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Abstract—In order to provide high data rate over wire-
less channels and improve the system capacity, Multiple-Input
Multiple-Output (MIMO) wireless communication systems ex-
ploit spatial diversity by using multiple transmit and receive
antennas. Moreover, MIMO systems are equipped with High
Power Amplifiers (HPA). However, HPA causes nonlinear distor-
tions and affect the receiver’s performance. Since a few decades,
Neural Networks (NN) have shown excellent performance in
solving complex problems like classification, recognition and ap-
proximation. In this paper, we present a receiver technique based
on NN schemes for the compensation of HPA non linearization in
MIMO Space-Time Block Coding (STBC) systems. Specifically,
we assess the impact of HPA nonlinearity and NN on the average
symbol error rate (SER) and the error vector magnitude (EVM)
of MIMO-STBC in uncorrelated Rayleigh fading channels. Com-
puter simulation results confirm the accuracy and validity of our
proposed analytical approach.

Index Terms—MIMO(Multiple Input Multiple Output),
HPA(High Power Amplifier), NN(Neural Network), SER(Symbol
Error Rate), EVM(Error Vector Magnitude).

I. INTRODUCTION

Wireless services are driven by the rising demand to provide
high-speed data transmissions (several 100 Mbit/s). A common
way to improve the system capacity is to increase the trans-
mission bandwidth. Multiple-Input Multiple-Output (MIMO)
has been proposed to develop wireless systems that offer both
high capacity and better performance. It has been recognized
as a key technology for 4G wireless communications [1], [2].

High-power amplifier (HPA) is a primary block of a wireless
communication system, such us Travelling Wave Tube Ampli-
fier (TWTA), Solid State Power Amplifier (SSPA) and Soft-
Envelope Limiter (SEL). It operates between the modulator
and radio frequency (RF) modules. However, HPA introduces
nonlinear distortions to the transmitted signal when operating
in nonlinear region [3]. Nonlinear distortions, including ampli-
tude and phase distortions, are introduced into the transmitted
symbols, which in turn can cause adjacent channel interference
and power loss. These distortions degrade considerably the
system performance.

Nonlinear HPA can be described by two kinds of models:
memoryless models with flat frequency responses, and mem-
ory models with frequency-selective responses [4]. Memory-
less HPA models, such as the TWTA, SSPA and SEL, are
characterized by their amplitude modulation/amplitude modu-
lation (AM/AM) and amplitude modulation/phase modulation
(AM/PM) conversions [5]. On the other hand, HPA may

be characterized by more realistic memory models, such as
the Volterra, Wiener, Hammerstein and memory polynomial
models [3], [4].

To improve the system throughput, the effect of HPA was
analyzed in [3] for MIMO systems employing Orthogonal
Space Time Block Coding (OSTBC). In [1], authors proposed
an adaptive predistortion technique based on a feed-forward
Neural Network (NN) to linearize power amplifiers such
as those used in satellite communications. Authors in [6]
extended the efficient NN Predistorter (NNPD) to MIMO-
OFDM systems. In [7], NN technique has gained a great
interest in nonlinear MIMO channel identification and authors
proposed an efficient nonlinear receiver to compensate the
joint effects of HPA nonlinearity and the impact of time-
varying MIMO channels. In this paper, we focus on HPA
nonlinearity on MIMO-STBC systems. we propose a NN
compensator technique to enhance nonlinearity distortion at
the receiver. For the outlined transmission chain, we derive
the expressions for the average SER and EVM, which are
valued for memoryless nonlinear HPA models, considering
that the system operates under Rayleigh flat fading channel.
The remainder of the paper is organized as follows: Section II

Fig. 1. Block diagram of the considered MIMO-STBC system in the presence
of nonlinear HPA and NLN compensation.

introduces the MIMO system model with HPA nonlinearity,
the NN scheme is revisited and explained. In Section III,
we derive the exact SNR expression in presence of NN
compensation scheme and evaluate the system performance
in terms of SER and EVM in the case when knowledge
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of the HPA parameters is available. Numerical results and
comparisons are then presented in Section IV. We complete
this study by conclusions in Section V.

