].

V. MIDDLEWARE REQUIREMENTS FOR IOT

Due to the nature of IoT middleware, where it is
necessary to connect a large number of heterogeneous
components (sensors and devices), it is recommended to
archive a few minimal requirements to execute this task
effectively. In [18], IoT middleware requirements are
grouped into functional, those focus are functionalities
themselves, and non-functional, those focus is on Quality of
Service (QoS) and performance.

Fig. 2 illustrates the set of requirements explored in this
paper grouped into functional and non-functional
requirements. The following requirements were selected for
their relevance level presented in [18]. We list their
descriptions below.

Figure 2 – The set of middleware requirements in an IoT perspective
explored in this paper.

Resource Discovery allows middleware service to detect
the exact moment when components connect and disconnect,
making possible a reliable list of all connected components
and to free up unused resources. It is also necessary that such
functionalities are automated, due to infeasibility of human
intervention in every situation.

Resource Management covers the efficient use of
available resources, monitoring of such resources and the
release procedure when they are no longer needed. This
requirement is necessary due to limited resource components
commonly encountered in an IoT environment.

Data Management provides access to data generated by
devices and sensors, and data that may have a useful
meaning to applications that consume these data from
middleware like data related to network health.

Event Management allows external services connected to
the middleware to be notified when an event happens in the
device network that that middleware controls. Those events
may be related to components availability, the interaction
between them, network health etc.

Code Management allows users or external applications
use a group of devices to solve a defined task, injecting
necessary code in those devices. It also includes
functionalities that migrate the injected code among other
devices.

Scalability is the capacity to support a growing number
of connected "things" generating data constantly, and
external applications consuming such data with little or no
loss of QoS.

Timeliness is the capacity that ensures that data which
are dependent on the time they were generated are provided
with a time delay which tends to zero. In the IoT context
there are many components that fit into this category. This
requirement turns out to be essential for a middleware that
intends to act in the areas of health, transport, security etc.

140Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Reliability ensures that the middleware is always
operating during the execution of a task, even when there are
failures. This requirement is totally dependent on devices
and sensors that are connected to the middleware, since it is
they who generate the data. A failure at the device level can
cause the transfer, through the middleware, to consumer
systems.

Availability is the capability that the middleware is or
appear to be available when necessary. This requires that the
frequency of errors and the recovery time is small enough as
to become imperceptible to external services connected to
the middleware.

Security and Privacy ensures data in the middleware is
protected from being read or modified by anyone other than
those who have rightful permission and prohibit malicious
applications to have access to connected things and
connected services.

Ease of Deployment is not an essential requirement. It
concerns the low complexity in the installation and upgrade
process middleware, causing an advanced technical
knowledge not being required for the deployment and
maintenance. The ideal scenario is an automated update
process that does not interfere with Availability and
Reliability requirements.

Popularity is a differential in the IoT middleware
platform choosing process. Popularity is directly related to
the size of the community that uses the middleware and the
amount of contributions that community provides.

VI. IOT PLATFORMS ANALYSIS

IoT has undergone rapid transformation since the variety
and the number of devices connected to the Internet have
increased exponentially in recent years [19]. IoT has become
a mainstream technology with a significant potential for
advancing the lifestyle of modern societies. For this reason,
there are several companies that heavily invest in the
creation of solutions that covers IoT and necessary
infrastructure, providing a complete platform for easy
development and deployment of applications that consume
IoT data.

The list of IoT platforms present in this paper was purely
based on the criteria of companies that provide software
solutions that enable information processing devices and
sensors using REST as integration option.

The selected platforms are: Appcelerator, Amazon Web
Service (AWS) IoT Platform, Bosch IoT Suite, Ericsson
Device Connection Platform (DCP), EVRYTHNG, IBM
Watson IoT Platform, Cisco ParStream and Xively.

Appcelerator is a platform for mobile development,
including REST integration and real-time analytics through
Titanium [20].

Bosch IoT Suite is composed by different services, they
are Analytics, Hub, Integrations, Permissions, Remote
Manager, Rollouts and Things, these services are described
in [21] [22].

