
Dependable Estimation of Downtime for Virtual Machine Live Migration

Felix Salfner
SAP Innovation Center Potsdam

Potsdam, Germany
felix.salfner@sap.com

Peter Tröger and Matthias Richly
Hasso-Plattner-Institute at University of Potsdam

Potsdam, Germany
peter.troeger@hpi.uni-potsdam.de

matthias.richly@student.hpi.uni-potsdam.de

Abstract—Modern virtualization environments allow the live
migration of running systems for load balancing and failover
purposes in case of failing hosts. The overall duration of
such migration and the short downtime during this process
are essential properties when implementing service availability
agreements. However, both metrics are currently only deter-
minable through direct experimentation. For this reason, we
present a new model for estimating the worst-case values of
migration time and downtime in live migration. The prediction
is based on a small set of input parameters characterizing the
application load and the behavior of the host. We performed a
large set of experimental evaluations for the model with three
different virtualization products. The results show that total
migration time as well as downtime are mainly influenced by
the memory utilization pattern inside the virtualized system.
The experiments also confirm that the proposed model can pre-
dict worst-case live migration performance with high accuracy,
rendering the model a useful tool for implementing proactive
virtual machine migration.

Keywords-virtual machine; live migration; downtime analy-
sis;

I. INTRODUCTION

The concept of virtualization is known in computer
science and IT industry since the late 60’s [1]. Today,
virtualization can be considered a standard technique in
data centers. It is the foundation of modern computing and
storage infrastructures such as used in cloud computing.
Virtualization provides the following main advantages:

• Hardware consolidation. When running a software ser-
vice on a server, the provider must offer enough capac-
ity to handle peak load. This leads to under-utilization
of the resources for most of the time. Virtualization
enables the execution of multiple logical servers on
the same physical host, which helps to reduce the total
number of servers in the data center.

• Load balancing. Virtualization allows to control the as-
signment of physical server resources, such as memory
and CPUs, to virtual machines. This assignment can
even be changed during runtime. Additionally, services
can be moved from one physical host to another by
virtual machine migration. These techniques are used
to manage and balance the load of services.

• Maintenance. In the case that maintenance needs to
be performed at some physical host, virtual machine

migration can be used to move virtual machines away
so that the service can be provided while the physical
machine is under maintenance.

First approaches to implement migration of a virtual
machine relied on suspending the virtual machine before
the transmission. In order to reduce the resulting downtime
of the virtualized system, researchers and later on vendors
turned to so-called live migration which reduces virtual
machine downtime significantly. Today, the majority of
virtualization products support live migration for moving a
running virtual machine (VM) to a new physical host with
minimal service interruption. This renders live migration an
attractive tool also for dependable computing. However, each
migration procedure still consumes time and still involves
some short service unavailability. In the context of depend-
able computing the length of both time intervals are of great
interest for two reasons: Service availability and proactive
fault management.

Hosting a service in a data center is usually accompanied
by a service level agreement (SLA) that promises some
level of service availability. SLAs include not only such
requirements, but also penalties if the agreed-on level of
service is not met. In case that the service interruption
introduced by live migration exceeds the client’s expecta-
tion on responsiveness, a service unavailability is perceived
that decreases overall service availability. Therefore, it is
important for data center providers to estimate the worst
case downtime for virtual machine migration as precise
as possible. This becomes particularly important if the
service should be migrated repeatedly following a predefined
schedule.

The key notion of proactive fault management is to act
upon a potential failure even before the failure has actually
occurred. The goal is to either perform some action that is
able to prevent an imminent failure so that it does not occur
or to prepare recovery mechanisms for the likely occurrence
of a failure. Both types of actions improve availability,
by increasing mean-time-to-failure (MTTF) and decreasing
mean-time-to-repair (MTTR). Virtual machine migration has
been proven to be an effective tool for proactive fault
management (see, e.g., [2]).

One of the key components of any proactive fault manage-
ment is an online failure predictor that is able to accurately

70

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time

blackout time

Failure prediction lead time

Failure

Failure
prediction

Analysis &
decision

Virtual machine
migration

Figure 1. Time intervals involved in proactive fault management. The
total duration of virtual machine migration needs to be known in order to
determine the necessary failure prediction lead time.

identify imminent failures ahead of time. This must be
performed during runtime based on monitoring data (see,
e.g., [3] for an overview). Accuracy in this context means
that it identifies as many true failures as possible with as
few false alarms as possible. Accuracy is inversely related
to the length of the time interval how far prediction reaches
into the future, which is called the failure prediction lead
time (see Figure 1): Prediction of failures that happen in
the very near future (short lead time) is easier, i.e., more
accurate, than a prediction that reaches further into the future
(longer lead time). However, short lead times also require
faster preventive counter-measure to be conducted. Most
failure prediction algorithms allow to adjust their lead time.
It should be as short as possible for maximum accuracy, but
it has to be sufficiently long such that there is enough time
to analyze the current situation, to decide upon which action
to take and finally to execute and finish the action before the
failure strikes (see Figure 1). In the case of applying virtual
machine migration as proactive action, it is hence imperative
to have a robust estimate of the maximum duration of the
migration procedure.

A. Problem statement and contribution

The majority of existing work assumes some fixed, in
many cases arbitrary, duration of the live migration proce-
dure and the virtual machine downtime involved by it. This
article systematically investigates the factors determining the
duration and downtime of VM live migration (Section II).
Building on this analysis, we propose a theoretical model
by which the worst-case migration time and downtime can
be estimated based on only a few well-defined parameters
(Section IV). We demonstrate that our worst-case estimator
is making accurate predictions by experiments using a worst-
case synthetic load generator (Section VI) and by two
benchmark applications for typical data center workload
(Section VII).

This article is an extension to our previous work [4].
Whereas previous work focused solely on measuring the
effects of various parameters such as the rate at which mem-
ory pages become dirty, this work introduces an analytic
model that enables to estimate and predict the duration and
downtime of virtual machine live migration. We test the
estimator using the same load generator that was used in [4]
and additionally performed experiments with two benchmark
applications.

II. RELATED WORK AND FOUNDATIONS

System virtualization has been a traditional approach
for hardware consolidation and resource partitioning in the
history of IT systems. The first operating system offering
complete virtualization support was CP-40 by IBM in the
1960s. This first design was invented for time sharing
operation of virtualized S/360 instances, and still acts as
conceptional foundation for all later IBM virtualization
technology in the mainframe area.

Meanwhile, virtualization also gained larger attention as
research and development topic for other processor plat-
forms. Popek and Goldberg formulated in 1974 [5] a set
of essential characteristics for virtualizing host system re-
sources for a guest operating system:

• Equivalence: The execution of software in a virtualized
environment should be identical to the execution on
pure hardware, despite timing effects.

• Efficiency: The majority of code running in the virtu-
alized environment should run at native speed.

• Resource Control: The virtualization environment must
have exclusive control over the physical hardware re-
sources.

The same publication introduced the notion of a virtual
machine monitor (VMM) that acts as execution platform
fulfilling the given conditions.

Traditionally, the VMM is executing virtual machine
instances in a less-privileged processor mode, in order to
control relevant system state changes performed by the
virtualized system. Popek and Goldberg classified the guest
processor instructions accordingly: Privileged instructions
lead to a hardware trap when they are executed in an
unprivileged system mode, and sensitive instructions show
a behavior that depends on the current system state (e.g.
memory, registers). The most relevant aspect for any VMM
solution is the handling of instructions that are sensitive, but
not privileged.

Adams and Agesen [6] describe three major building
blocks for a VMM implementation to deal with the obstacles
of a given instruction set architecture. De-privileging makes
use of the nature of privileged instructions by executing the
guest operating system in a lower privilege level of the CPU.
The handling of hardware traps occurring from the execution
of privileged instructions in this mode is implemented by
the VMM, based on a distinct virtual machine state. This
relies on shadow structures of the hardware state (memory,
processor registers) relevant for execution of the guest op-
erating system. When unprivileged instructions can modify
relevant system state too, the VMM must also implement
tracing of such changes by built-in hardware protection
mechanisms. One example is the modification of page table
entry information to trap on unprivileged memory access
operations in the guest operating system.

With the revival of virtualization in recent years, different

71

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

optimization strategies were introduced for performance rea-
sons. One is the tighter integration of guest operating system
and VMM by implementing a dedicated communication
path. This concept, commonly known as paravirtualization,
relaxes the original equivalence condition by Popek and
Goldberg in favor of efficiency improvements.

