
UbiPOL: A Platform for Context-aware Mobile Device Applications in Policy
Making

Mihai Barbos
Software Department

S.C. IPA S.A.
Bucharest, Romania

e-mail: mihaibarbos@ipa.ro

Habin Lee
Brunel Business School

Brunel University
Uxbridge, UK

e-mail: Habin.Lee@brunel.ac.uk

Eugen Pop
Software Department

S.C. IPA S.A.
Bucharest, Romania
e-mail: epop@ipa.ro

Luis Miguel Campos
Research and Development Department

PDM&FC
Lisbon, Portugal

e-mail: luis.campos@pdmfc.com

Abstract — UbiPOL is a context-aware platform for policy
making. At its core, the UbiPOL platform has an essential
framework of web services and APIs. It is intended to aid and
support the development of location-based and context-aware
applications in the field of policy making. Software developers
can make use of UbiPOL generic web services and APIs to
develop new context-aware policy making applications for
mobile devices, leveraging the built in support for Location-
based Services of the platform. The paper gives a generic
presentation of the UbiPOL platform focusing on the
provisioning of location-based and context-aware mobile
device applications in the field of policy making.

Keywords – context; context-aware; Location-based Services;
UbiPOL; mobile applications.

I. INTRODUCTION

Literature identifies several challenges and barriers in e-
Participation. One of them is poor citizen’s involvement due
to lack of interest for relevant government policies. As a
result, there is a need for ICT tools that motivate citizens to
participate in policy making processes.

UbiPOL is a context-aware participation platform for
policy making. The concept of UbiPOL is based on the
assessment that citizens will be more motivated to participate
in policy making processes if they can find connections
between their everyday life and government policies. In
UbiPOL, context-awareness allows linking policy making
processes to the everyday life pattern of citizens in order to
increase motivation and involvement at all participation
levels.

The paper gives a generic presentation of the UbiPOL
platform focusing on the provisioning of location-based and
context-aware mobile device applications in the field of
policy making.

First, in Section II, we make a brief presentation on the
state of the art. We introduce the concepts of context-
awareness and Location-based Services (LBS) which are
essential to UbiPOL. A subsection on e-Participation is also

included, emphasizing on the need for ICT systems that
increase citizen motivation.

Section III briefly describes the concept and novelty of
UbiPOL, focusing on how context-awareness can improve
citizen motivation to participate in policy making processes.

Section IV defines the context in relation to generic
common tasks of an UbiPOL user. In this section we also
reveal some of the features and elements that make UbiPOL
context-aware.

Section V is a generic description of the UbiPOL system
architecture, including all the platform components.

In Section VI we focus on the front-end API, one of the
UbiPOL platform components. We also provide some
examples on how the API can be used to develop and
implement context-aware mobile device applications.

Finally, the conclusions highlight some advantages of the
UbiPOL system and platform.

II. STATE OF THE ART

A. Context-aware computing and Location-based Services

An important part of context-aware computing is the
context. Context can be defined as “any information that can
be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves” [1]. Several variables or
pieces of the “constantly changing execution environment”
can be part of the context, including: available processors,
user input devices, network capacity, connectivity,
bandwidth, user identity, location, time, collection of nearby
people and social situation [1].

Location, identity, time and activity are primary data for
context-aware computing, because they provide indices for
other contextual information, referred as secondary
information. Examples of this sort of data are: addresses,
phone numbers, e-mails, people, activities, situations near
the entity, etc. In order to perform context-aware computing,
one must first analyze and define the context specific for a

236Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

certain application scenario, including secondary
environment data. Unlike primary data (like user location)
that is present in all context-aware applications, secondary
information is specific and will differ from one system to
another. A context-aware application should gather and
processes all information about the surrounding environment
that is relevant to the user’s task. If certain information is
useful to describe the status of a participant that takes part in
an action, that information represents context [1].

“A system is context-aware if it uses context to provide
relevant information and/or services to the user, where
relevancy depends on the user’s task” [1], [2]. Context-
awareness can also be defined as the capability of software
applications to find out and behave according to the
modifications that occur in their surrounding environment
[3], [4]. Originated from ubiquitous computing, context-
awareness is flexibly associated with moving entities or
processes. Context-awareness is usually referred to be
complementary to location-awareness, because information
about position is relevant for evolving processes [5]. Out-of-
the-box access to location makes mobile devices appropriate
software application hosts in the field of context-aware
computing. Whereas position is significant as context
information, context-aware computing is related with
Location-based Services (LBS).

