
A Metadata Monitoring System for Ubiquitous Computing

Caio Batista, Gustavo Alves, Everton Cavalcante,
Frederico Lopes, Thais Batista

UFRN – Federal University of Rio Grande do Norte
Natal, Brazil

{caiosergiobatista, gustavoalvescc, evertonranielly,
fred.lopes}@gmail.com, thais@ufrnet.br

Flávia C. Delicato, Paulo F. Pires
UFRJ – Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
{fdelicato, paulo.f.pires}@gmail.com

Abstract—In the highly dynamic context of ubiquitous systems,
applications need to be continuously aware of QoS and QoC
metadata to ensure their required level of quality. We present
QoMonitor, a metadata monitoring system that receives syn-
chronous and asynchronous requests from clients (a middle-
ware system that supports ubiquitous applications), recovers
metadata from several context providers, and sends them to
the clients. We also present an evaluation of QoMonitor under
a quantitative perspective, which aims to address the time for
assessing QoS and QoC parameters and the time to completely
reply to synchronous and asynchronous requests in the context
of a health care application. The proposed monitoring system
enables ubiquitous applications to focus on addressing the
business requirements of the application and abstract away the
burden of dealing with the complexities related to synchronous
and asynchronous metadata monitoring.

Keywords – metadata; monitoring; Ubiquitous Computing;
health care application.

I. INTRODUCTION
Ubiquitous Computing [1] uses a variety of devices, sen-

sors and networks to form a distributed, highly heterogene-
ous environment integrated to daily activities of users. Typi-
cally, ubiquitous applications are composed of services and
use context information from several sources to perform their
tasks. In this scenario in which applications encompass con-
textual data and services from different sources, it is essential
to know the quality of the provided information and services
so that applications can use those that satisfy their require-
ments. Therefore, the selection of the proper services among
those provided by several available providers is performed
according to the quality of context information, called Quali-
ty of Context (QoC) [2] and/or the quality of the provided
services, called Quality of Service (QoS). During the execu-
tion of the applications, it is also necessary to ensure that
services and context information continue to satisfy the
QoS/QoC application requirements.

Both QoS and QoC quality parameters are typically de-
scribed by metadata, which contain information about ob-
servable variables regarding services and/or context, such as
resolution, precision, and freshness, for QoC, and error rate,
uptime, and response time, for QoS. Ubiquitous applications
are inherently dynamic since they use: (i) mobile devices,
which can often be or not be in the area covered by a given
network; (ii) wireless connections, which are subjected to
interruptions and fluctuations in the intensity of the transmit-

ted signal, and; (iii) physical parameters, such as tempera-
ture, pressure, location, which can frequently change. In this
highly dynamic context, applications need to be continuously
aware of QoS and QoC metadata to ensure their required
level of quality. For instance, in health care applications,
vital data from patients (context information) need to be
provided at a high refresh rate (QoC parameter) and by a
service with a low response time (QoS parameter).

In this scenario, an important challenge is to provide effi-
cient means to monitor QoS and QoC metadata, thus ena-
bling the application to periodically gather the monitored
metadata and also to be asynchronously notified whenever a
given metadata becomes available. In the literature, some
works on monitoring metadata in ubiquitous applications
focus just on QoS [12] or QoC monitoring [11, 13] and either
on synchronous or asynchronous mode [11, 13]; however, it
is important to support both monitoring modes and QoS and
QoC metadata. In this perspective, this paper presents
QoMonitor, a metadata monitoring system that receives
synchronous and asynchronous requests from clients (ubiqui-
tous applications and/or middleware), recovers metadata
from context providers, and sends them to the clients. By
using the proposed monitoring system, ubiquitous applica-
tions can focus on addressing fundamental problems of the
application and abstract away the burden of dealing with the
complexities related to synchronous and asynchronous
metadata monitoring. Furthermore, metadata monitored by
QoMonitor can be available to ubiquitous applications, be-
sides it can be associated with a middleware that would be
responsible for managing this information in order to select
the services that will be used by an application, for example.

The QoMonitor monitoring system consists of three re-
positories: (i) a metadata repository, which persists all QoS
and QoC metadata of the monitored services and the metada-
ta provided by the services providers; (ii) a service reposito-
ry, which stores information about all monitored services and
the parameters needed to communicate with them, and; (iii) a
client repository, which stores client information, thus ena-
bling the monitor to communicate with its clients. In addi-
tion, QoMonitor contains: (i) an ontology module, which is
responsible for specifying metadata using an ontology model
to represent the concepts in an unambiguous way; (ii) a re-
quests handler, which receives the requests from clients,
gathers the metadata and replies to them, and; (iii) an as-
sessment module, which is responsible for effectively moni-
toring and assessing QoS/QoC metadata of the services
stored in the service repository.