If the guest software system must remain unchanged,
there are two major approaches to deal with critical in-
structions. A software-only VMM implementation utilizes
binary translation techniques for critical instructions. Typical
solutions apply dynamic late translation during run-time to
keep the performance penalty at a minimum. In contrary, a
hardware-assisted VMM implementation can utilize virtual-
ization support from the physical hardware devices. Modern
processor architectures support the management of shadow
structures and the de-privileging of guests as explicit features
in the instruction set, which reduces again the overhead in
comparison to software approaches. Examples are Intel VT,
Intel EPT or AMD-V. Most of these techniques rely on the
configuration of privileged instructions as part of the virtual
machine control structure [6] in the processor hardware.

A. Investigated hypervisors

With the given variety of modern VMM approaches, we
focused our investigations on three representative system
virtualization products. The Kernel-based Virtual Machine
(KVM) is a hardware-assisted open source VMM for Linux
as host operating system [7]. Starting from the Linux kernel
version 2.6.20, it is part of the main line and therefore
available on all hosts. The virtualized devices for guest
systems are provided by a modified version of the QEMU
system emulator.

Xen is an open source VMM solution that acts as bare-
metal hypervisor. It uses a modified Linux or Solaris op-
erating system as privileged guest in the so-called ’dom0’
domain. This domain has exclusive hardware access and
management privileges. Guest systems for Xen run in ad-
ditional domains and access the hardware through par-
avirtualization interfaces provided by the ’dom0’ domain.
Xen Linux guests are executed in paravirtualized mode,
which requires a modified kernel using the paravirtualization
interfaces. For other operating systems, such as Windows,
hardware-assisted virtualization is also available in Xen.
Different performance studies have shown that the usage of
hardware virtualization demands some consideration in the
guest operating system configuration [8].

VMware vSphere is a commercial product line for vir-
tualization that relies on bare-metal virtualization, meaning
that there is no explicitly installed host operating system.
KVM and vSphere do not demand changes to the guest
operating system due to the utilization of virtualization
hardware support. vSphere can also apply binary translation
techniques to the guest system, in case the X86 processor
hardware is not suited for virtualization support.

Storage System

Source Host

Running Virtual Machine Instance
- Hardware state

- Main memory content

Destination Host

Clients

Live Migration

Virtual Switch

ClientsClientsClientsClientsClientsClientsClientsClientsClientsClientsClientsClientsClients

Virtual Machine Image
(Guest file system, configuration data)

Figure 2. Principle of virtual machine live migration

B. Live migration of virtual machines

The migration of virtual machines is a stable feature of all
modern hypervisor implementations, including the presented
ones. Starting from early research prototypes ([9], [10]),
companies such as VMware made this capability a part of
their products since 2005.

Live migration describes the basic principle of moving a
virtualized system from one host system to another while
the guest is still running (see Figure 2). This activity
must consider all hardware state, memory data, storage and
network connections of the running virtual machine. Today’s
products realize this by a two-phase approach:

In the initial warm-up phase, the constantly changing
main memory of the running guest is incrementally trans-
ferred to the destination host. When a product-specific
threshold for main memory transfers is reached (time- or
amount-based), the implementation switches to the stop-and-
copy phase. The virtual machine is suspended for a short
time period, the remaining resources are copied and the
virtual machine is resumed on the destination host.

There are two relevant performance indicators for live
migration arising from this concept:

• Migration time is the time from start of the live migra-
tion process until the virtualization framework declares
the physical source host to be no longer relevant for
the execution of the migrated virtual machine. The
maximum tolerable migration time is determined by
internal dependability assumptions at the provider side,
e.g., maintenance intervals. It also plays a crucial role in
proactive migration scenarios as motivated in Section I.

• Downtime or blackout time is the phase during live
migration when there is a temporary (potentially user-
perceptible) service unavailability, caused by the virtual
machine suspending execution for the finalization of the
movement. From a dependability perspective, blackout
time is a crucial quantity when a virtualized service
(e.g. server application) needs to fulfill reliability guar-

72

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

antees. Blackout time limits are therefore driven by
dependability contracts between service provider and
customer. Downtime and blackout time are used syn-
onymously in this paper.

The most relevant part of live migration operation is the
transfer of main memory state. Since live migration hosts
share a common storage system within the migration cluster
(see Figure 2), all information kept in the guest file system
does not have to be considered. This relates especially to
memory regions being swapped out by the memory manage-
ment of the guest operating system. Some hypervisors also
perform their own swapping of memory regions to secondary
storage. Several virtualization frameworks use this property
for reducing the length of the warm-up phase. A specialized
ballooning driver allocates large amounts of memory inside
the guest operating system, in order to enforce swapping
of relevant memory information to secondary storage before
migration.

Read-only memory regions (such as code pages) need to
be copied to the destination host only once. This makes
them a perfect candidate for bulk transfers in the warm-up
phase. All remaining main memory information (data, stack,
heap, ...) is potentially modified after the live migration
process was started, and therefore needs a dedicated copying
approach.

Clark et al. discuss the phases of copying memory infor-
mation in more detail (see Figure 3) [11]:

In the initial push phase, the set of pages used actively
is copied in rounds to the destination host. Memory regions
being modified after transfer are re-sent, or marked for later
bulk move when their modification happens too often. We
define these modified but not yet transferred pages as dirty
pages.

In the subsequent stop-and-copy phase, the virtual ma-
chine is suspended on the source host and resumed again
on the destination host. The length of this phase determines
the blackout time. Depending on the type of live migration,
only portions or all of the remaining dirty pages are copied
in this phase. In the former case, a sub-sequent pull phase
takes care of moving remaining dirty pages from to source to
the destination host on demand after VM execution has been
resumed at the destination host. The end of the pull phase
marks the end of the migration time. Most live migration
products combine the first two phases as pre-copy approach,
and omit the pull phase.

The time of transition from one phase to the next is
controlled by product-specific adaptive algorithms. A quick
move from push phase to stop-and-copy phase can have
a positive influence on migration time, especially when
the memory modification happens at high frequency. In
contrast, a reduction of blackout time can be achieved by
stretching the push phase so that nearly all memory is
already transmitted before suspending the machine.

Figure 3. Phases of virtual machine live migration.

C. Analysis of Live Migration

In the area of dependable computing, virtual machine live
migration has primarily been used as coarse-grained failover
mechanism. Two examples are proactive fault tolerance [2]
and the approach to resource allocation proposed by Fu [12].

A second group of related work deals with various aspects
of implementing VM live migration. Several publications
discuss the optimization of live migration and according
usage scenarios, mostly with a focus on Xen technology.

Hines and Gopalan [13] discuss the modification of Xen
for post-copy live migration. In this approach only the
execution context of the VM is moved during the push-
phase and memory pages are transferred on demand in the
subsequent pull-phase after the VM has resumed execution
on the destination host. The authors evaluate their solution
with a stress test similar to the dirty page generator presented
in this paper, the main difference being the distinction
between read and write attempts in the memory load, as post-
copy requires network interaction also on read attempts. This
aspect is less relevant for the commercial products with pre-
copy semantics, where read attempts can be served locally.
However, for post-copy frameworks, our load model would
need an extension with the access type as additional control
parameter.

Sapuntzakis et al. [14] introduced several optimization
approaches for VM live migration, among which ballooning
is best-known, which forces the VM to swap out as much
memory as possible. The performance investigation was
conducted on a simulated work load with GUI end user
applications, whereas our work targets server environments
with periodic request-response interactions.

Du et al. [15] propose an extension of the Xen live
migration mechanisms for improving overall migration per-
formance. They identify the memory page re-writing rate as
relevant factor for the migration time and downtime, which
is in adherence to our results. The approach relies on a
modification of the Xen hypervisor, whereas our work is
intentionally restricted to un-modified standard virtualization
products.

Nagarajan et al. [16] describe how to achieve pro-active
fault tolerance through live migration in a high-performance
computing environment. Experiments were conducted with
several MPI benchmark applications, where the benchmark
type defines the kind of load applied to the Xen live
migration facility. Under the consideration of hardware

73

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance differences, the absolute migration time results
from this study are similar to the ones obtained in our
measurements. There were no investigations of downtime
issues.