Virrantaus defines Location-based Services as
“information services accessible with mobile devices
through the mobile network”. Location-based Services
employ “the ability to make use of location” available on
mobile devices [6]. Another similar definition by Steiniger
refers to a location-based service as “a wireless-IP service
that uses geographic information to serve a mobile user.”
According to Steiniger’s definition a LBS can be “any
application service that exploits the position of a mobile
terminal” [6].

Literature review identifies 2 types of Location-based
Services: push services and pull services [6], [7]. Both types
rely on the use of location in delivering information to users.
But the difference between the two is in the trigger (the event
that initiates the transaction). For push services the trigger is
not directly linked to the user. The trigger can be an event
like the user entering a specific area or a timer. “Push
services deliver information which is either not or indirectly
requested from the user” [7]. On the other hand, for pull
services the information is requested by the user explicitly.
Moreover, Virrantaus separates pull services in two
categories: “functional services like ordering a taxi or an
ambulance by just pressing a button on the device” and
“information services like the search for a close Chinese
restaurant” [6].

B. The need for increased citizen involvment in e-
Participation

E-Participation can be defined as “the use of information
and communication technologies to broaden and deepen
political participation by enabling citizens to connect with
one another and with their elected representatives” [8].

Macintosh defines 3 levels of participation in policy
making processes: E-enabling (“the use of technology to

enable participation”), E-engaging (“the use of technology to
engage with citizens”) and E-empowering (“the use of
technology to empower citizens”) [9].

The first level of participation, E-enabling, refers to the
provision of “relevant information in a format that is both
more accessible and more understandable” [9].

The second level of participation, E-engaging, refers to
“the top-down consultation of citizens” by policy makers.
This level is characterized in terms of user access to
information and reaction to policy maker led initiatives [9].

The third level, E-empowering, supports active
participation and facilitates “bottom-up ideas to influence the
political agenda”. This level emphasizes the strong need to
allow citizens to influence and participate in policy
formulation [9].

All 3 levels of participation refer to the use of
information and communication technologies for reaching a
wider audience and increasing citizen participation.
According to Macintosh these elements are useful indicate
the scale of participation [9].

Moreover, literature review further identifies the
complexity of participation, indicating a social barrier
comprised of several factors like: “the large and diverse
range of stakeholders which have different needs and
preferences; have diverse backgrounds, perspectives, and
linguistic and technical capabilities”. Macintosh underlines
the need for e-Participation approaches which reflect these
differences [8].

The effectiveness of e-Participation systems can be
maximized only when the end users (citizens) are committed
and having a proactive attitude towards policy making
processes [8].

Some researchers motivate the failure of many
unsuccessful e-Participation initiatives by lack of citizen
involvement. “Though the technology platform appears
deceptively simple and cheap to implement, many efforts fail
to attract widespread interest amongst citizens or politicians,
are unrepresentative, lead to poor information or poor quality
of debate, or are monopolized by a few vocal contributors. A
serious problem with these forms of e-Participation is citizen
engagement – citizens do not necessarily become more
willing to participate simply because net-services are
provided for them” [10]. A key factor for the success of e-
Participation is citizen involvement. E-Participation
initiatives are “dependent on citizen engagement, interaction
and social networking because democratic systems favor the
interests of larger groups of citizens – the more voices
behind a political proposition, the greater its chances of
success” [10].

One of the reasons that make citizens de-motivated is the
ignorance of relevant policies [11]. “Citizens often feel there
is a glass barrier between their everyday life and the policy
making processes in government” [12].

III. THE CONCEPT OF UBIPOL

In previous sections we augment that the failure of other
e-Participation initiatives is determined by poor citizen
involvement in policy making processes. Literature reveals

237Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

that poor citizen participation comes from lack of interest
and motivation.

The concept of UbiPOL is based on the idea that “the
more citizens find connections between their everyday life
and relevant policies, the more they become pro-active or
motivated to be involved in policy making processes”[12].

To effectively address known obstacles in citizen
commitment to policy making processes at all participation
levels, UbiPOL makes use of context-aware and location-
based services.

Both the concept of context-aware and Location-based
Services are essential to UbiPOL. In UbiPOL, the context of
the end user (citizen) triggers different system response and
behavior for all participation levels.