II. SYSTEM MODEL

A. MIMO-STBC and HPA nonlinearity

The block diagram of the considered MIMO-STBC system
is shown in Figure 1. The MIMO-STBC system is equipped
with nt transmit and nr receive antennas. In frequency non-
selective block-fading channels, assuming that the xl are M-
QAM modulated symbols of period T and average energy P s

for l = 1, · · · , nt. the received signal is given by

Y = HD +N (1)

where Y ∈ Cnr×T is the received matrix, H = [hk,l]
nr,nt ∈

Cnr×nt indicates the nr×nt channel gain matrix with hk,l rep-
resenting the channel coefficient between the lth transmit and
the kth receive antennas and N is the Additive White Gaussian
Noise (AWGN) matrix with i.i.d. entries ∼ CN (0, N0).

The transmitted signal D ∈ Cnt×T has to be amplified
at RF through the HPA, which may operate in its nonlinear
region, causing amplitude distortion and phase distortion on
the input signal [8]. We consider memoryless HPA that can
be characterized by their AM/AM and AM/PM conversions.
We denote the input signal at the HPA as

xl = rle
jθl (2)

where rl(.) is the input modulus and θl(.) is the input phase.
The signal at the output of the HPA can be expressed as

dl = Al (rl) exp {Pl(rl) + θl} (3)

where Al(.) and Pl(.) denote the HPA amplitude conversion
(AM/AM) and phase conversion (AM/PM), respectively.

Many models are tailored for a particular type of HPA.
TWTA and SSPA as in [9], and SEL as in [10]. The TWTA
can be characterized by the Saleh’s model [5], which has the
advantage of exhibiting greater simplicity and accuracy than
other models. The AM/AM and AM/PM conversions can be
represented as follow

A(rl) =
αarl

1+βar2l
and P (rl) =

αpr
2
l

1+βpr2l
(4)

where αa and βa are the parameters of the non-linear level,
and αp and βp are phase displacements. The AM/AM and
AM/PM conversions of the SSPA model first and SEL model
are the following

A(rl) =
rl[

1+( rl
Aos

)
2β

]1/2β and P (rl) = 0 (5)

A(rl) =

{
rl rl ≤ Ais

Ais rl > Ais
and P (rl) = 0 (6)

where β indicates the flexibility of the transition from linear
operation to saturation. Ais is the input saturation voltage and
Aos is the output voltage at the saturation point. For simplicity,
the HPAs at all the transmitting branches are assumed to
exhibit the same nonlinear behavior [3], [11].

According to the central limit theorem, a signal can be
approximated as a complex Gaussian distributed random pro-
cess. From the Bussgang theorem and by extending that to
complex Gaussian processes, the output signal at the HPA can
be expressed as [12]

dl = Klxl + wl (7)

where Kl denotes an arbitrary deterministic complex factor
and wl is a suitably additive zero-mean Gaussian noise uncor-
related with the input signal xl. The value of Kl is given by
[6, eq. (19)]

Kl =
1

2
E

[
d

′

l(r) +
dl(r)

r

]
(8)

where d
′

l(r) denotes the differential of dl(r). Furthermore, the
variance of wl is given by [12, eq. (37)]

σ2
wl

= E[|wl|2] = E[|dl|2]− |K|2E[|xl|2]
= E[A2(rl)]− |K|2E[r2l ] (9)

Specifically, for the SEL model, the analytical evaluation of
Kl and σ2

wl
values, can be obtained using [8] [6, eq. (42)] as

follows

Kl =
(
1− e−(A2

is/P s)
)
+

1

2

√
π
A2

is

P s
erfc

√
A2

is

P s
(10)

σ2
wl

= P s

(
1− e−(A2

is/P s) −K2
l

)
(11)

In addition, the parameters Kl and σ2
wl

for the TWTA and
SSPA models has been evaluated in [12, Tab. I].

When the channel gain matrix is perfectly estimated at
the receiver, the MIMO-STBC model can be converted into
an equivalent single-input single-output (SISO) scalar model,
yielding [3]

y = c∥H∥2F d+ ñ (12)

where ∥.∥F denotes the Frobenius norm, d represents the
distorted version of the transmitted symbol with average power
PHPA

s = K2
l P s, c is a code-dependent constant based on

the STBC mapping and ñ is the noise term after STBC de-
coding with distribution ∼ CN (0, c∥H∥2FN0). Consequently,
the effective SNR at the output of the MRC decoder can be
expressed as

γSTBC =
c2K2

l P s∥H∥4F(
cN0 + cσ2

wl
)
∥∥H∥2F

=
cK2

l P s

N0 + σ2
wl

∥H∥2F =
cPHPA

s

N0 + σ2
wl

∥H∥2F (13)