To the best of our knowledge this is the first work
to introduce a prediction model for virtual machine live
migration times and the involved blackout time. A work with
close relation to this work is from Clark et al. [11], which
– in addition to introducing the phases of live migration –
investigates the effect of the size of the writable working
set, which is the small set of memory pages that are
updated too frequently to be coherently maintained on the
destination machine. Based on different SPEC benchmarks
as application-alike load generators, the authors developed
a rate-adaptive algorithm to align the utilized bandwidth for
memory pages transmissions. They also propose to stun pro-
cesses that make live migration difficult. This corresponds
to experiences with our Xen environment, where virtual
machines with a running dirty page generator were marked
as ’uncooperative’. The results are not directly comparable,
since they focus on much smaller virtual machine sizes and
application requirements.

Several publications discuss the application of live mi-
gration over Internet connections [17], [18]. The effects of
network latency and bandwidth are more relevant in these
cases, but from the perspective of migration load the load
model remains the same.

III. DEFINITIONS AND ASSUMPTIONS

Having described the fundamentals of virtual machine live
migration, a set of major influence factors can be identified
that directly affect the performance of virtual machine live
migration:

• System load on the source / destination host
• Capacity of the migration network link
• Static configuration of the migrated virtual machine
• System load of the migrated virtual machine
Specific higher-level activity (e.g., application workload)

should also be reflected in these basic variables (see also
Section VII).

For our further investigation in this article, we assume
a typical (and recommended) setup with server applications
only running in virtual machine installations. No additionally
running processes with significant load are allowed on the
physical hosts, except the hypervisor and its support code.
This removes the physical host CPU load and memory
utilization as control variables to be considered.

Concurrent system load could result from multiple large
virtual machines being executed on the same host, so that
they have to compete for host resources. This is typically
denoted as over-commitment. One example is a scenario in
which virtual machines with their configured RAM size sum
up to an amount larger than the physical RAM available
at the host. The hypervisor can make this possible through

dedicated swapping to the attached storage system. In such
cases, physical RAM for the virtualized operating system
might have different performance characteristics, depending
on the current over-commitment situation.

Since over-commitment would make hypervisor resource
management strategies another variable to be controlled,
we favored a performance-oriented system setup, where
one virtual machine is running per host at a time. Similar
behavior could be achieved by strict partitioning of hardware
resources per virtual machine, which is common in main-
frame virtualization. With standard processors, a pinning of
virtual machines to physical CPUs and the avoidance of host
memory exhaustion can lead to comparable results. If such
a strong resource partitioning scheme is given, our results,
which are based on a single host assumption, can also be
applied for multiple virtual machines per physical host.

As final precondition, we assume that the network link
between source and destination host has an appropriate
available data rate, so that the live migration performance
is not influenced by network saturation effects. Practical
tests showed that current virtualization products handle the
network capacity on the migration link carefully enough, so
that this assumption appears valid.

With the given restrictions to static configuration and
dynamic load of the migrated virtual machine, the following
key factors can be identified:

1) CPU load inside the migrated virtual machine, based
on a continuously running application.

2) Memory usage pattern of application and operating
system inside the migrated virtual machine.

3) Main memory size configured for the virtual machine.
The memory usage pattern of the running virtual machine

must be further separated into relevant factors for live
migration performance. Since the memory transfer activities
happen in parallel to the operation of the virtual machine,
their characteristics can have a relevant impact on the
migration performance.

We express the memory utilization pattern using four
parameters (see also Figure 4):

The virtual machine size (VMSIZE) is the configured
main memory size for the virtual machine. This is a constant
value during run-time. In typical non-overload situations, the
actually used amount of memory is much smaller.

The working set (WSET) is the region of the main
memory on the source host that must be transferred to the
destination host to finish the migration. This value can be
roughly equal to the amount of main memory used by the
guest operating system and all its processes, or can also be
roughly equal to the configured amount of main memory for
the virtual machine. This depends on the particular migration
strategy of the hypervisor.

The hot working set (HWSET) is a subset of the WSET
memory set. In our workload model, these memory regions
are frequently changed while the migration is taking place.

74

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Virtual machine memory

Working Set

Hot Working Set

Dirty pages

Figure 4. A classification of memory pages

The modification rate (RATE) expresses the average
amount of memory modified per time unit while the mi-
gration takes place. The modifications described by this
parameter are assumed to take place only in the memory
region described by the HWSET parameter.

We distinguish the HWSET and the WSET to model the
fact that there are different kinds of data stored in memory:
some data are primarily read and have to be copied only
once while others are subject to frequent updates and may
have to be copied several times during the push phase, which
affects overall live migration performance.

It should be noted that virtual machine live migration
– and therefore all parameters listed above – rely on the
concept of pages from operating system memory manage-
ment. Amounts of memory and modification rates are hence
expressed in pages but can easily be translated into bytes.

IV. A PREDICTOR FOR LIVE MIGRATION DOWNTIMES

Based on the identification of core influence factors for
live migration, we propose a predictor that allows to estimate
both downtime and total live migration time for a specific
application running at a specific (measurable) load. As
indicated earlier, there are various use cases for such a
predictor: For example, it can be used to plan SLA-bound
data center operations, or it can be used to assess arbitrary
load conditions which can be useful in system performance
and reliability analysis.

The prediction model is based on a set of abstract param-
eters that express the memory load generated by a particular
virtual machine instance, which has been introduced in
Section III. Measurement of all parameters will be discussed
in Section V.

A. Approach

In all existing virtualization frameworks, memory is man-
aged at the level of memory pages and our model hence
also works on this level of granularity. More specifically,
the model estimates the number of pages that remain to be
copied from the source to the destination host. As discussed
in Sect. II, live migration copies the entire memory in a first
iteration and then only copies pages that have become dirty.
We presume that the number of remaining pages to copy
is the key determining factor for the switch from pre-copy

to the stop-and-copy phase, and therefore for the amount of
time required for both migration and blackout time.

In order to determine the remaining number of pages
we estimate the rate at which the number of dirty pages
changes during the first iteration as well as during the
subsequent copy rounds. The estimate is based on the
workload parameters introduced in the last section, as well
as on static execution environment characteristics.

The duration of the live migration procedure is determined
by the sum of lengths of the various phases. More precisely,
migration time is determined by the length of memory pre-
copying in rounds, plus the time spent in the stop-and-
copy and reconfiguration phase (see Figure 3). The decision
to switch from pre-copy to stop-and-copy phase is always
influenced by the number of pages that remain to be copied.
There are two abstract conditions that can serve as trigger
for changing from the first to the second phase:

1) Condition 1: The remaining number of memory pages
to be copied is sufficiently small.

2) Condition 2: The pre-copy phase has already con-
sumed a maximum amount of time.

When the live migration procedure hits one of the two
boundaries it enters the stop-and-copy phase. An example
for such a scenario is shown in Figure 5. It should be
noted that Condition 2 is not present in all virtualization
frameworks. In such cases the timeout can simply be set to
infinity.

Figure 5 depicts the number of memory pages that remain
to be copied over time. As can be seen from the Figure,
our model distinguishes between the first round, in which
the entire memory is copied, and the subsequent rounds, in
which only pages that have become dirty are copied. The two
stopping conditions are depicted by dash-dotted lines. The
times of moving from one phase to the next are indicated
as well. Time t0 denotes the start of the live migration
procedure, t1 marks the end of the first round of memory
page copying, t2 the end of the pre-copy phase, and t3 the
end of the migration procedure.

B. Computing the Number of Remaining Pages

In order to determine migration times more precisely, we
distinguish between different types of memory pages accord-
ing to the classification shown in Figure 4. We estimate the
progression of the number of pages that remain to be copied
separately for each category:

• Unused memory pages (those that do not belong to the
working set) do not contain data and can be copied in a
compressed format and at a higher speed. The remain-
ing number of such empty pages is estimated by e(t).
The rate at which such pages can be copied is denoted
by re

[pages
s

]
. Some hypervisor implementations might

not copy empty pages at all, in which re equals infinity.
• Pages that belong to the working set but not to the

hot working set need to be transferred only once. The

75

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time

nu
m

be
r

of
 p

ag
es

 to
 c

op
y

VMSIZE

WSET

HWSET

precopy stop condition 1:
sufficiently small

pr
ec

op
y

st
op

 c
on

di
tio

n
2:

pr
ec

op
y

ta
ke

s
to

o
lo

ng

precopy round 1 precopy round 2 to round n stop & copyt1 t2 t3t0

nu
m

be
r

of
 p

ag
es

 to
 c

op
y

VMSIZE

WSET

HWSET

precopy stop condition 1:
sufficiently small

pr
ec

op
y

st
op

 c
on

di
tio

n
2:

pr
ec

op
y

ta
ke

s
to

o
lo

ng

time
precopy round 1 precopy round 2 to round n stop & copyt1 t2 t3t0

Figure 5. Prediction of live migration times. The predictor is based on the remaining number of dirty pages. The plot on the left shows the case where
RATE is significantly smaller than the migration speed ru. The plot on the right sketches the case when RATE is larger than the migration speed ru.

remaining number of such passive pages is estimated
by p(t). The rate at which used memory pages can be
copied is denoted by ru

[pages
s

]
.