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

This paper is structured as follows. Section II briefly de-
scribes a health care application which serves as a running
example used along this paper. Section III presents QoMoni-
tor, the proposed metadata monitoring system. Section IV
contains an evaluation of QoMonitor. Section V presents
related work. Finally, Section VI contains the final remarks.

II. CASE STUDY
This case study is an application related to the health care

context in a scenario inspired in the work of Hegering et al.
[3]. The application considers as users patients with critical
diseases, doctors, and ambulance staffs that use conventional
or specific-purpose mobile devices, connected through het-
erogeneous wireless networks (e.g. Wi-Fi, 3G, Bluetooth,
etc.) and/or wired infrastructures. Patients have their vital
functions (e.g. blood pressure, cardiac beat rate, etc.) contin-
uously monitored by body sensors. Besides the information
provided by these sensors, medical information (called medi-
cal profile) about the patients (e.g. if a patient is smoker or
not, if he has diseases and/or allergies, etc.) and previous
events/medical diagnosis is available. In health care applica-
tions, if a patient has complications in his/her current health
state, a set of actions must be taken, such as to trigger emer-
gency staffs to give aid to the patient. This application was
chosen because of its relevance in a real-world scenario and
because it uses different types of context information deriv-
ing from different types of mobile or specific-purpose devic-
es. In addition, many kinds of services can be considered,
including services with the same functionality (such as GPS,
3G, or Wi-Fi service location), allowing us to monitor simi-
lar services implemented using distinct technologies and
providing different levels of quality.

To exemplify a health care application, the blood pres-
sure of a patient was chosen as a parameter to be monitored.
To sum up, if the blood pressure of the current patient is
higher than a specific limit, then he/she may be suffering a
cardiac attack or other kind of complication. Thus, emergen-
cy staffs are triggered and information about the current
health conditions and the patient’s medical profile are pro-
vided, as well as information about his/her localization. At
the same time, the application sends a message to the pa-
tient’s doctor. Figure 1 gives an overview of the different
types of users and the context information processed by the
application.

Firstly, the patient’s blood pressure is synchronously or
asynchronously monitored by the GetBloodPressure (S1)
and SubscribeBloodPressure (S1’) services, respectively. If
the value of the blood pressure exceeds the acceptable limit,
then the patient’s medical profile, which contains previous
and current information about the patient and may influence
his/her treatment or be correlated to the problem in question,
is consulted by executing the ConsultMedicalProfile (S2)
service. Next, available closest doctors are found by execut-
ing the SearchClosestDoctorsCel (S3) and Search-
ClosestDoctorsGPS (S3’) localization services, so that one of
them can be selected to be used by the application according
to their quality (QoS/QoC) parameters. Afterwards, a SMS
alert about the current medical state of the patient is sent to
the doctors by executing the SendSMS (S4) service.

Figure 1. Users and context information in a health care application.

Together with data gathered by consulting the patient’s med-
ical profile, the application chooses and triggers emergency
staffs through SearchClosestAmbulancesGPS (S5) and
CallAmbulance (S6) by using the localization of these emer-
gency staffs with respect to the patient. Next, the best route
(the shortest or the faster course) between the patient’s loca-
tion and the emergency staff is determined by the Determin-
eRoute (S7) service, so that the emergency staff can reach the
patient and carry him/her from the current location to the
hospital, completing the aid action. Finally, the patient’s
medical profile is updated with the event that just took place
by executing the UpdateMedicalProfile service (S8).

III. QOMONITOR: A METADATA MONITORING SYSTEM
QoMonitor is a metadata monitoring system that receives

synchronous and asynchronous requests from clients (ubiqui-
tous applications and/or middleware), recovers metadata
from context providers, and sends them to the clients. This
section presents the architecture and operation of QoMonitor
(Section III.A) and how it can be used in the context of our
running example (Section III.B).