Relevant information is provided to citizens on mobile
devices based on their location, context, preferences and
needs (E-enabling). And because UbiPOL makes use of
mobile devices for service delivery, relevant policy making
information is more accessible to end users “on the fly”.

UbiPOL enables top down consultation of citizens on
mobile devices (E-engaging). Policy makers can define
consultations on matters of public interest. Citizens are
informed and can express their opinion.

In UbiPOL citizens can also report on or generate issues
to influence and participate in policy formulation at their
own initiative (E-empowering). Other users can comment on
citizen generated issues.

Context-awareness makes UbiPOL sensitive to user
needs linking policy making processes to the everyday life of
citizens at all participation levels. This increases the citizen’s
motivation to be involved in policy making processes
leading to wider audience and increased participation.

IV. CONTEXT-AWARENESS IN UBIPOL

Information about location, identity and time is
mandatory for most context-aware applications. Those
variables are prerequisites of the primary data that the
context-aware system must know in order to determine the
specific contextual data or secondary information relevant to
the user’s task. As such, location and identity of the user and
time are primary data variables for context in UbiPOL. The
secondary information that constitutes specific contextual
data for UbiPOL is closely related with the tasks made
available by the platform to its users.

At its core UbiPOL is a participation platform for policy
making. Its main objective is to enable the participation of
citizens in the “policy making process from the middle of
their everyday life, overcoming spatial and time barriers”
[12]. UbiPOL deploys its services to end-users on mobile
devices. UbiPOL mobile device applications are based on
platform APIs available also for third party developers. The
platform APIs provide basic mobile application development
features facilitating the implementation of functionalities
specific to policy making processes. One common generic
task of the UbiPOL mobile application end-user is to be
involved in the policy making process. In relation to this
end-user task, we can define the specific contextual data for
UbiPOL.

The following concepts constitute UbiPOL specific
contextual data in close relation to common generic end-user
tasks:

• Policy issues, defined by the policy maker through a
web application (a UbiPOL server side component),
in order to provide relevant information to citizens;

• Questions, questionnaire forms, voting polls also
defined by policy makers and proposed for
consultation to the citizens;

• Reported issues, opinions, comments and proposals
raised or defined by other citizens, regarding various
types of problems of interest.

All the concepts introduced above have corresponding
entities in the UbiPOL domain model. The entities used to
encapsulate policy making information are linked with
location data. A policy issue for example can be related to
one specific point of interest (like a school, a library, a
museum) or more.

A brief reiteration enables us to define the information
that makes up context in UbiPOL. The context in UbiPOL is
comprised of primary data and secondary information
(determined by the system based on the primary data). The
primary data is location and identity of the user and time as
for most context-aware systems. And policy making
information available in the system (including policy issues,
reported issues, questions, questionnaire forms, voting pools,
opinions, comments, proposals etc) constitutes the base for
secondary contextual data. Because the user is on the move
the entities located in close vicinity are constantly changing.

Location and identity of the user are primary context data
for UbiPOL. Location-based support in UbiPOL is provided
through front-end APIs and core web service components.
The front-end APIs provide access to built-in mobile device
location functions enabling the use of GPS or network
positioning methods. UbiPOL front-end APIs also include a
communication manager component providing web service
client modules. The core web service components used in
conjunction with the front-end APIs provide both pull and
push location-based support for mobile application
development.

Up to now we’ve emphasized on context and location-
based support in UbiPOL. Although location-awareness is a
prerequisite for context-awareness, knowledge of the
geographical position and identity of the user is not
sufficient. One other essential feature of context-aware
applications is to find out and behave according to the
modifications that occur in their surrounding environment
[3], [4]. In order to provide context-aware support UbiPOL is
employing user profiles. A user profile in UbiPOL includes
specific information that defines citizens’ detailed preference
in relation to policy making processes. Each citizen is
allowed access to create and modify policy making filters
from the mobile device. Citizens (UbiPOL end-users) are on
the move and their location is constantly changing. Their
common generic task (in relation to UbiPOL) is to be
involved in policy making processes. The entities that
comprise context for UbiPOL are linked with locations as
well. So, as citizens move according to their everyday life
pattern, the UbiPOL execution environment (entities

238Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

surrounding them) is changing. Based on those changes and
on user predefined preference, citizens receive notifications
about relevant surrounding entities (policy issues, reported
issues, etc) enabling them to get involved and participate in
policy making processes.