• Pages that belong to the hot working set might become
dirty between two successive rounds of copying. The
remaining number of such pages is estimated by h(t).
These pages are also copied at a rate of ru.

The number of remaining pages to be copied for a given
point in time t is then determined by

f(t) = e(t) + p(t) + h(t) (1)

The first round of copying in the pre-copy phase is
significantly different from the subsequent rounds. Let t1
denote the time of the end of the first round. We hence divide
the definition of f(t) in two phases (t ≤ t1 and t > t1).

The remaining number of empty pages e(t) is determined
as follows:

e(t) =

{
ESET − re t for 0 ≤ t ≤ t1

0 for t > t1
(2)

where
ESET = VMSIZE − WSET (3)

is the set of unused, i.e., empty pages. Hence e(t) describes
the copying of unused pages at a higher rate. Since the pages
in ESET are not used by the virtual machine, there is no
contribution of e(t) after the first round.

The remaining number of non-HWSET pages p(t) is
defined as follows:

p(t) =

{
PSET − PSET

WSET ru t for 0 ≤ t ≤ t1
0 for t > t1

(4)

where
PSET = WSET − HWSET (5)

represents the passive (non-hot) working set. Hence p(t)
describes the copying of used, i.e., non-empty, pages that the
virtual machine does not write to during the live migration
process. Such pages have to be copied only once, which is

the explanation why p(t) equals zero in subsequent rounds
of the pre-copy phase (t > t1).

We assume that the system can copy non-empty memory
pages at a fixed rate ru. However, one fraction of non-empty
pages are passive (they belong to PSET) while others are
actively written to. We assume that the copy rate ru is split
proportionally among pages from within PSET and active
non-empty pages (belonging to HWSET). Hence the copy
rate equals PSET

WSET ru.
The hot working set h(t) is determined by

h(t) =

min (HWSET,max (0, h1(t))); 0 ≤ t ≤ t1
min (HWSET,max (0, h2(t))); t1 < t ≤ t2
h3(t) ; t1 < t ≤ t3
0 ; t > t3

(6)

The formula expresses that h(t) stays within the interval
[0,HWSET]. Not surprisingly, the number of remaining
pages cannot be negative. The upper limit stems from the
fact that applications and the operating system in a virtual
machine write to only a subset of the working set – the hot
working set HWSET. If RATE (the rate at which memory
pages are written) becomes very large, the same pages
within HWSET are written several times. The functions
h1(t), h2(t), and h3(t) have been introduced for typesetting
reasons, only. They express the evolution of the number of
memory pages from within HWSET over time.

h1(t) = HWSET +

(
RATE − HWSET

WSET
ru

)
t (7)

h2(t) = f(t1) + (RATE − ru) t (8)
h3(t) = f(t2)− ru t (9)

As can be seen from (6), h1(t) determines the behavior for
the first round in the pre-copy phase. As already mentioned,
during this phase the copying of used, i.e., non-empty
memory pages takes place at a rate of ru, but the rate
is split among passive and active pages (see explanations
for Equation 4). The difference between pages of the hot
working set (HWSET) and the pages of the passive working

76

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set (PSET) is that hot working pages are written to with a
rate determined by RATE. The progression of h1(t) is hence
determined by the difference of the writing rate RATE and
the fraction of the copy rate assigned to the copying of pages
from the hot working set.

After the first round of copying has finished, copying
progresses determined by the function h2(t). Now the full
rate of non-empty page copying ru can be assigned to the
copying of pages from the hot working set, i.e., the copy
rate is determined by the difference between RATE and ru.
Due to the use of the minimum operator in (6), it cannot be
known a-priori what the value of f(t) is at the end of the
first round. We hence refer to this value by f(t1).

As discussed before, t2 determines the end of the pre-copy
phase, either caused by stop condition 1 or 2. At this point,
the virtual machine is stopped and pages do not become dirty
anymore. Hence the remaining dirty pages can be copied
at the full rate ru until no dirty pages are left. The latter
time is denoted by t3. Expression h3(t) describes the final
copying. Again, since t2 is determined by several factors,
f(t2) cannot be known a-priori and we refer to the value
f(t2) in (9).

C. Computing total migration and blackout time

So far we introduced f(t), which estimates the number
of memory pages that remain to be copied. However, the
ultimate goal is to estimate both total migration time and
blackout time of virtual machine live migration. As might
have become clear already, both time intervals can be
computed from t2 and t3:

migration time = t3 − t0 (10)
blackout time = t3 − t2 (11)

During the first phase all memory pages are copied once.
Hence t1 can be computed from the sizes of the empty
and used memory pages, and the corresponding transmission
rates. However, since the definitions of t3 and t2 are based
on f(t), we need to compute f(t). Specifically, in order to
compute t2, the time of the intersection between f(t) and
break condition 1 needs to be determined.1 The following
equations provide the formulas to compute t1 to t3:

t1 =
ESET
re

+
WSET
ru

(12)

t2 = min (tc1, tc2)) (13)

t3 = t2 +
f(t2)

ru
(14)

In (13), tc1 denotes the time when f(t) equals the value of
the pre-copy stop condition 1 and tc2 is the time predeter-
mined by pre-copy stop condition 2. Finally, t3 determines
the end of the copying process and the time can be simply
computed by how long it takes to transfer the remaining

1tc1 has to be set to ∞ in the case that there is no intersection.

number of pages when entering the stop-and-copy phase,
which is f(t2).

After the stop-and-copy phase some reconfiguration takes
place. Assuming that such reconfiguration is constant and
short and that copying memory pages is the determining
factor, we neglect this aspect in our model. Results in
subsequent sections will show that this already provides suf-
ficiently accurate predictions of migration time and blackout
time. We also assumed that the two rates re and ru are
independent, which is a valid assumption since the overhead
for copying empty pages is very low or even zero, in case
the framework does not copy them.

Table I lists the parameters that need to be determined in
order to compute (10) and (11). The table lists four types of
parameters:

• Virtual machine-specific. There is only one such pa-
rameter in Table I, which is VMSIZE. This parameter
is statically configured when the virtual machine is set
up.

• Situation-specific. These parameters require online
measurements in the running virtual machine. If used
for what-if-analyses, these are also the parameters that
define the investigated scenario. The following Sec-
tion V provides details about how situation-specific
parameters can be measured.

• System-specific. Such parameters have to be determined
once for any given setup of networking and physical
host equipment. Section V provides an example of how
such system-specific parameters can be obtained.

• Hypervisor-specific. There are two parameters that de-
pend on the implementation and/or configuration of the
hypervisor and which define the criteria to stop the pre-
copy phase.

V. EXPERIMENT SETUP

To prove the feasibility of the presented prediction model,
we conducted a large set of experiments with both artificial
and real application load inside migrated virtual machines.

The test environment consisted of two Fujitsu Primergy
RX300 S5 machines acting as migration source and desti-
nation. Both machines were equipped with an Intel E5540
QuadCore processor, 12GB of RAM and two Gigabit NICs
each. One of the network cards per host was used for the
dedicated migration network link. The other network card
was used to connect the machine to a shared storage system
via iSCSI. The storage system contained all virtual machine
image data. If required a third machine was attached to the
storage network as controller node.

In all experiments, the migrated virtual machine was
either running a Linux 2.6.26-2 (64 bit) or a Windows Server
2008 R2 installation. All virtual machines were configured to
have one virtual CPU and a varying amount of (virtualized)
physical memory. In all cases, the virtualization guest tools
/ drivers were installed. Native operating system swapping

77

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
SUMMARY OF PARAMETERS OF THE PREDICTION MODEL

Parameter Description Type Comment
VMSIZE Configured memory size of the virtual machine VM-specific Setup of the the virtual machine

WSET Working set (allocated memory) Situation-specific Measured during runtime

HWSET Hot working set (actively used memory) Situation-specific Measured during runtime

RATE Dirty page rate (rate at which pages are written) Situation-specific Measured during runtime

re Transmission rate of empty pages System-specific Measured once for the system

ru Transmission rate of non-empty pages System-specific Measured once for the system

c1 Threshold value for pre-copy stop condition 1 Hypervisor-specific Predetermined by the hypervisor

tc2 Threshold value for pre copy stop condition 2 Hypervisor-specific Predetermined by the hypervisor

was activated, but not aggressively in use due to the explicit
limitation of the allocated amount of memory.