A. Architecture and operation
Figure 2 illustrates the architecture of QoMonitor, which

was specified with a modular design, so that each component
can work in an independent way. QoMonitor provides two
communication interfaces: IClient for communicating with
clients and IServer for communicating with service provid-
ers. The Server Façade modularizes all monitor communica-
tion with service providers thus being responsible for regis-
tering new services in the Service Repository and communi-
cating with the providers. When one of the service providers
is registered in QoMonitor, the Server Façade receives the
data provided by this provider and forwards them to the
Service Repository. The Service Repository is responsible for
storing information regarding all monitored services and the
parameters required to communicate with them. There are
two ways to add new services to the Service Repository. In
the first one the client makes a request to retrieve QoS/QoC
metadata, and if the service’s data are not in the repository,
then the Client Façade provides the data for storing the new
service in the repository. In the second way, the service reg-
isters itself in the monitor through the interface provided by
the Server Façade. Whenever a new service is added to the

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Service Provider A Service Provider B Service Provider N

Client 1 Client 2

QoMonitor

Server Façade

Metadata Repository

Client Façade

Request Handler

Client Repository

Client N

Service Repository

Ontology Module

Asynchronous
Request

IServer

...

Synchronous
Request

IClient

...

Assessment Module

Parameter X
Assessor

Parameter Z
Assessor

Blackboard

Controller

...Parameter Y
Assessor

Figure 2. QoMonitor architecture.

repository, the Assessment Module is notified to start the
monitoring and assessment of the services.

The Client Façade is responsible for allowing the com-
munication of the clients with the monitor, which can be any
ubiquitous application or middleware that needs to make use
of QoS/QoC parameters. To perform this communication
with clients, it was defined a simple API (summarized in
Table 1) that implements the IClient interface. Through this
API, clients can register themselves on the monitor and make
synchronous and asynchronous requests. To register itself,
the client calls the register method, which receives as param-
eters the client’s name, IP address, and access port. Then, the
Client Façade forwards these data to the Client Repository
for storing them to be used when the monitor needs to reply
the requests of this client. To perform a synchronous request,
the client calls the getServiceQuality method, which receives
as parameters the data regarding the monitored service and a
list of quality parameters to be sent to the client, and returns
the parameters with their respective values represented in the
ontology format. For instance, considering the GSMSystem
service from the case study, a call to the getServiceQuality
method would receive the following parameters: <GSMSys-
tem, 192.168.0.100, 8080> (service name, IP address, and
access port), <SMS, Person> (a list of input parameters), and
<errorRate, uptime, responseTime> (a list of the quality
parameters to be monitored).

If the client wants to make an asynchronous request, then
it should call the subscribeServiceQuality method, which
receives as parameters: (i) the data regarding the service and
the client; (ii) a list of quality parameters to be sent to the
client, and; (iii) a return condition in the form of a <parame-
ter, comparison, value> triple. For instance, if the client
wants to be informed when the parameter errorRate of the
GSMSystem service is greater than 0%, a call to the subscri-

TABLE 1. METHODS OF THE QOMONITOR COMMUNICATION API.

Method Functionality

register clients register themselves in the monitor

getServiceQuality clients make synchronous requests to get
QoS/QoC metadata

subscribeServiceQuality clients make asynchronous requsts to get
QoS/QoC metadata

unsubscribeServiceQuality the monitor stops the sending periodic
responses to clients

beServiceQuality method would receive the following pa-
rameters: <GSMSystem, 192.168.0.100, 8080> (service
name, IP address, and access port), <SMS, Person> (a list of
input parameters), <Client1, 192.168.0.199, 8080> (client
name, IP address, and access port), <errorRate, uptime,
responseTime> (a list of quality parameters to be monitored),
and <errorRate, greaterThan, 0.0> (the return condition). To
perform this kind of request, the client must implement a
method called callback in order to enable the communication
between the monitor and the client, so that this method is
responsible for receiving the response from the monitor
regarding the asynchronous request. The monitor periodical-
ly checks if the return condition has been satisfied, and while
it is true, the monitor replies to the client providing the pa-
rameters with their respective values represented in the form
of the ontology, through the callback method. To stop the
sending of responses from the monitor, the client calls the
unsubscribeServiceQuality method.

With the data regarding the request, the Client Façade
forwards them to the Request Handler using references to
clients and service providers in the respective repositories.
Finally, when the data regarding the performed assessments
are available, the Client Façade receives the QoS/QoC
metadata in the ontology form together with a reference to
the current client. If the current service is not in the Service
Repository, then the Client Façade calls the Service Reposi-
tory for storing its data and the repository notifies the As-
sessment Module informing that a new service has been
added. This module immediately starts the monitoring and
assessment of data.