V. GENERIC UBIPOL SYSTEM ARCHITECTURE

UbiPOL is a policy making platform with support on a
wide rage of device types and mobile operating systems. It
provides both front-end and back-end APIs to enable
development of e-participation applications in the field of
policy making. Besides a full set of customizable front-end
and back-end APIs, UbiPOL also provides five web services
exposing system features to third party developers. UbiPOL
employs the system oriented architecture (SOA). With
access to platform APIs and web services, UbiPOL
developers can design and implement new policy making
applications.

For cross-platform portability reasons the development
programming language being used in UbiPOL is Java. Front-
end APIs and components are based on the Java ME
platform. Back-end APIs, components and web services are
based on Java EE 6.

The typical system architecture, also employed in
UbiPOL field trials, is shown Figure 1.

Figure 1. Typical UbiPOL system architecture

In Figure 1 we emphasize on relation between logical
system components and APIs without highlighting hardware
and communications infrastructure. Variations from this
architecture are possible and fully up to the developer. When
developing UbiPOL applications it is not mandatory to make

use of all platform APIs, components and web services. The
extent of platform components required is determined based
on the scope of the policy making applications being
developed.

A generic description of all components in the typical
UbiPOL system architecture from Figure 1 is provided
below:

• The UbiPOL database stores all system information.
UbiPOL employs relational database architecture.
All system specific contextual data introduced in
Section IV is stored here: policy issues, questions,
questionnaire forms, voting polls, reported issues,
opinions, comments and proposals. The UbiPOL
relational database model was determined based on
analysis of 4 different policy making processes in 2
countries: UK and Turkey. Based on the analysis
database table elements were designed to support
specific policy making process data. The database
also stores information related to system users,
administrators, user profiles, fitters etc.

• The UbiPOL domain model which relates classes to
tables from the database. Generally, each table in the
UbiPOL database has its own counterpart in the
domain, following the table per concrete class
strategy. Based on this strategy we are able to have
identical attributes on database tables and domain
classes (like policy issue for example which is both a
table in the database and an entity in the domain both
having the same attributes). There are some
particular exceptions when the joined table strategy
is used. And since UbiPOL back-end components
are based on Java EE 6, all constructs in the domain
are JPA entity classes.

• The UbiPOL domain model API which handles all
persistence operations in UbiPOL. This core
platform API is comprised of EJBs with common
persistence support for each entity class in the
domain. All other UbiPOL back-end components
rely on this API to handle persistence.

• The workflow component which manages and
executes the policy making processes. This
component is based on a set of back-end APIs and it
facilitates the flow of information, tasks, and events
for policy making processes in UbiPOL. It improves
transparency by providing policy tracking
functionality to end-users (citizens) throughout the
execution of the process. This component relies on
the domain model API for data access and
persistence.

• The data mining component employs natural
language processing and sentiment analyses
techniques to identify and extract subjective
information from citizens free text comments stored
in the UbiPOL database. This component relies on
the domain model API for data access and
persistence.

• UbiPOL SOAP web services are ideal for exposing
UbiPOL business logic to front-end applications.

239Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Client SOAP based support is available out-of-box
on a wide range of Java enabled smart phones and
PDA devices. The use of JSR 172 APIs on UbiPOL
client applications facilitates stub code generation.
There are 5 UbiPOL web services available. Two of
those provide location-based support: the
Notification Service (push LBS support) and the
Retrieval Service (pull LBS support). UbiPOL
SOAP web services also define an intermediary
layer of DTOs (Data Transfer Objects) used in XML
serialization for the communication with mobile
devices. This layer is mandatory in order to reduce
the number of successive web method from the
UbiPOL client. From this perspective a DTO can
include information provided by several entity
classes in the domain model that would otherwise be
retrieved independently (each through a separate
web method call). DTOs also facilitate convenient
conversions to compatible JSR 172 data types before
XML serialization. UbiPOL SOAP web services rely
on the domain model API for data access and
persistence. Also, some of the UbiPOL SOAP web
service methods make use of other components and
APIs (like workflow component APIs and data
mining APIs) to provide required functionalities to
front-end clients.