Experiments for VMware were performed using ESX
4.0.0 (build 208167), using the vCenter server software for
migration coordination. High availability features had been
deactivated. Experiments for Xen were performed using
Citrix XenServer 5.6 (Xen 3.4.2). Both Xen hosts had been
configured to form a pool, the test scripts were executed
in the ’dom0’ partition of the pool master. Experiments
for KVM had been conducted with ProxmoxVE 1.7, which
relies on QEMU 0.13.0 and a 2.6.32 Linux kernel.

One specific issue was memory management in the Xen
environment, namely the Dynamic Memory Control (DMC)
feature [19]. It allows the Xen hypervisor to change the
amount of physical memory made available to the virtual
machine at runtime, without reboot of the guest operating
system. DMC is an advanced feature necessary to permit
memory over commitment in Xen, since Xen never swaps
out guest pages, as VMware or KVM do in case.

With activated DMC feature, it was observable that Xen
tried to reduce the memory utilization by ballooning [14]
inside the virtual machine instance before actually starting
the migration process. This lead to problems with Linux
as guest operating system, since its out-of-memory (OOM)
killer wrongly assumed an out-of-memory condition from
the many locked pages created by the load generator. In sev-
eral constellations, the combination of DMC, our memory-
locking load application and Xen led to random process
termination by the OOM killer. We hence deactivated DMC
explicitly to achieve repeatable measurements.

Total migration time was measured by capturing the
runtime of the products command-line tool that triggers a
migration. Downtime was measured by a high-speed ping
(50 ms) from another host, since the virtualization products
do not expose this performance metric by themselves. The
downtime is expressed as the number of lost Ping messages
multiplied by the ping interval. We assume here that all ping
messages get lost in one continuous time interval during VM
downtime.

A. Measuring memory utilization

In contrast to other performance metrics, the RATE pa-
rameter is not provided by the OS or any of the hypervisor
products directly, probably because of the performance im-
plied by monitoring memory activities. The usual operating
system information about dirty pages is not usable here,
since this information relates only to the pages not being
swapped out by the memory management.

One possible solution could be to obtain direct infor-
mation from the MMU hardware. Modern processors have
special support to monitor low-level activities by perfor-
mance monitoring units (PMUs). The utilization of such
units is supported in Linux through the libpfm toolkit or
the perf events kernel interface.

We conducted a set of experiments to determine a set
of hardware performance events that grow with the RATE
parameter of an artificial load. It turned out that for the
Intel Nehalem processor under investigation, 21 PMU events
showed a strong correlation to the applied dirty page load.
Even though this renders PMU a promising mechanism for
memory activity monitoring, the application of this approach
inside the virtual machine under test is still infeasible. The
virtualization hardware and software simply does not support
the necessary access to hardware registers.

Reading PMUs on the hypervisor level to infer memory
activities of the virtual machine turned out to be infeasible,
as we have confirmed in several experiments.

The second possibility for accurate measurements of
the memory load is the hypervisor itself. By default, the
virtualization products do not expose these metrics to the
outside. Nevertheless, the hypervisor and its live migration
facility use a tracking mechanism to identify pages that have
become dirty. Therefore, we modified the source code of
KVM slightly to facilitate measuring of the RATE parameter
as will be documented in the next section.

B. KVM hypervisor extension for memory tracking

KVM consists of two parts, the KVM subsystem in
the kernel and the qemu-kvm user space application.
The user space application creates the virtual machine
inside its own address space and communicates to the

78

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

KVM subsystem using I/O controls. The KVM kernel
subsystem interfaces KVM SET MEMORY REGION and
KVM GET DIRTY LOG allow the caller to keep track of
dirty page state changes for the given virtual machine.
KVM SET MEMORY REGION can enable/disable dirty
pages tracking, and KVM GET DIRTY LOG returns a
bitmap with all dirty pages since the last call. This allowed
us to enable dirty page tracing on demand for measurements,
even without having an actual live migration taking place.

C. Classifying hypervisor and system

The two system-specific parameters of our model, namely
the transmission rates for empty and non-empty memory
pages have been estimated using a virtual machine with a
defined non-paged memory footprint as migrant.

In KVM, the hypervisor-specific parameters are deter-
mined by two parameters that can be passed to the hy-
pervisor when initiating the live migration procedure. The
number of pages that is considered to be sufficiently small
is computed by the product of the KVM configuration
parameters migrate_speed and migrate_downtime.
The first parameter determines the maximum speed (in
bytes per second) for the pre-copy phase of migrations
while the second specifies the maximum tolerated downtime.
If there are less remaining pages than migrate_speed
× migrate_downtime, the stop-and-copy phase can
be performed faster than the maximum tolerated time
migrate_downtime.

For the pre-copy stop condition 2, the behavior of Prox-
moxVE KVM can be expressed by the following equation:

tc2 =
2VMSIZE

migrate_speed
(15)

This means that whenever the time has passed that would be
sufficient to copy two times the entire virtual machine mem-
ory, the pre-copy mechanism is stopped and the remaining
pages are copied at a modified rate in the stop-and-copy
phase.

D. Determining situation-specific parameters

To determine the RATE parameter for dirty pages, we
enabled the described dirty pages logging on all memory
regions. Our modified KVM implementation measures the
number of pages that have become dirty once every sec-
ond. The RATE parameter is the average of the measured
numbers.

The determination of the HWSET is more complex. We
defined the HWSET to consist of all pages that are frequently
changed. We estimated HWSET by determining the set of
pages that have become dirty in a series of measurements.
After computing the union of all pages that have become
dirty in these measurements we counted only pages that have
been marked dirty in a minimum number of measurements.
The time interval between the individual measurements

should be at least as long as we expect one migration pre-
copy round to take, which is WSET/migrate speed in
the worst case. In our experiments with KVM, we used
ten consecutive measurements within one minute and we
considered only those pages as hot pages that were marked
dirty in all ten measurements.

VI. EXPERIMENTS WITH ARTIFICIAL LOAD

Based on the theoretical investigation of relevant workload
parameters and the described setup, we conducted a set of
experiments for proving the feasibility of the model. In the
first step, we conducted experiments with artificial work load
generators. The intention was to stress the virtual machine
migration in a controlled and reproducible way, before
analyzing the impact of real-world application workload.

Since our set of relevant dynamic factors is restricted to
the behavior of the guest operating system, we were able
to perform all experiments with load generators inside the
virtual machine. For the worst case analysis, we utilized load
generators for CPU, locked pages and dirty pages.

The CPU load generator was used to produce artificial
CPU load inside the virtual machine, in order to prove
the independence of migration performance from the virtual
machine computational load. We used the commonly known
burnP6 and cpulimit tools for generating a controllable
CPU utilization. Our experiments proved that CPU load has
negligible impact on virtual machine migration (see also
[4]).

The locked pages generator was used to analyze the
effects of static memory allocation. With this tool, locked
pages are pinned in memory through operating system calls
so that they cannot be swapped out. This ultimately increases
the WSET value alone, without influence on both RATE and
HWSET. The implementation first allocates a given amount
of locked pages memory. In the next step, random data
is written once to this memory region, in order to trigger
delayed page table modification schemes in the operating
system [20]. After that, the according regions are pinned by
a system call.

The dirty pages generator was developed to artificially
influence HWSET and RATE parameters in an experimen-
tal environment. This load application simulates a cyclic
memory modification pattern by continuously writing pre-
computed random data to pinned memory in round-robin
fashion. This execution model is motivated by server appli-
cations that modify memory regions based on incoming re-
quests. Those modifications have comparable characteristics
for the majority of requests. Such servers are always reading
some data, storing logging information in main memory,
and return the computational result. The request inter-arrival
time is assumed to show a constant average rate, so the
modification attempts in memory can be modeled just by
using parameters expressing the frequency and intensity of
using a block of memory.