The Metadata Repository is responsible for persisting all
QoS/QoC metadata assessed by the monitor and also
QoS/QoC metadata provided by service providers. In turn,
the Ontology Module is responsible for representing these
data in the form of an ontology as depicted in Figure 3, in
which QoS and QoC parameters respectively extend the QoS
Parameter and QoC Parameter classes defined in the ontol-
ogy. An ontology is a data model that represents a set of
concepts within a domain and the relationships between them
[14], thus providing formal expressiveness and avoiding
ambiguity in the semantic interpretations of the same infor-
mation. For instance, Dobson et al. [4] define the QoS pa-
rameter ROCOF (rate of failure occurrence), which has the
same definition of the error rate parameter defined by Guo
et al. [5] and that is used in this paper as the error rate in a
given time interval. This situation can generate an interpreta-
tion problem that can be solved by using ontologies. When a
monitor component wants to receive metadata in the ontolo-
gy format, this component provides a reference to the service

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

in the Service Repository and the Ontology Module forwards
it to the Metadata Repository, which performs a search and
returns the data of the current service. With these data, the
Ontology Module performs operations to represent them in
the ontology format used by the monitor.

Figure 3. Ontology used by QoMonitor for representing metadata.

The main component of the monitor is the Assessment
Module. This component is responsible for assessing
QoS/QoC metadata of the services stored in the Service
Repository and monitoring them and is composed by three
types of elements: assessors, Blackboard, and Controller.
Each assessor is responsible for assessing one specific quali-
ty (QoS/QoC) parameter from information gathered through
requests to the monitored services by the Assessment Mod-
ule. This information is: (i) the time spent to complete the
request (CompletedTime); (ii) if the service was available or
not (isAvailable); (iii) the instant in which the request was
made (TimeStamp), and; (iv) the date and time of crea-
tion/sensing of the context information provided by the ser-
vice (if it is a context service), so that this information is
important because it enables inferring the age (Age) of the
context information provided by the service. The Blackboard
component incorporates the idea of a shared data repository,
which is interesting since the assessors of different QoS/QoC
parameters use the same aforementioned information to
calculate the value of these parameters. Thus, the use of the
Blackboard component avoids a large number of requests to
the monitored services since, without this element, each one
of the assessors would make isolated requests to the services
in order to gather the metadata information, thus negatively
impacting their performance. To avoid this problem, the
Blackboard centralizes this information so that each assessor
is able to receive it and calculate the value of the quality
parameter to which the assessor proposes to measure. For
instance, assessors regarding QoS parameters such as availa-
bility and error rate can make use of historical data stored in
the Blackboard about the availability of the service to per-
form the assessment.

The idea of the Controller component is to control the
access to the information stored in the Blackboard and the
information gathered from the assessment of the parameters,

so that the assessors do not know the source of the data that
they use to make the assessment, thus modularizing the ar-
chitecture. The monitoring of services works independently,
by using threads, and starts at the time when the monitor is
available, so that monitoring and assessment operations are
executed while the monitor receives and replies requests.
This continuous monitoring is intended to speed up the re-
sponse time of requests since when a request is made,
QoS/QoC metadata are already stored and can be accessed
by the Request Handler to reply to the clients.

Finally, the Request Handler is responsible for retrieving
QoS/QoC metadata through the Ontology Module and for-
warding them to the clients. When a client makes a synchro-
nous request, the Client Façade forwards it to the Request
Handler, which retrieves the current data through the Ontol-
ogy Module and replies to the Client Façade. When an asyn-
chronous request is forwarded to the Request Handler, it
monitors if the QoS/QoC data satisfy the return condition
informed by the client; in this case, the Request Handler
continuously monitors these data in order to identify whether
the return condition is satisfied. When the return condition is
met, the Request Handler immediately replies to the Client
Façade that calls the callback (listener) method implemented
by the client. As the monitoring operation is independent of
the other operations performed by the monitor, the response
time of a request is considerably small since the service has
already been monitored and its parameters have been as-
sessed before making the request. An exceptional situation
happens when a client makes a request regarding a service
that is not present in the Service Repository, so that this ser-
vice must be added to the repository and then the monitoring
is started.