• UbiPOL REST web services are also used to expose
business logic to UbiPOL applications. Although
SOAP web services are also available, REST is used
for exposing UbiPOL business logic to back-end
applications. As for SOAP, UbiPOL REST web
services also make use of some back-end
components and APIs like: the domain model API,
the workflow component API, the data mining API.

• UbiPOL back-end web applications provide support
to policy makers allowing them to ask citizens for
their opinion by defining policy issues, questions,
questionnaire forms, voting polls etc. UbiPOL back-
end web applications are fat-clients making use of
little server resources and network connectivity.
They rely on REST web services to handle some
amount of the business logic.

• UbiPOL front-end applications are intended to be
used by citizens on mobile devices. In UbiPOL,
mobile device applications are also based on
platform APIs (described in more detail in the next
section). Built on platform front-end APIs, UbiPOL
mobile applications provide multi-language support
and a map based interface for policy issue
visualization.

Although third party developers may decide on the extent
of components required by their implementation, employing
the Notification and Retrieval web services in conjunction
with some front-end platform APIs is mandatory in order to
deliver location-based and context-aware UbiPOL mobile
applications. This topic is addressed in the next section of the
article where we also provide some generic information
about UbiPOL front-end APIs.

VI. DEVELOPING LOCATION-BASED AND CONTEXT-
AWARE UBIPOL MOBILE DEVICE APPLICATIONS

Context can be applied in a flexible way to entities that
are on the move. That is why context-awareness is
complementary to location-awareness. Built-in support for
access to location makes mobile devices appropriate
software application hosts for context-aware computing.
UbiPOL enables the development of context-aware mobile
applications in the field of policy making. Although several
components are part of the UbiPOL platform (as described in
Section V), only those front-end and back-end APIs and
services required to deliver context and location-aware
policy making applications are detailed in this section.

Primary contextual information in UbiPOL is location
and user identity. Information about user location is
determined at the front-end side. A policy map API is
available for UbiPOL front-end application developers. The
policy map API includes location support classes to
determine user position and display markers at specific
geographic coordinates. Markers on an UbiPOL map have
policy information attached to them.

Secondary or specific contextual data is provided through
web services. As mentioned before, two of the five UbiPOL
web services are location-based. Those are the Notification
service and the Retrieval service. UbiPOL front-end
applications determine the position of the user based on the
APIs provided by the platform. User position and identity are
included as parameters in UbiPOL Notification and Retrieval
web service method calls. Based on identity information the
system is able to determine user preference and policy filters
(part of the user’s profile) from the database. Based on
location information the system is able to determine the
entities in vicinity of the user in relation to filters, preference
and specific user task.

The common generic user task in relation to UbiPOL is
to be involved in policy making processes. In order to be
involved the user must first be informed. Information about
policy making processes in UbiPOL is triggered at the user’s
request (pull LBS) or through notifications (push LBS).
Notifications in UbiPOL are essential for context-awareness.
They are intended to dynamically apprise the user in real
time about his/her vicinity to locations with relevant policy
information attached. One specific feature of context-aware
applications is to detect and behave according to the
modifications in their surrounding environment.
Accordingly, UbiPOL mobile applications will deliver
notifications to users about the changes in execution
environment (policy making entities surrounding them).
And, because UbiPOL users have different profiles and
preferences, the system will behave differently for different
users. Two citizens using the same UbiPOL system
implementation might receive different notifications
although in vicinity to each other and surrounded by the
same policy making entities. In other words, the system
behaves according to relevancy to the user’s task.

In order to implement location-based and context-aware
UbiPOL mobile device applications, the following minimal
configuration of front-end APIs is required:

240Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

• The policy map API;
• The communication manager API;
Of course, a typical UbiPOL system implementation

would employ the architecture described in the previous
section making use of all platform components, APIs and
services. But here we only emphasize on development of
UbiPOL mobile applications with location and context-
awareness support. Calls to Notification and Retrieval web
service methods are handled by the front-end communication
manager API. All UbiPOL front-end APIs described below
are based on the Java ME platform. The entire UbiPOL
front-end API comes packed into a JAR file for use by
developers.

A. The policy map API

The policy map API is a graphical user interface class
library. It is a wrapper around the Google Maps API
providing general functionality required to display maps on
Java ME enabled mobile devices. The Light Weight User
Interface Toolkit (LWUIT) is used for implementation of the
UbiPOL policy map API to preserve the same consistent
look and fell on different mobile device platforms and
operating systems.