B. Architecture of the applied neural network
In our investigation, a multilayer perceptron is used to

compensate the effect of HPA nonlinearity. A Nonlinear Net-
work (NLN) (see Figure 2) is a very interesting model for
adaptive equalisation due to its properties such as the parallel
distributed architecture, the adaptive processing, the nonlinear
approximation, the easy integration in large information pro-
cessing chains and the efficient hardware implementation [13].
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Fig. 2. A NLN multilayer perceptron neural network: This network has two
layers, two input signals, one hidden layer, 2 neurons in the output layer, and
2 output signals. (Indexes I and Q refer to the real and imaginary parts, resp.)

Using the structure illustrated in Figure 1, we aim to identify
the HPA inverse transfer functions. The complex envelope
signals are differentiated and the error sent to the "learning
algorithm" bloc reacts on coefficients of NLN. The weights of
the NLN Receiver are determined by copying the weights of
a trained network NLN.

The multilayer perceptron has two inputs, namely the I
and Q components of the input signal complex envelope. The
NLN has two outputs that are the compensated signals I and
Q signals. Applying an input signal yk = [yk,I ,yk,Q]

t, the
output of the hidden neuron m [14]

vk,m = f(
∑

j wj,myk,j + bm) (14)

where wj,m is the weight connection between yk,j and the
neuron m for (j = I,Q). The function f is a nonlinear
activation function (hyperbolic tangent function). In this case,
the output of the NLN can be expressed as

zk,j =
∑

m um,jvk,m (15)

where um,j is the weight connecting the neuron m of the
hidden layer to the neuron j of the output layer.

The received signal at the output of the neural network block
may be modeled as the sum of the transmitted signal xl and a
noise factor caused by the effects of the NLN errors and the
channel transmission. Consequently, the output signal zk,j can
be approximated by

zk,j ≃ xl,j +
∑
m

n̂m,j (16)

where n̂m,j is the noise of the m-th neuron of the hidden
layer. Since f is not a linear activation function, n̂m,j is a
non gaussian random variable. However, using the central limit
theorem, we can approximate

∑
m n̂m,j( the sum of 9 random

variable in our case) as a gaussian noise.
During the training sequence, the NLN model uses su-

pervised learning to update the weight parameters in order
to minimize a cost function. This function is the sum of
squared errors between the unknown system outputs and
the HPA inputs (see Figure 2). For the training algorithm,
we have chosen the Levenberg-Marquardt algorithm [1]. The
contribution of this algorithm is similar to determinate the
second-order training speed without having to compute the

Hessian matrix. Under the assumption that the error function
is some kind of squared sum, the Hessian matrix He can be
approximated as

He = JTJ (17)

and the gradient can be computed as:

g = JT e (18)

where e is a vector of network errors and J is the Jacobian
matrix that contains the first derivatives of the network errors.
This matrix determination is computationally less expensive
than the Hessian matrix. The new weight vector wn+1 can be
adjusted as:

wn+1 = wn −
[
JTJ + µI

]−1

JT e (19)

The parameter µ is a scalar controlling the behaviour of the
algorithm.

Fig. 3. Rectangular 4-QAM constellation and decision regions with NLN
Receiver compensation without noise effect.

III. PERFORMANCES IN TERMS OF SER AND EVM

In this section, we investigate the performance of MIMO-
STBC systems over uncorrelated Rayleigh fading channels in
the presence of HPA nonlinearity and NLN in terms of BER
and EVM.

A. Derivation of the effective SNR Expression

In conventional MIMO-STBC systems, received signals
from the NLN elements are combined at baseband. As the
number of antenna elements increases, this receiver archi-
tecture becomes costly, especially for mobile devices [3].
However, if the signal combining takes place at the RF level,
only one receive chain is required, which produces essentially
the same output as with the conventional MRC receiver [11].
Hereafter, we consider the approach that combines signals
from antenna elements at the RF level. The signal using the
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NLN implementation scheme which enhances the cancellation
of the distortion signal ŝ can be written as

ŝ = r̂ejθ̂ (20)

where r̂ and θ̂ are the amplitude and the phase of ŝ, respec-
tively. Let ε denotes the errors between the modulus of the
input signal and the NLN output patterns. According to the
equation (16) and using the central limit theorem, ε can be
characterized by a gaussian distribution. For noislyless MIMO-
STBC system, the variance of ε will be represented by [14]

σ2
ε = E

{
|rl − r̂l|2

}
=

(
rl − ρ

∑
i

um
i f(wm

i ρ)

)2

(21)

where ρ is the modulus of the NLN output and m denotes the
coefficient of NLN identification. In this case ,the signal ŝ can
be rewritten as

ŝ = s+ ε (22)

The error ε can be considered as a HPA nonlinearity
results in modulus of the input s and output patterns ŝ. An
example illustrating such distortion is shown in Figure 3 where
we present the constellation and the decision regions of a
rectangular 4-QAM without and with HPA-NLN distortion.