B. Monitoring service providers
Before starting the monitoring of services, two time in-

tervals need to be defined in the monitor. The first one is
called TimeToRequest and is the time interval in which the
Assessment Module makes requests to the service providers.
The second time interval is called TotalTime and is the time
in which information is considered recent. For instance, if
the TotalTime is set to ten minutes, then information gath-
ered more than ten minutes ago will be ignored since this
information is considered outdated and can interfere in the
assessment calculations of the quality parameters.

Next, the Blackboard receives a list of references to the
available services from the Service Repository and makes
periodic requests (according to TimeToRequest) through the
Server Façade to the respective service providers using their
data (address and list of parameters), thus returning the time
spent to complete the request (CompletedTime), whether it
has been performed successfully. If the request has not been
successful, then the Server Façade throws an exception that
is caught by the Blackboard. For the case study previously
described, the context services provided by GPSLocali-
zationMiddleware and CellularLocalizationMiddleware use
QoC metadata, so that the age of this information (Age) is
also gathered. In the case study under consideration, no ser-
vice provider provides the QoS/QoC metadata beforehand,
so that after each request the Blackboard stores the request

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

data (CompletedTime, isAvailable, TimeStamp, and Age). If
the request has failed, then CompletedTime is equal to -1,
isAvailable is false, Age is null, and TimeStamp remains the
same. If the service provider itself provides the QoS/QoC
metadata, then the Blackboard forwards these metadata to
the Ontology Module, which builds the representation of
these data in the ontology format and then sends them to the
Metadata Repository for storage.

With the data stored in the Blackboard, the Controller is
called to access the data history of the requests that are in the
Blackboard and forward them to each of the assessors. After
all assessors finished their assessment and returned the re-
sults to the Controller, it forwards the data to the Metadata
Repository for storing them. This execution is repeatedly
done with a time interval defined by TimeToRequest and is
independent of the requests made by the clients since the
idea here is that QoS/QoC metadata are already stored before
client requests. Thus, the monitor will quickly reply to client
requests and can share data whether two clients make re-
quests to the same service. If for some reason the metadata
are not available, e.g. when the first monitoring is performed,
then the Request Handler remains on standby until the data
are available.

The running example outlined in Section II clearly illus-
trates the importance of using a QoS/QoC metadata monitor
system when deciding which service will be used by a ubiq-
uitous application. For instance, the service providers
GPSLocalizationMiddleware and CellularLocalizationMid-
dleware are responsible for providing services to localize the
doctors of the monitored patient and ambulances, each one
using different technologies and possibly different QoS/QoC
parameters. Without monitoring data, the application will not
know which service is best suited to be used, in terms of
quality parameters. The client (a ubiquitous application
and/or a middleware) can find out the QoS/QoC metadata of
the services that are available by making synchronous re-
quests to the monitor. It can also decide which is the best
time to use a particular service provider by making asyn-
chronous requests, e.g. in situations when the response time
is smaller than fifty milliseconds or the freshness is smaller
than two seconds, etc.

IV. EVALUATION
This Section presents an evaluation of QoMonitor

metadata monitoring system proposed in this paper under a
quantitative perspective, which aims to address the time for
assessing QoS and QoC parameters (Section IV.B) and the
time spent to completely reply to synchronous and asynchro-
nous requests to the monitor (Section IV.C). For the purpos-
es of this evaluation, we have used the health care ubiquitous
application outlined in Section II. The services used in the
case study were implemented as Web services using the Java
programming language and the Apache Axis framework [6]
and deployed on an Apache Tomcat application server [7]
installed in a computer with an Intel® CoreTM i7 2.7 GHz
processor, 6 GB of RAM memory and Linux Ubuntu 12.04
operating system, which worked as the server to which re-
quests were performed. In the computational experiments,
the QoMonitor monitoring system was executed in a com-

puter with an Intel® CoreTM i5 2.3 GHz processor, 4 GB of
RAM memory and Mac OS X operating system and has
performed requests to the services deployed on the Apache
Tomcat server installed in the remote server. Aiming to exe-
cute such experiments under similar conditions to those
observed in a real-world scenario, QoMonitor and the server
in which the services were hosted were placed on different
networks, so as not completely disregard the influence of the
network in the process. In the quantitative evaluations pre-
sented in the Sections IV.B and IV.C, we have performed
fifteen independent executions for each service and for each
of the six parameters listed in Section IV.A, namely: error
rate, response time, MTBF, MTTR, uptime and freshness. In
these executions, the values chosen for the TotalTime and
TimeToRequest times were twenty minutes and five seconds,
respectively.