The policy map API includes dedicated Java classes
enabling support for the following generic functionalities:

• Sliding the map to different locations;
• Zooming in and out;
• Displaying makers at specific coordinates;
• Centering on the user’s location.
Policy information in UbiPOL is related to location.

Markers displayed at specific geographic coordinates on an
UbiPOL map have policy data attached to them. In order to
determine user position and display markers at specific
geographic coordinates, the policy map API has dedicated
location support classes. By default the policy map GUI
object centers to the users position when displayed on a
mobile device. So unless the user specifically slides to a
different location, the map will be centered on the actual user
position showing the surrounding markers.

Policy map location support is based on the Java JSR-179
API. Location specific classes in the policy map API extend
on Java ME location classes (JSR-179) providing event
driven functionalities on position changes to the application.

An essential component of the policy map API is the map
class. This class is the actual GUI class providing map based
user interface support for implementations. In order to make
it deployable on different device types the map class was
designed to automatically adapt to different mobile phone
screen sizes and resolutions without any need of
customization by the developer. The map GUI class is also
capable to respond to sensor events triggered by changes in
device orientation. Support for this functionality is based on
the Mobile Sensor API (JSR-256). This feature does not
need any customization by the developer as well.

The policy map GUI class was also programmed to
respond to different mobile device input methods including:
touch screen events, action key events and track-ball events.
Figure 2 shows a sequence diagram that exemplifies the

typical use of the policy Map GUI class in an UbiPOL
mobile application.

Figure 2. Sequence diagram for displaying the policy

Source code implementation for the sequence diagram in
Figure 2 is pretty straight forward. The Map class extends
the Container class from the LWUIT toolkit. So it can only
be added and displayed on LWUIT Form object.
Implementation of the first step in the sequence diagram
requires instancing a LWUIT Form class by calling the
constructor method. Then the Map class is instanced at steep
2. The Map class has a set of predefined constructors besides
the implicit one. The one used at step 2 in the sequence
diagram above requires passing the following arguments:

• The latitude and longitude that will be used as
default initial position if location is not enabled. The
values provided here will not be used if location is
enabled.

• The initial zoom level that the map should display.
The user can change the level at run time by
zooming in or out (this feature is preprogrammed in
the map class which responds to user generated
zoom in and out events).

• The map format that will be used to display tiles.
This can have one of the following Google
predefined values: png8 or png, png32, gif, jpg, and
jpg-baseline. The values can be changed at runtime.

• The map type that will be used to display tiles. This
can have one of the following Google predefined
values: roadmap, satellite, terrain, and hybrid. The
values can be changed at runtime.

At step 3 in the sequence diagram from Figure 2 the new
instance of the map object is added to the LWUIT form.
Then at step 4 the Form object is displayed by calling its
show method.

The following snippet is the source code implementation
required for the sequence diagram in Figure 2. The
arguments for the Map class constructor method are assigned
values and defined ahead of the constructor call. When used
in an MIDP application, the source code snippet from Figure
3 will display the UbiPOL policy map as shown in Figure 4.
The screenshot from Figure 4 was made on a N8 smart-
phone device from Nokia, for UbiPOL front-end API
experimentation purpose.

241Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 3. Source code example for displaying the policy map

Figure 4. The UbiPOL front-end Map object running on a Nokia N8

smart-phone

The following 2 figures show the behavior of the Map
class object as response to sliding and zooming events
generated by the user. Sliding and zooming are built-in
features of the UbiPOL front-end Map object. As a result, the
developer does not need to write any source code to support
those features. By default the Map class implementation will
execute sliding operations as response to arrow key events
on phones with key pads. For touch screen phones pointer
drag events are supported. The predefined keys for zooming
in and out on phones with keypads are the POUND key (for
zoom out) and the STAR key (for zoom in). For touch screen
devices the developer has to add menu buttons for the 2
operations to catch user generated events (see Figure 4). But
the zooming feature is built-in through 2 Map class methods
that the developer can call. On phones with both touch and
keypad input devices both options are available by default at
the same time.

Figure 5. UbiPOL front-end Map object slide action on a Nokia N8

smart-phone

Figure 6. UbiPOL front-end Map object zoom in action on a Nokia N8

smart-phone

B. The communication manager

Policy making data in UbiPOL is delivered to mobile
devices through SOAP web services. Aside from back-end
web service implementations, UbiPOL provides a front-end
API for communication with the server. The front-end
communication manager API is made up of 5 sub-packages
containing Java classes. There are 5 UbiPOL SOAP web
services available: Authentication, Knowledge Sharing,
Notification, Retrieval, and Tracking. So the front-end
communication manager is structured in 5 corresponding
sub-packages (one for each UbiPOL web service).