79

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to remove systematic errors, a proper design of
experiments usually demands randomization of the runs. In
our scenario, an experiment is the migration of a virtual
machine for a specific configuration of parameters. Random-
izing this would identify potential unconsidered influences
on the dependent variables. However, due to the closed
experimental environment (no other users had access to
the machines), and full automation of the measurements,
we expect no major additional influence on the dependent
variables. Selective tests confirmed this assumption. We
therefore relied only on measurement series with predefined
continuous data ranges.

The migrated virtual machine was running a load gen-
erator in a fresh operating system installation only. Before
migration start, several minutes of warm-up time have been
reserved for the virtualized operating system.

A. Influence of CPU load

For the investigation of the influence of the CPU load
factor, we performed at least 10 migrations per CPU uti-
lization degree, ranging from 0% to 100% artificial load in
steps of ten. The results show that migration times of all
virtualization products are not influenced by the CPU load.
More precisely, migration times varied around mean values
of up to 26 seconds within a 95% confidence interval of
not more than +/- 1s (see [21] for details). As additional
feasibility test, we investigated Xen both with and without
activated DMC feature, which had serious impact on the
absolute migration time, but the impact of CPU remained
negligible.

The results suggest that virtualization frameworks reserve
enough CPU time for their own management (migration)
purposes. Live migration scenarios seems to be dependent
only on non-CPU utilization factors.

The result convinced us that we could safely drop CPU
load as an influencing factor in subsequent experiments.

B. Influence of WSET and filling degree

Using the locked pages generator, we varied the WSET
parameter from zero to 90% of the main memory configured
for the virtual machine (VMSIZE).

Our results showed that the VMware hypervisor has a
linear dependency of migration time on memory utilization,
while the downtime is not influenced significantly. With Xen,
both the downtime and the migration time remained nearly
constant in all memory utilization scenarios. The Xen virtual
machine migration time depends mainly on the absolute
amount of configured main memory.

In order to rely on the trap and page table mechanisms
of the operating system, all virtual machine migration ap-
proaches copy memory content in the granularity of pages.
Hence, an entire page has to be migrated even when writing
only to a fraction of a page. We tested this assumption by
“filling” memory blocks inside the locked region to a varying

degree. We used a block size equal to the system page
size (4kB) and conducted experiments with varying filling
degrees of such blocks. As expected, all three virtualization
toolkits showed no effect on downtime or migration time.

Changing only a single bit in a memory page makes it
dirty from the viewpoint of the hypervisor, and therefore
also a relevant candidate for live migration. We see a
relevant issue here for 64 bit systems with potentially larger
page sizes. In such systems the overhead of migrating only
marginally modified pages could become significant. For our
purposes, the conclusion is that the filling degree does not
have to be considered in subsequent experiments.

C. Influence of HWSET + RATE + VMSIZE

We conducted a large set of multi-parameter experiments
with the dirty page load generator, in order to determine the
basic patterns of influence in virtual machine migration. The
goal here was to determine the different worst-case settings
for the combination of HWSET, RATE and VMSIZE. For
this reason, we performed experiments according to a full
factorial design, meaning that all possible combinations of
parameter levels have been measured in the experiment. In
each experiment we measured migration time and downtime
as response variables. For Xen, we investigated a total
number of 528 combinations (treatments), each with 20
measurements resulting in an overall number of 10560
migrations. In case of the VMware hypervisor, we performed
experiments for 352 combinations resulting in 7040 migra-
tions. For KVM, we tested 1652 combinations resulting in
33040 migrations.

As we have three factors (plus a response variable) we
cannot present the entire results in one plot. Since VMSIZE
has significantly less levels, we decided to plot the mean re-
sponse, i.e. mean migration time or downtime, over HWSET
and RATE for a fixed value of VMSIZE. The experiments
have been performed using the DPG load generator, which
simulates worst-case behavior in terms of memory usage.

One example for the results is the behavior of the Xen
hypervisor. Downtime in general increases with increasing
HWSET and increasing RATE (see Figure 6). This is not
surprising as an increased usage of memory (more pages
written at an increasing rate) requires more memory to be
transferred in the stop-and-copy phase. We can also conclude
from the figure that HWSET seems to have a linear effect
on downtime, if the RATE is above some threshold value
and regardless of the VMSIZE. This threshold value is
around 30,000 pages/s or 117 MB/s with 4KB pages, which
corresponds well to the expected migration speed over a 1
Gigabit Ethernet link.

One peculiarity in Figure 6 is the abrupt change at
a RATE level around 30,000 1

s . In order to analyze this
further, we conducted additional “zoom-in” experiments that
investigated a sub-range of values for RATE at greater level
of detail (see Figure 8-a). As it can be seen from the plot,

80

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the change is not as abrupt as might have been concluded
from Figure 6.

Turning to total migration time (Figure 7), we observe a
sudden change at the same level of RATE as we have ob-
served for downtime. Again, the “zoom-in” analysis shows
that the change is smooth although rather steep. However, in
general the mean migration time is more irregular. It came
as a little surprise to us that for RATE levels ”above the
jump” total migration time decreases with increasing RATE.
In order to check that this behavior really occurs we have
carried out separate experiments specifically targeted to this
question with the same consistent result. Although we cannot
give a precise explanation, we presume that it is caused by
the rate-adaptive algorithm employed by the hypervisor. This
supports our assumption that a load model is essential in
order to assess duration of live VM migration.

The effect of VMSIZE can be observed by comparing the
two sub-figures 7 (a) and (b). It can be seen that VMSIZE
has a non-trivial effect on migration time: since the shapes
look very different at different levels of VMSIZE, the effect
does not appear to be linear, except for the case where RATE
equals zero.

There is no effect of any HWSET value if RATE is zero,
which is consistent with the single variable experiments
described in Section VI-B.

The plots in Figures 6 to 8 show migration times averaged
over all measurements. In order to assess the variability in
the data, we describe the ratio of maximum to minimum
values as well as standard deviation for the data in Table II.
Two ratios and two standard deviations are reported: the
ratio of the maximum treatment mean to the minimum
treatment mean and the ratio of the maximum to the min-
imum values across all measurements. Regarding standard
deviations, the table describes the largest standard deviation
computed within each treatment (parameter combination) as
well as the standard deviation for the overall data set. In
addition, the table reports the mean time averaged across
all measurements. The data quantifies what has also been
observable from the plots: Both migration time as well as
downtime vary tremendously depending on VMSIZE and
RATE.

For XenServer, one can observe that downtime is only
8.6% of the overall migration time. The fact that the overall
standard deviation is far greater than the within-cell standard
deviation supports the observation that there is a strong
systematic variability in the live migration algorithm.

For KVM, Figure 9 and Figure 10 show the behavior
under different conditions for HWSET and RATE. While
the downtime behavior is comparable to Xen, the migration
time development shows a completely different behavior.
Here, above a certain RATE the migration times line up
at a constant level, which is independent of the HWSET.
A comparison of the two subfigures shows that this level is
dependent on the VMSIZE. What we see here is the effect

of the second stop condition explained above, which strikes
if the RATE is larger than the effective migrate speed.

Since the VMware end user license agreement does not
allow the publication of performance numbers, we omit
the presentation of the gathered data here. We can report
that the observed behavior of vSphere differs significantly
from the one of Xen, which emphasizes that the choice
of the hypervisor product can have significant impact on
availability. The main reason for the different behavior seems
to be the different rate-adaptive algorithms employed in the
virtualization products. Rather than arguing which behavior
is better we want to emphasize that it is mandatory to take
the specific virtualization product into consideration when
making assumptions on migration duration.

Regarding the max:min ratio of downtime computed from
treatment means with VMware, we have observed a ratio
of 16.27. This shows that due to different memory load,
the maximum mean downtime can be 16.27 times as large
as the minimum mean downtime. If we do not consider
mean downtimes but the maximum and minimum value
observed across all experiments, the factor even goes up
to 23.83. The conclusion from this observation is that if
service downtime is critical for meeting reliability goals, a
realistic assessment of reliability can only be achieved if
the maximum downtime for the application-specific memory
load is figured out, which is the goal of our prediction model.

D. Comparing the predictor with experimental results

In order to test the feasibility of our predictor model, we
compared the experimental results for KVM with the the-
oretical worst case assumptions from our model. We relied
on the KVM results here, since the hypervisor modifications
described in Section V-B allowed a fine-grained monitoring
of the relevant metrics. Figure 11 shows the comparison for
blackout time and migration time. In the absolute majority of
cases, the model was able to provide a worst case prediction
close to the real-world experiment results:

• For a total of 33040 measurement points, the model
predicted migration times that were larger or equal to
the corresponding measured migration times in 95.6%
of the measurements. For blackout time, the predictor
was right in 97.08% of the cases.