A. QoS and QoC parameters
In Ubiquitous Computing, context information is gath-

ered from several sources, e.g. it can be provided by users,
sensed from sensor devices, derived from multiple origins,
etc. Buchholz et al. [2] enumerate some QoC parameters,
such as precision, correctness, resolution, freshness, etc. For
the evaluation performed in this paper, we have considered
the freshness QoC parameter, which expresses the infor-
mation age, i.e. the time elapsed since the information was
generated. Thus, if the information is recent, then it will be
more reliable since old information may be outdated. We
have chosen just this parameter to assess since other QoC
parameters such as precision and resolution are provided by
the sensors that measure them [8], so that they can not be
properly monitored by our monitoring system. Although
precision, resolution and other QoC parameters are not as-
sessed by our QoMonitor, if they are published by the ser-
vice provider, then the monitor can retrieve them and store
these metadata in the ontology format.

Similarly, metadata for QoS parameters are associated
with the services used by the ubiquitous applications and are
intended to identify the quality of the service. Among the
various QoS parameters enumerated in the literature [9, 10],
we have considered in this evaluation the following five QoS
parameters: (i) response time, which is the time elapsed from
the instant in which the client performs a request to the in-
stant in which it processes the response message sent by the
server; (ii) MTBF, which is the mean time between system
failures during its operation; (iii) MTTR, which is the mean
time between a system failure and its return to operation
(recovery); (iv) error rate, which measures the error rate for
data transmission or service operation in a given time, and;
(v) uptime, which refers to the operating time (i.e. availabil-
ity) of a service.

B. Asessment of QoS/QoC parameters
Table 2 and Table 3 present the minimum, maximum and

average assessment times (in milliseconds) for each of the
quality parameters considered for each service of the case
study enumerated in Section II (from S1 to S8). Here, only
the localization services SearchClosestDoctorsCel (S3),
SearchClosestDoctorsGPS (S3’) and SearchClosestAmbu-
lancesGPS (S6) and the blood pressure monitoring services

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

TABLE 2. MINIMUM AND MAXIMUM ASSESSMENT TIMES OF THE CONSIDERED QOS AND QOC PARAMETERS.

Services /
Parameters

error rate response time MTBF MTTR uptime freshness
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

S1 0.173 0.269 0.049 0.043 0.023 0.043 0.021 0.040 0.025 0.041 0.088 0.145

S1’ 0.190 0.260 0.087 0.071 0.035 0.071 0.038 0.049 0.034 0.102 0.035 0.151

S2 0.168 0.248 0.054 0.092 0.022 0.059 0.022 0.037 0.034 0.039 - -

S3 0.226 0.266 0.103 0.128 0.041 0.063 0.040 0.046 0.035 0.149 0.036 0.155

S3’ 0.173 0.193 0.062 0.078 0.025 0.035 0.025 0.040 0.025 0.043 0.089 0.109

S4 0.172 0.265 0.074 0.128 0.026 0.048 0.025 0.075 0.026 0.042 - -

S5 0.172 0.261 0.079 0.129 0.026 0.047 0.025 0.045 0.026 0.041 0.089 0.148

S6 0.193 0.286 0.064 0.115 0.026 0.045 0.025 0.045 0.026 0.040 - -

S7 0.189 0.261 0.084 0.126 0.036 0.045 0.035 0.044 0.035 0.041 - -

S8 0.174 0.240 0.045 0.093 0.022 0.036 0.021 0.039 0.025 0.035 - -

TABLE 3. AVERAGE ASSESSMENT TIMES OF THE CONSIDERED QOS AND QOC PARAMETERS AND RESPECTIVE STANDARD DEVIATIONS.

Services /
Parameters

error rate response time MTBF MTTR uptime freshness
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