The UbiPOL front-end communication manager is based
on the Java ME web service specification API (JSR-172).

Each corresponding web service client sub-package in
the communication manager API has a generic structure
including:

• An interface extending the “java.rmi.Remote”
interface. This interface defines method signatures
for all the operations exposed by the specific service.
The method signatures are the same as for the server
side operations exposed.

• A stub class that implements the service interface
(mentioned above) and the "javax.xml.rpc.Stub"
interface.

• A set of supporting classes mapping the data types
(DTOs) returned by the specific service. The
supporting classes are be simple POJOs with
attributes, setters and getters.

As mentioned in the previous sections of the article, two
of the 5 UbiPOL web services are essential for location-
based and context-aware support. Those are Notification and
Retrieval. So, in order to develop context-aware mobile
applications the use of both Notification and Retrieval
classes in the front-end communication manager API is
mandatory. Also, in order for an UbiPOL mobile application
to gain access to any back-end web service operations, the
use of the front-end Authentication classes in the
communication manager API is required.

The Retrieval service provides pull LBS support. Policy
making information related to location can be retrieved at the
user’s specific request. User preference and policy filters are
applied to the queries besides location constraints.

242Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The Notification service provides push LBS support. The
user does not specifically request the data although
subscribing to the service is required. There are 2
Notification service operations that provide support for
subscribing and unsubscribing a user. One other relevant
web method is the “notify” operation available for delivering
the actual notifications. The “notify” web method receives
location and user identity information as input parameters
from the mobile device. It factors in user preference, policy
filters and location constraints in the reply. This web service
operation only provides a Boolean response (true or false) in
relation with the availability of relevant policy information in
the vicinity of the user. But the actual relevant policy
information must be acquired by calling Retrieval web
service operations. In other words, both Retrieval and
Notification front-end communication manager classes are
required for context-aware support.

The policy making data retrieved can be displayed
through a map based interface (using the policy map API) or
through a set of custom design GUI objects available in the
UbiPOL front-end API.

The following 3 figures show examples for delivery of
notifications to the user, displaying the retrieved data on a
map and also with a custom GUI policy issue list object
available in the UbiPOL front-end API.

Figure 7. Delivery of notifications to the user on a Nokia N8 smart-phone

Figure 8. Displaying policy data on the UbiPOL front-end map

Figure 9. Displaying policy issue data with a custom GUI list object from

the UbiPOL front-end API

VII. CONCLUSIONS

Throughout the article we talk about context-awareness
and Location-based Services (LBS) which are essential to
UbiPOL. Based on literature review we underline the need
for ICT systems that motivate citizens to be involved in
policy making processes. We define the common task of
users in relation to UbiPOL and then we specify the elements
that comprise context for the platform. We show how
UbiPOL makes use of context-awareness to increase citizen
motivation in policy making processes. A generic UbiPOL
system architecture is also included. In the last sections we
focus on the provisioning of location-based and context-
aware UbiPOL mobile device applications.

To conclude, we briefly reiterate and summarize some of
the obvious advantages of UbiPOL presented in previous
sections of the article.

The concept of UbiPOL is based on linking policy
making processes to the everyday life of citizens at all
participation levels. This will increase the level of motivation
and commitment of citizens leading to wider audience and
increased participation. Context-awareness is essential for
the concept of UbiPOL. The citizen (UbiPOL user) is
constantly on the move. The entities (policy issues, reported
issues, etc) that comprise context for UbiPOL are linked with
locations. So, as citizens move according to their everyday
life pattern, the UbiPOL execution environment (entities
surrounding them) is changing. Based on those changes and
on user predefined preference, citizens receive notifications
about relevant surrounding entities (policy issues, reported
issues, etc) enabling them to get involved and participate in
policy making processes “on the fly”.

UbiPOL involves citizens in policy making process at all
participation levels. It employs both approaches: top-down
consultations (policy maker led initiatives) and bottom-up
participation (citizens can generate policy issues).