We note that the error ε is uncorrelated with N . In this case,
the effective SNR at the output of the NLN can be expressed
as:

γSTBC−NLN =
cE[A2(r)]

N0 + σ2
ε

∥H∥2F = αγSTBC (23)

where ∥.∥F denotes the Frobenius norm and γSTBC is the
effective SNR at the output of the distortion signal Y:

γSTBC =
cE[A2(r)]

N0
∥H∥2F (24)

In this case, α can be expressed as:

α =
N0

N0 + σ2
ε

(25)

Then, according to (25) into (23) , the effective SNR
γSTBC−NN can be written as:

γSTBC−NLN =
cE[B2(r)]

N0
∥H∥2F (26)

where E[B2(r)] = αE[A2(r)] = PNLN
s is the average power

per symbol at the output of NLN.

B. SER evaluation

In this section, we evaluate the SER performance for the
MIMO-STBC systems in the presence of both nonlinear HPA
and NLN. Based on decision regions of the distorted version
of the transmitted signal and constellation, the SER, can be
expressed as a function of the instantaneous output SNR for
arbitrary 2-D modulations, using Craig’s method [15]

Ps(γ) =

M∑
i=1

Ns,i∑
j=1

Psi

2π

∫ ηi,j

0

exp

[
ci,jγ sin

2ϕi,j

sin2(υ + ϕi,j)

]
dυ (27)

where M is the number of symbols in the constellation, Ns,i

is the number of subregions for symbol si, Psi represents the a
priory probability that symbol si is transmitted, γ is the output
SNR of the MIMO-STBC system, and ci,j = li,j/P

NLN
s is

the scaling factor. Parameters li,j , ηi,j and ϕi,j are related to
the symbol si and the subregion j and is determined by the
decision region geometry [3], [15] (see Figure 3).

The average SER using such decision region boundaries can
be written as

Ps =

∫ ∞

0

Ps(γ)PγSTBC−NLN (γ)dγ (28)

where PγSTBC−NLN is the pdf of the output SNR for the
MIMO-STBC system with NLN compensator under Rayleigh
flat fading

PγSTBC−NLN (γ) = (29)

2

Ωk,l

√
σ2
∆γ

cPNLN
s

exp

(
− σ2

∆γ

cPNLN
s Ωk,l

)
(30)

where Ωk,l = E[λ2
k,l] represents the average fading power and

λk,l denotes the path gain. Substituting (27) and(29) into (28),
the average SER can be rewritten as

Ps =
M∑
i=1

Ns,i∑
j=1

P (si)

2π

∫ ηi,j

0

ΨγSTBC−NLN

[
ci,j sin

2ϕi,j

sin2(υ + ϕi,j)

]
dυ

(31)
where ΨγSTBC−NLN (j, ω) is the characteristic function of
γSTBC−NLN and is given by

ΨγSTBC−NLN (j, ω) =

{
1− jω

cG2PHPA
s

σ2
∆

}m

(32)

Substituting (32) into (31) and making use of [3], [16], the
average SER of MIMO-STBC over uncorrelated Rayleigh flat
fading channels with NLN technique can be obtained by

Ps =
M∑
i=1

Ns,i∑
j=1

P (si)

2π
× {ηi,j + ϕi,j − νi,j

×

[(π
2
+ arctanλi,j

)mκ−1∑
k=0

(
2k
k

)
× 1

4k (1 + ςi,j)
k
+ sin (arctanλi,j)

×
mκ−1∑
k=1

k∑
l=1

Tl,k

(1 + ςi,j)
k

× (cos (arctanλi,j))
2(k−l)+1

]}
(33)

where
ςi,j = ci,j

(
cPNLN

s /σ2
∆

)
sin2 ϕi,j (34)

with

Tl,k =

(
2k
k

)
/

[(
2(k − l)
k − l

)
4l(2(k − l) + 1)