• The average absolute error, meaning the distance be-
tween the computed worst case value and the measured
value, for the migration time prediction was 25,75s. For
blackout time prediction, the average absolute error was
2,45s.

• The average under-prediction, meaning average error
in the cases where the predicted value was below the
actual measured value, was 2,95s for the migration
time. For blackout time, the average was 0.13s.

81

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RATE [1/s]

0

50000

100000

150000

200000

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

blackout tim
e [s]

0

5

10

(a) VMSIZE=4096

RATE [1/s]

0

50000

100000

150000

200000

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

blackout tim
e [s]

0

5

10

(b) VMSIZE=8192

Figure 6. Mean downtime for Xen

RATE [1/s]

0

50000

100000

150000

200000

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

m
igration tim

e [s]

0

50

100

150

200

250

(a) VMSIZE=4096

RATE [1/s]

0

50000

100000

150000

200000

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

m
igration tim

e [s]

0

50

100

150

200

250

(b) VMSIZE=8192

Figure 7. Mean migration time for Xen

E. Discussion

The statistical evaluation proves that our prediction model
worked in more than 95% of the worst case load tests, which
is especially important for dependability-related use cases.
If a proactive failure predictor is able to implement a lead
time larger than the worst case value from the migration
time prediction model, than virtual machine migration can
be used as preventive recovery strategy.

In order to understand the experiment results in more
detail, we performed a source code analysis of Xen and
had personal communication with VMware representatives.
Live migration in fact is mainly related to the rate-adaptive

migration control algorithm realized in the product. The
relevant aspect here is the dirty page diff set – the fraction
of pages that is scheduled to be copied in each next round of
the pre-copy phase. The virtualization products identify ”hot
pages” in this set and shift such pages more aggressively
to the stop-and-copy phase, since the transfer in the stop-
and-copy phase is potentially more effective, depending on
“hotness” of the page, network link speed and other factors.
This also appears to be an explanation for the increasingly
large gap between predicted and measured migration and
blackout times for large memory allocation sizes. Future
extensions to our prediction model could take such effects

82

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RATE [1/s]

26000

28000

30000

32000
34000

36000

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

blackout tim
e [s]

0

5

10

(a) Mean Downtime

RATE [1/s]

26000

28000

30000

32000
34000

36000

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

m
igration tim

e [s]

0

50

100

150

200

250

(b) Mean Migration Time

Figure 8. Xen behavior in the zoom-in area (VMSIZE=4096)

RATE [1/s]

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

blackout tim
e [s]

0

5

10

15

20

25

(a) VMSIZE=4096

RATE [1/s]

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

blackout tim
e [s]

0

5

10

15

20

25

(b) VMSIZE=8192

Figure 9. Mean downtime for KVM

into account to improve prediction accuracy.
Akoush et al. [22] made similar investigations in their live

migration performance analysis. Surprisingly, the downtime
seems not to be influenced by the chosen strategy, which
can be explained by the broad transmission capacity of the
network link. Comparative measurements of the network
saturation supported this assumption.

VII. EXPERIMENTS WITH REAL LOAD

For a further proof of the proposed migration and blackout
time prediction model, we conducted another large set of
experiments with real application load. We decided for

two typical server application representatives – the SPEC
jAppServer benchmark, and the Postal SMTP server bench-
mark in conjunction with the Postfix mail server.

A. SPEC Benchmark Results

The first set of tests relied on the SPEC jAppServer
2004 1.08 benchmark application. This program is intended
to measure the performance of Java 2 Enterprise Edition
(JavaEE) application servers. The benchmark simulates man-
ufacturing, supply chain management, and order/inventory
business processes. It consists of a database part and several
JavaEE applications to be deployed. A driver component

83

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RATE [1/s]

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

m
igration tim

e [s]

0

100

200

300

(a) VMSIZE=4096

RATE [1/s]

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

H
W

S
E

T [M
B

]

200

400

600

800

1000

1200

m
igration tim

e [s]

0

100

200

300

(b) VMSIZE=8192

Figure 10. Mean migration time for KVM

Table II
DATA VARIABILITY

Hypervisor / Guest time Mean time [s] Max:Min Ratio Standard Deviation
Mean Overall Treatment Max [s] Overall [s]

XenServer / CentOS migration 89.73 9.01 9.10 6.32 39.08
downtime 7.69 3.17 3.46 0.62 2.94

simulates parallel client requests, where the request rate is
controlled by a parameter called txRate.

We performed measurements for a total of ten config-
urations, each corresponding to a specific setting of the
benchmark’s txRate parameter (see Table III). For each
setting we conducted more than 2300 migration experiments
to collect statistically significant data. In each experimental
run we measured total migration time and blackout time of
the migration. We also determined for each configuration the
values for WSET, HWSET and RATE using our modified
KVM hypervisor.

Figure 12 shows the experimental results. The graphs plot
measured blackout times (Fig. 12-a) and measured migration
times (Fig. 12-b) together with the times predicted by our
model. For measured blackout and migration times we also
plotted 95% confidence intervals shown by vertical bars. We
decided to plot absolute times rather than relative prediction
accuracy since in real world dependable application scenar-
ios absolute numbers are much more relevant.

The graphs show that the proposed prediction model
works well also for real applications. It can be seen that over-
all the predictor follows the non-linear shape of the curve,
although there is significant over-prediction for parameter
settings three and four for blackout time, and for settings
two and three for total migration time.

In 98.03% of the cases, the worst case predictor returned a

blackout time greater or equal to the corresponding measured
time. The absolute error for blackout time prediction was
1.26s on average (4.01s maximum). Due to the fact that
an under-estimation of downtime is critical, we separately
investigated the cases in which our model predicted shorter
migration times than the measured ones. The average de-
viation in these cases was 0.40s (3.20s maximum). For
total migration time, the corresponding numbers are 97.56%
accuracy, with an average absolute error of 38.12s (267.5s
maximum) and an average under-estimation of 1.15s (9.50s
maximum).

B. Postal SMTP Benchmark Results

As a second application benchmark we used the Postal
SMTP benchmark 0.7 in conjunction with a Posfix 2.5.5.
mail server. To get as close as possible to a realistic
workload, we added a Spamassassin 3.2.5. installation to the
configuration of the mail server. Postal sends SMTP requests
of different kinds to the mail server running in the virtual
machine. The varied parameter in our experiments is the
number of SMTP messages per minute sent by the Postal
application.

Similar to the SPEC benchmark we measured blackout
and migration times for ten settings and determined the
corresponding values for WSET, HWSET and RATE (see
Table IV). Due to increased volatility of the Postal SMTP

84

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 1000 2000 3000

0
10

2
0

30
4

0
50

6
0

DPG memory allocation [MB]

bl
ac

ko
u

tt
im

e
[s

]

DPG measured
predicted

(a) Blackout time

0 1000 2000 3000

0
5

0
10

0
15

0
20

0
25

0
30

0

DPG memory allocation [MB]

m
ig

ra
tio

n
tim

e
[s

]

DPG measured
predicted

(b) Migration time

Figure 11. Dirty page load generator (DPG) vs. worst case predictor

Table III
SPEC PARAMETER SETS

Setting SPEC Driver txRate Average WSET (pages/s) Average HWSET (pages/s) Average RATE (pages/s)
1 5 371228 41962 7802
2 10 388346 58787 13111
3 15 488656 71594 17993
4 20 569836 82140 22911
5 25 695151 86636 27744
6 30 688627 90284 33707
7 35 705575 93165 37911
8 40 732491 100686 43989
9 45 761932 104089 58090
10 50 756850 114790 59533

benchmark scenario we performed more than 3500 runs per
setting in order to obtain statistically significant numbers.

Figure 13 shows the experimental results. Again, our
prediction model resulted in relatively accurate predictions.
The plots also show the necessity to leave some headroom
for predictions. As can be seen from Figure 13-b, due to
the increased volatility the 95% confidence intervals get
close to the predicted values. More specifically, our predictor
delivered a migration time that was above or equal to the
measured performance in 90.18% of the measurements. The
average absolute error in the migration time prediction was
62.38s (287.58s maximum), and the averge under-prediction
was 36.27s (69.23s maximum). For blackout time, the worst
case predictor was safe in 83.6% of all measurements. The
average absolute error for blackout time prediction was 0.57s
(1.47s maximum), and the average under-prediction error
was 0.45s (1.05s maximum).