AWS IoT Platform provides integrations from devices to
AWS Services and other devices, it also has a security layer
for data and interaction [23] [24] [25] [26].

Xively’s main focus is to make their clients profit from
IoT. For that, they offer from IoT services (management of
devices and data) to professional services (specialized
consulting for clients) [27].

Ericsson DCP is a M2M platform that handles
connectivity and subscription management, supporting a
high number of devices and applications [28].

According to [29] “EVRYTHNG collects, manages and
applies real-time data from smart products and smart
packaging to drive IoT applications”.

IBM Watson IoT Platform is a cloud-hosted service that
simplifies access to connected devices data providing real-
time connectivity throught MQ Telemetry Transport
(MQTT) protocol [30] [31].

Cisco ParStream is mainly focused in analysis and time
to market. [32] presents a list of its capabilities.

Table 1 shows the analysis of the functional and non
functional requirements for IoT middleware depending upon
the selected IoT platforms.

Through this analysis we realized that almost all IoT
platforms have a requirement "not mentioned" in the
documentation available and researched by the authors. This
may show that the documentation is not complete enough or
that the requirement "not mentioned" cannot really be found
on this platform.

Another aspect realized by the analysis is that IBM
Watson IoT Platform achieves all requirements presented in
this paper, maybe proving to be the best choice among the
listed platforms. The non-functional requirements Scalability
and Reliability were found in all the chosen IoT platforms,
proving to be a main requirement for any IoT platform. A
possible cause for timeliness not being mentioned in a few
platforms may be that they were not designed for a specific
area, but for general use instead.

VII. CONCLUSION

This paper proposed to analyze the fulfillment of IoT
middleware requirements in IoT Platforms that use the
architectural style REST. After a brief explanation of all the
concepts that surround IoT platforms, this paper has
analyzed the functional and non functional requirements of
middleware for IoT of the current state-of-the-art IoT
software platforms.

It also can be seen that all IoT platforms, except the
“Appcelerator”, satisfy the majority of functional and non
functional requirements of middleware for IoT. The analysis
focused on requirements, such as resource discovery,
resource management, data management, event management,
code management, scalability, timeliness, reliability,
availability, security and privacy and easy-of deployment.

As future work, we intend to analyze the cost benefit in
relation to the total resources needed in the implementation
of IoT platforms. Sorting the IoT platforms is more feasible
for the cost reserved for this deployment.

141Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

TABLE 1 – ANALYSIS RESULTS OF THE FULFILLMENT OF IOT MIDDLEWARE REQUIREMENTS IN IOT PLATFORMS.

REFERENCES

[1] P. F. Pires et al. (2014), “A Platform for Integrating Physical
Devices in the Internet of Things”. Proceedings - 2014
International Conference on Embedded and Ubiquitous
Computing, EUC 2014, x’234.
http://doi.org/10.1109/EUC.2014.42

[2] L. Tan, “Future internet: The Internet of Things. 2010 3rd
International Conference on Advanced Computer Theory and
Engineering” (ICACTE), V5–376–V5–377.
http://doi.org/10.1109/ICACTE.2010.5579543

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling
Technologies, Protocols, and Applications”. IEEE
Communications Surveys and Tutorials, 2015, 17(4), 2348
http://doi.org/10.1109/COMST.2015.2444095

[4] B. Costa, P. F. Pires, F. C. Delicato, and P. Merson,
“Evaluating a Representational State Transfer (REST)
architecture: What is the impact of REST in my
architecture?”. Proceedings - Working IEEE/IFIP Conference
on Software Architecture 2014, WICSA 2014, 105.
http://doi.org/10.1109/WICSA.2014.29

[5] T. R. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures”, 2000, Building, 54,
162. http://doi.org/10.1.1.91.2433

[6] Z. Han, Y. Kong, and X. Wang, “Geographic stereo video
web service based on the REST architecture”. Proceedings -
2011 19th International Conference on Geoinformatics,
Geoinformatics 2011, pp2 (40771166).
http://doi.org/10.1109/GeoInformatics.2011.5980900