S1 0.211 0.037 0.069 0.018 0.033 0.008 0.030 0.007 0.033 0.006 0.105 0.022

S1’ 0.225 0.025 0.116 0.017 0.043 0.008 0.045 0.003 0.041 0.017 0.126 0.030

S2 0.201 0.028 0.074 0.012 0.036 0.007 0.034 0.004 0.036 0.002 - -

S3 0.251 0.010 0.120 0.006 0.045 0.005 0.042 0.002 0.045 0.029 0.137 0.030

S3’ 0.181 0.005 0.067 0.006 0.028 0.003 0.028 0.005 0.031 0.006 0.094 0.007

S4 0.257 0.024 0.118 0.013 0.044 0.005 0.041 0.011 0.037 0.003 - -

S5 0.234 0.023 0.117 0.016 0.041 0.005 0.040 0.004 0.037 0.004 0.133 0.017

S6 0.225 0.034 0.088 0.021 0.034 0.008 0.034 0.008 0.032 0.006 - -

S7 0.233 0.025 0.110 0.014 0.041 0.003 0.039 0.003 0.037 0.002 - -

S8 0.184 0.017 0.053 0.012 0.025 0.005 0.025 0.006 0.028 0.004 - -

GetBloodPressure (S1) and SubscribeBloodPressure (S1’)
are context services, so that only these services have the QoC
parameter freshness. The assessment time of a given parame-
ter is basically the time spent by the respective assessor to
make the calculations of the values regarding this parameter
after the necessary data are recorded in the Blackboard com-
ponent.

In Table 2, minimum and maximum assessment times are
reported in the columns labelled as MIN and MAX, respec-
tively. Similarly, in Table 3 the average assessment times are
reported in the columns labelled as AVG and the respective
standard deviations are reported in the columns labelled as
STD. As can be clearly seen in Table 2 and Table 3, all the
assessment times do not exceed the order of 1 millisecond,
which is very beneficial in the sense that the monitor does
not promote a significantly impact in terms of the assessment
of the parameters.

C. Synchronous and asynchronous requests
Table 4 presents the times spent (in milliseconds) by the

monitor to completely reply to synchronous and asynchro-
nous requests made by clients regarding the services of the
case study, i.e. the time elapsed between the instant when the
request is received by the monitor until the instant in which
the monitor sends the response, thus encompassing all opera-
tions involved in handling this request. As can be observed

in Table 4, the minimum, maximum and average response
times (respectively reported in the columns labelled as MN,
MX and AV) are small, so that the time spent by the monitor
for receiving requests and replying to them is most influ-
enced by the network than the monitor itself. Therefore, we
can conclude that the monitor does not promote a significant
impact regarding this issue.

TABLE 4. RESPONSE TIMES FOR SYNCHRONOUS AND ASYNCHRONOUS REQUESTS.

Services/
Requests

synchronous requests asynchronous requests
MIN MAX AVG STD MIN MAX AVG STD

S1 46 86 60 12 46 132 65 28

S1’ 45 82 60 10 46 139 64 23

S2 43 108 70 19 43 111 57 18

S3 47 96 65 16 49 75 57 8

S3’ 49 84 61 11 47 76 57 10

S4 44 71 57 8 41 123 61 23

S5 48 110 70 18 46 91 60 15

S6 50 117 69 19 48 87 68 13

S7 47 96 65 16 43 88 64 16

S8 50 102 64 15 40 96 53 17

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

V. RELATED WORK
To the best of our knowledge, works found in the litera-

ture focus just on QoS or QoC monitoring and either on
synchronous or asynchronous mode, as we have mentioned.
However, it is important to support both monitoring modes
and also QoS and QoC metadata. In this Section, we briefly
present some of these proposals.

Huebscher and McCann [11] present a mechanism to
choose context services according to the QoC application
requirements. The proposed mechanism defines synchro-
nous and asynchronous functions to be used by an applica-
tion when querying the QoC metadata and uses a directory
service to store metadata and services. In a different way of
our proposal, it considers only QoC metadata and does not
use ontologies, thus being limited to a proprietary context
model.

Truong et al. [12] present a tool for monitoring and ana-
lyzing QoS metrics of grid computing services. QoS
metadata regarding individual services are collected and
sent to a middleware that stores these monitored data. A
reasoning engine performs QoS analysis based on rules
contained in a component called QoS knowledge base,
which stores QoS historical data, so that it is possible to
define automatic actions to react to changes in the parame-
ters by sending alerts to the client. Although this tool is
proposed to monitor and analyze QoS metadata at runtime
as it is similarly done by our QoMonitor, it does not deal
with QoC metadata neither handle synchronous and asyn-
chronous requests. In addition, both works enable clients to
retrieve monitored data since they have a storage module.
Since our work focuses specifically on monitoring QoS and
QoC metadata and making them available for ubiquitous
applications or middleware, the QoMonitor system provides
the subsides needed to serve as input to another component
(or even a middleware) that would be responsible for trig-
gering these automatic actions associated with changes
regarding QoS and QoC parameters.