The results for the SMTP benchmark showed sub-optimal
prediction quality for virtual machines with small VMSIZE.

If only experiments with a VMSIZE value larger or equal to
4GB are considered, the migration time prediction success
rate improve significantly. More specifically, the numbers are
for migration time 98.85% accuracy with an average under-
estimation of 2.01s (5.42s maximum), and for blackout time
prediction accuracy goes up to 96.98% with an average
under-estimation of 0.09s (0.27s maximum).

C. Discussion

The experiments have shown that our prediction model is
able to forecast both total migration times as well as blackout
times of real world applications. As it is the case for all
worst-case predictors, predicted values have to be larger than
the measured numbers but should nevertheless be as close as
possible. This trade-off between accuracy and safety is well-
known from other areas such as determination of the worst-
case execution time (WCET). In our case the prediction is
on the safe side in more than 96.98% of all cases.

85

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2 4 6 8 10

0
1

2
3

4
5

6
7

parameter setting no.

bl
ac

ko
u

t
tim

e
[s

]

SPEC jAppServer 2004
prediction

(a) Blackout time

2 4 6 8 10

0
5

0
10

0
1

50
2

0
0

parameter setting no.
m

ig
ra

tio
n

tim
e

[s
]

SPEC jAppServer 2004
prediction

(b) Migration time

Figure 12. SPEC jAppServer 2004 load vs. worst case predictor

2 4 6 8 10

0
.0

0
.5

1.
0

1
.5

2
.0

bl
ac

ko
ut

 ti
m

e
[s

]

postfix/spamassassin/postal
prediction

parameter setting no.

(a) Blackout time (b) Migration time

Figure 13. Postal 0.7 + Postfix 2.5.5 application load vs. worst case predictor

86

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table IV
POSTAL / POSTFIX PARAMETER SETS

Setting SMTP messages / minute Average WSET (pages/s) Average HWSET (pages/s) Average RATE (pages/s)
1 100 154035 18348 8002
2 200 185759 32494 12377
3 300 210190 30654 16217
4 400 244276 30604 21003
5 500 443361 29802 23968
6 600 516652 29148 26023
7 700 559266 29917 27488
8 800 712506 35185 28080
9 900 765597 34396 27631
10 1000 728675 33028 27903

VIII. CONCLUSION

With growing capacity of commodity server hardware and
increased consolidation efforts, virtualization has become
a standard approach for cloud data center operation. Live
migration of virtual server workloads can be employed
to implement workload-driven system management as well
as a mechanism to free server hardware that is due for
maintenance and repair. However, in order to give guarantees
on application availability or responsiveness as well as for
proactive fault management, solid estimations either about
the total duration of live migration or the length of service
downtime are badly needed.

In this paper, we have presented a model that predicts
total migration time as well as service blackout times based
on a small number of characteristic parameters: virtual
machine-specific parameters, i.e., the overall size of the
virtual machine’s memory, situation-specific parameters such
as the size of working set, the size of the hot subset of the
working set, i.e., the number of memory that are actively
written, and the memory page modification rate, system-
specific parameters such as memory page transmission rates
over the network as well as hypervisor-specific parameters
modeling the hypervisor’s live migration strategy.

By carrying out a large number of experiments, we have
shown that the prediction model is able to reliably forecast
migration times in more than 95% of all cases. This holds
for a worst-case load generator as well as for real-world
server applications.

Our results are promising in the sense that they show
applicability of live migration for scenarios where work-
loads have to be moved off potentially breaking servers.
The experiment results show a remarkable performance of
virtual machine migration even under unfair conditions. The
performance numbers typically do not exceed the lead-time
of state-of-the-art failure prediction algorithms, which makes
the idea of proactive virtual machine migration a promising
topic for future research.

REFERENCES

[1] R. Goldberg, “Survey of Virtual Machine Research,” IEEE
Computer, vol. 7, no. 6, pp. 34–45, Jun. 1974.

[2] C. Engelmann, G. Vallée, T. Naughton, and S. Scott, “Proac-
tive Fault Tolerance Using Preemptive Migration,” in 17th
Euromicro International Conference on Parallel, Distributed
and Network-based Processing. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 252–257.

[3] F. Salfner, M. Lenk, and M. Malek, “A Survey of Online Fail-
ure Prediction Methods,” ACM Computing Surveys, vol. 42,
no. 3, pp. 10:1–10:42, Mar. 2010.

[4] F. Salfner, P. Tröger, and A. Polze, “Downtime Analysis of
Virtual Machine Live Migration,” in The Fourth International
Conference on Dependability (DEPEND 2011). IARIA,
2011, pp. 100–105.

[5] G. Popek and R. Goldberg, “Formal requirements for virtual-
izable third generation architectures,” Commun. ACM, vol. 17,
no. 7, pp. 412–421, Jul. 1974.

[6] K. Adams and O. Agesen, “A comparison of software and
hardware techniques for x86 virtualization,” SIGARCH Com-
put. Archit. News, vol. 34, no. 5, pp. 2–13, Oct. 2006.

[7] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: The Linux virtual machine monitor,” in Ottawa Linux
Symposium, Jul. 2007, pp. 225–230.

[8] N. Bhatia, “Performance Evaluation of Intel EPT
Hardware Assist,” http://www.vmware.com/pdf/Perf
ESX Intel-EPT-eval.pdf, Mar. 2009.

[9] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent
migration for virtual machines,” in annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2005, pp. 25–25.

[10] K. Onoue and Y. Oyama, “A Virtual Machine Migration
System Based on a CPU Emulator,” in 2nd International
Workshop on Virtualization Technology in Distributed Com-
puting. Washington, DC, USA: IEEE Computer Society,
2006, p. 3.

[11] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Ma-
chines,” in Proceedings of the 2nd conference on Symposium
on Networked Systems Design and Implementation. Berkeley,
CA, USA: USENIX Association, 2005, pp. 273–286.

[12] S. Fu, “Failure-aware resource management for high-
availability computing clusters with distributed virtual ma-
chines,” Journal of Parallel and Distributed Computing,
vol. 70, no. 4, pp. 384–393, 2010.

87

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] M. Hines and K. Gopalan, “Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-
ballooning,” in 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. New York,
NY, USA: ACM, 2009, pp. 51–60.

[14] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam,
and M. Rosenblum, “Optimizing the migration of virtual
computers,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp.
377–390, 2002.

[15] Y. Du, H. Yu, G. Shi, J. Chen, and W. Zheng, “Microwiper:
Efficient Memory Propagation in Live Migration of Virtual
Machines,” in 39th International Conference on Parallel
Processing, 2010.

[16] A. Nagarajan, F. Mueller, C. Engelmann, and S. Scott, “Proac-
tive fault tolerance for HPC with Xen virtualization,” in ICS
’07: Proceedings of the 21st annual international conference
on Supercomputing. New York, NY, USA: ACM, 2007, pp.
23–32.

[17] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. Laat,
J. Mambretti, I. Monga, B. Oudenaarde, S. Raghunath, and
P. Wang, “Seamless live migration of virtual machines over
the MAN/WAN,” Future Gener. Comput. Syst., vol. 22, no. 8,
pp. 901–907, Oct. 2006.

[18] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg,
“Live wide-area migration of virtual machines including local
persistent state,” in 3rd international conference on Virtual
execution environments. New York, NY, USA: ACM, 2007,
pp. 169–179.

[19] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles. New
York, NY, USA: ACM, 2003, pp. 164–177.

[20] M. Russinovich, D. Solomon, I. Books24x7, and S. B. On-
line, Microsoft Windows Internals: Microsoft Windows Server
2003, Windows XP, and Windows 2000. Microsoft Press,
2005.

[21] P. Tröger, A. Polze, and F. Salfner, “On the Applicability of
Virtual Machine Migration for Proactive Failover,” in SDPS
International Conference, Special Track on Virtualization,
2011.

[22] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper,
“Predicting the Performance of Virtual Machine Migration,”
in 18th Annual IEEE/ACM International Symposium on Mod-
eling, Analysis, and Simulation of Computer Systems. Los
Alamitos, CA, USA: IEEE Computer Society, 2010, pp. 37–
46.

88

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