[7] L. Xiao-Hong, “Research and development of web of things
system based on rest architecture”. Proceedings - 2014 5th
International Conference on Intelligent Systems Design and
Engineering Applications, ISDEA 2014, 745.
http://doi.org/10.1109/ISDEA.2014.169

[8] X. Zhang, Z. Wen, Y. Wu, and J. Zou, “The implementation
and application of the internet of things platform based on the
REST architecture”. BMEI 2011 - Proceedings 2011
International Conference on Business Management and

Electronic Information, 2, 43.
http://doi.org/10.1109/ICBMEI.2011.5917838

[9] A. Tanenbaum, M. Van Steen, “Distributed Systems:
Principles and Pradigms”, 2nd ed. Pearson, pp 2-4, 2007.

[10] Middleware white paper [Online].
http://web.cefriel.it/~alfonso/WebBook/Documents/isgmidwa
re.pdf [retrieved: July, 2016].

[11] P.A. Bernstein. “Middleware: a model for distributed system
services”. Communications of the ACM, pages 86-98, 1996.

[12] R. P. Bob Hulsebosch, Wouter Teeuw. “Middleware tintel
state-of-the-art deliverable”, 1999.

[13] J. M. Myerson, “The Complete Book of Middleware.
Auerbach Publications”, 2002.

[14] W. Emmerich, “Software engineering and middleware: A
roadmap”. Communications of the ACM, pages 117-129,
2000.

[15] D. S. Linthicum, “Application servers an eai”, eAI Journal,
July/August 2000.

[16] D. S. Linthicum, “Enterprise Application Integration”, 1st
edition, Addison-Weslley Professional, 1999.

[17] H. Pinus, “Middleware: Past and present a comparison”, pp.
1–5, 2004.

[18] M. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for Internet of Things: a Survey”, 4-5. 2016.

[19] M. Dayarathna, “Comparing 11 IoT Development Platforms”
[Online]. Available from: https://dzone.com/articles/iot-
software-platform-comparison [retrieved: August, 2016].

[20] Appcelerator Open Source. [Online]. Available from:
https://www.appcelerator.com/mobile-app-development-
products [retrieved: July, 2016].

[21] Bosch IoT Suite Benefits. [Online]. Available from:
https://www.bosch-si.com/products/bosch-iot-suite/iot-
platform/benefits.html [retrieved: August, 2016].

[22] Bosch IoT Suite white paper brochure. [Online]. Available
from: https://www.bosch-si.com/products/bosch-iot-
suite/downloads/white-paper-brochure.html [retrieved:
August, 2016].

142Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[23] AWS Amazon, How it works. [Online]. Available from:
https://aws.amazon.com/pt/iot/how-it-works/ [retrieved:
August, 2016].

[24] AWS Amazon, IoT Rules. [Online]. Available from:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-
rules.html [retrieved: August, 2016].

[25] AWS Amazon, IoT Security Identity. [Online]. Available
from:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-
security-identity.html [retrieved: August, 2016].

[26] AWS Amazon, IoT thing shadows. [Online]. Available from:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-
thing-shadows.html [retrieved: August, 2016].

[27] N. Sinha, K. E. Pujitha, J. S. R. Alex, "Xively Based Sensing
and Monitoring System for IoT",1-4.

[28] Ericsson DCP [Online] . Available from:
https://www.ericsson.com/ourportfolio/products/device-
connection-platform [retrieved: August, 2016].

[29] Evrythng IoT Platform [Online]. Available from:
https://evrythng.com/platform/ [retrieved: August, 2016].

[30] M. Kim et al., “Building scalable, secure, multi-tenant could
services on IBM Bluemix”, 1-3. 2016.

[31] IBM Watson IoT documentation [Online]. Available from:
https://docs.internetofthings.ibmcloud.com/ [retrieved:
August, 2016].

[32] Cisco ParStram Analytics Automation [Online]. Available
from: http://www.cisco.com/c/en/us/products/analytics-
automation-software/parstream/index.html [retrieved: August,
2016].

143Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