Finally, Zheng and Wang [13] propose a tool that sup-
ports QoC management. Requests are handled by a context
reasoner, which filters context information and notifies the
subscribed components about context changes, thus support-
ing asynchronous requests. In addition, services are stored
in a context repository and metadata are represented by an
ontology. Although this work is very close to our proposal,
it does not support synchronous requests and focuses just on
QoC monitoring.

VI. FINAL REMARKS
In this paper, we presented QoMonitor, a metadata

monitoring system that is in charge of handling synchronous
and asynchronous requests for monitoring QoS and QoC
metadata. QoMonitor recovers metadata from several con-
text providers, uses an ontology to represent such metadata,
and sends them to the clients. By using the proposed moni-
toring system, ubiquitous applications can abstract away the
burden of dealing with the complexities related to synchro-

nous and asynchronous metadata monitoring. In addition,
these monitored metadata can be available to ubiquitous
applications and/or a middleware that would be responsible
for managing this information in order to select the services
that will be used by an application, for example. We have
implemented this system and used it in a health care appli-
cation and the evaluation of QoMonitor showed that the
average time for assessing QoS and QoC parameters and the
time spent to completely reply to synchronous and asyn-
chronous requests to the monitor are significantly small. As
a future work we aim to evaluate the delay when a given
service is not available at the service repository yet and the
monitoring system needs to ask a third-party element (typi-
cally an underlying middleware) to discover which context
provisioning system provides such service.

REFERENCES
[1] M. Weiser, “The computer of the Twenty-First Century”,

Scientific American, vol. 265, no. 3, Sep. 1991, pp. 94-104.
[2] T. Buchholz, A. Kupper, and M. Schiffers, “Quality of

Context: What it is and why we need it”, Proc. of the 10th
Workshop of the HP OpenView University, 2003, pp. 1-14.

[3] H.G. Hegering, A. Kupper, C. Linnhoff-Popien, and H.
Reiser, “Management challenges of context-aware services in
ubiquitous environments”, Proc. of the 14th IEEE/IFIP
Workshop on Distributed Systems: Operations and
Management (DSOM 2003), LNCS, vol. 2867, Germany,
Springer Berlin/Heidelberg, 2003, pp. 321-339.

[4] G. Dobson and R. Lock, “Developing an ontology for QoS”,
Proc. of the 5th Annual DIRC Research Conf., 2005, pp. 128-
132.

[5] G. Guo, F. Yu, Z. Chen, and D. Xie, “A method for semantic
Web service selection based on QoS ontology”, Journal of
Computers, vol. 6, no. 2, Feb. 2011, pp. 377-386.

[6] Apache Axis. Available at: http://ws.apache.org/axis
[retrieved: July, 2012]

[7] Apache Tomcat. Available at: http://tomcat.apache.org/
[retrieved: July, 2012]

[8] A. Manzoor, H. Truong, and S. Dustdar, “Quality of Context:
Models and applications for context-aware systems in
pervasive environments”, The Knowledge Engineering
Review, 2004, pp.1-24.

[9] V. Trana, H. Tsujib, and R. Masuda, “A new QoS ontology
and its QoS-based ranking algorithm for Web services”,
Simulation Modeling Practice and Theory, vol. 17, no. 8, Sep.
2009, pp. 1378-1398.

[10] M. Sathya and M. Swarnamugi, “Evaluation of QoS based
Web service selection techniques for service composition”,
International Journal of Software Engineering, vol. 1, no. 5,
Feb. 2011, pp. 73-90.

[11] C. Huebscher and A. McCann, “An adaptive middleware
framework for context-aware applications”, Personal and
Ubiquitous Computing, vol. 10, no. 1, Dec. 2005, pp. 12-20.

[12] H. Truong, R. Samborski, and T. Fahringer, “Towards a
framework for monitoring and analyzing QoS metrics of grid
services”, Proc. of the 2nd IEEE Int. Conf. on e-Science and
Grid Computing,USA,IEEE Computer Society, 2006, pp. 1-8.

[13] D. Zheng and J. Wang, “Research of the QoC based
middleware for service selection in pervasive environment”,
International Journal of Information Engineering and
Electronic Business, vol. 3, no. 1, Feb. 2011, pp. 30-37.

[14] T. Gruber, “A translation approach to portable ontology
specifications”, Journal of Knowledge Acquisition, vol. 5, no.
2, Jun. 1993, pp. 199-220.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