]
(35)
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and νi,j =
√
(ςi,j/(1 + ςi,j))sgn(ηi,j + ϕi,j) and λi,j =

−ςi,j cot(ηi,j + ϕi,j)

C. EVM degradation

The EVM is usually used as a parameter for evaluating
the effects of imperfections in digital communication systems
on the constellation diagram and is an effective method for
calculating the system performance [17]. The EVM evalua-
tion is based on the difference between an ideal transmitted
constellation point s(t) and the received symbol location ŝ(t)
at each symbol instant t. By definition [?], EVM is the root
mean square (rms) value of the magnitudes of the error vectors
Γ is expressed as

EVMrms =

√√√√ 1

Ns

Ns∑
t=1

|Γ|2 (36)

The residual error vector on sample s is obtained at each
symbol instant and is defined as [17]

Γ =
ŝW−t − C0

C1
− s (37)

where the complex constants C0, C1, and W compensate the
constellation offset, constellation complex attenuation and the
amplitude and offset phase rotation. The normalized EVM can
be defined as the ratio of the rms EVM to the averaged symbol
power [?] [18]

EVMm =

√
1
Ns

∑Ns

t=1
|Γ|2√

1
Ns

∑Ns

t=1
|s|2

=

√
E{|Γ|2}

E{
√
|s|2}

(38)

The residual error vector Γ is obtained by

Γ = ŝ− s = Gc∥H∥2Fw + v +Gñ = ∆ (39)

Using the fact that the total noise sample and the inter-
ference term are uncorrelated, we can obtain the following
expression

EVMm =
σ2
∆√
P s

(40)

IV. SIMULATION RESULTS

To investigate the performance of the proposed NLN com-
pensation in MIMO-STBC with HPA, a series of Monte Carlo
simulations were carried out. The full-rate Alamouti code
(Rc = 1, c = 1) is investigated. We have considered a MIMO
system with 2 inputs and 2 outputs with 4-QAM modulation
using 107 randomly generated symbol blocks. The memoryless
selected nonlinear model for HPA is the TWTA one. The NLN
(see Figure 2) neural network, is composed of two inputs, nine
neurons in the hidden layer (with sigmoid activation function)
and two linear neurons in the output layer. In the simulations,
we define the input back-off (IBO) as:

IBO = 10 log10(
A2

0

Pin
) (41)

where A2
0 is the maximum output modulus and Pin is the

average input power.
In order to identify the best SNR to create the learning data

base, we have realised many data bases using various SNR,
then we simulated the NLN to quarry out the SER obtained
using MIMO-STBC system.
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Fig. 4. SER over MIMO-STBC system with NLN correction (Fixed SNR
simulation for each curve).

Figure 4 shows the SER performs versus the SNR used in
the learning phase with different SNR used in generalization
phase. We note from these results that in all cases, the learning
data base with SNR around 16 dB offers the best performs.
For our simulations, we have used a learning data base with
SNR equal 16 dB.
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MIMO−STBC with ideal HPA, Analytical

Fig. 5. The SER of signal transmission over MIMO-STBC system.

Figure 5 shows the average SER performances of the
considered system for three cases i) MIMO-STBC with ideal
HPA which serves as a benchmark. ii) MIMO-STBC-NLN
iii) MIMO-STB-HPA without compensation. We show that
analytical and simulation results are in perfect match. We note
that the NLN is able to improve the system performance.
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Fig. 6. EVMm as a function of SNR with the IBO as parameter.

Figure 6 illustrates the EVM of Equation (40) versus SNR
and selected IBO values. It indicates that SNR imposes a great
impact on the EVM performance when the IBO varies.

V. CONCLUSION

In this paper, the effects of nonlinear HPA on the per-
formance of the MIMO-STBC system were evaluated when
it is operated under Rayleigh fading channel. It was shown
that the NLN technique implemented at the receiver is able
to compensate the nonlinear behaviour caused by the power
amplifier. The simulation results showed that, in the presence
of the proposed NLN decreased the used SNR to 14 dB at SEP
to 10−4 which is an improvement of more than 3 dB compared
to HPA without compensation. The system performance was
analyzed in terms of effective SNR expression, average SER
and EVM. Theoretical results show a close matching with
those obtained by simulations for the 4-QAM MIMO-STBC
systems.
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