UbiPOL targets both policy makers (who can deploy it as
it is) and developers (who are provided with a set of generic
front-end and back-end APIs). UbiPOL front-end and back-
end APIs are implemented to support generic requirements
determined based on the review of 4 different policy making
processes in 2 countries.

243Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

UbiPOL allows citizens to define their own context by
considering the different needs and requirements of its users.
In UbiPOL citizens can define their preference and interests
with regard to relevant policy issues. This way, citizens can
influence how the UbiPOL system reacts to them.

Both UbiPOL front-end and back-end APIs are based on
Java. This makes UbiPOL APIs and applications deployable
on a wide range of desktop and mobile operating systems.

UbiPOL also provides a set of 5 core web services to
address the needs of third party developers that are
implementing on platforms and operating systems that don't
support Java (like iPhone for example).

ACKNOWLEDGMENT

The work presented in this article was carried out in the
FP7 UbiPOL (Ubiquitous Participation Platform for Policy
Making) project (grant agreement no. 248010).We
acknowledge that parts of the content in the paper are based
on the discussion among UbiPOL partners.

REFERENCES
[1] A. K. Dey, and G. D. Abowd , “Towards a better

understanding of context and context-awareness,”
Proceedings of the first international symposium on Handheld
and Ubiquitous Computing (HUC ’99), Springer-Verlag
London, UK ©1999, ISBN:3-540-66550-1.

[2] A. K. Dey, “Providing architectural support for building
context-aware applications,” Ph.D. thesis, College of
Computing, Georgia Institute of Technology US., 2000,
unpublished,http://www.cc.gatech.edu/fce/ctk/pubs/dey-
thesis.pdf, retrived on 19.09.2011

[3] B. N. Schilit, and M. M. Theimer, “Disseminating Active
Map Information to Mobile Hosts,” IEEE Network, Volume
8

[4] A. Schill, “Context-aware applications,” Technische
Universitat Dresden, Department of Computer Science
Institute for System Architecture, Chair for Computer
Networks,http://www.rn.inf.tu-

dresden.de/lectures/MCaMC/09_Context-
aware%20Applications.pdf, retrived on 20.09.2011

[5] M. Rosemann, and J. Recker "Context-aware process design:
exploring the extrinsic drivers for process flexibility," In T.
Latour & M. Petit (Eds.) The 18th International Conference
on Advanced Information Systems Engineering. Proceedings
of Workshops and Doctoral Consortium, Luxembourg, Namur
University Press, Grand-Ducy of Luxembourg, 2006, pp.
149–158.

[6] K. Virrantaus, J. Markkula, A. Garmash., Y. V. Terziyan,
“Developing GIS-Supported Location-Based Services,”
Proceedings of First International Workshop on Web
Geographical Information Systems (WGIS’2001), Kyoto,
Japan, pp. 423–432.

[7] S. Steiniger, M. Neun, and A. Edwardes, “Foundations of
location-based services, lesson 1 CartouCHe1 - lecture notes
on LBS, V. 1.0,” Technical Report, University of Zurich,
2006,http://heanet.dl.sourceforge.net/project/jumppilot/w_oth
er_freegis_documents/articles/lbs_lecturenotes_steinigeretal2
006.pdf, retrived on 19.09.2011

[8] A. Macintosh, "Challenges and barriers of eParticipation in
Europe?", 2007, Paper presented at the Forum for Future
Democracy,
http://www.sweden.gov.se/content/1/c6/08/49/42/9d411e53.p
df, retrived on 17.09.2011

[9] A. Macintosh, "Characterizing E-Participation in Policy-
Making", 2004, Proceedings of the 37th Hawaii International
Conference on System Sciences

[10] Sæbø, O., Rose, J. and Nyvang, T. (2009) The Role of Social
Networking Services in eParticipation in Macintosh, A. and
Tambouris, E. (Eds.) (2009) eParticipation, LNCS 5694, pp.
46–55

[11] J. G. March, and J. P. Olsen, "Institutional perspectives on
political institutions.", In M. Hill (Ed.), The policy process: A
reader (2nd ed., pp. 139–155). London: Prentice Hall/
Harvester Wheatsheaf

[12] Irani Z, Lee H, Weerakkody V, Kamal MM, et al. (2010)
Ubiquitous Participation Platform for Policy Makings
(UbiPOL) - a Research Note, International Journal of
eGovernment Research, 6 (1), 78 - 106.

244Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

