SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

Modeling I/0 System in HPC: An ABMS Approach
Work-in-Progress Paper

Diego Encinas, Marcelo Naiouf
and Armando De Giusti

Informatics Research Institute LIDI
National University of La Plata
La Plata, Buenos Aires, Argentina
Email: {dencinas, mnaiouf,
degiusti}@lidi.info.unlp.edu.ar

Abstract—Data-Intensive scientific applications use parallel In-
put/Output (I/O) software to access files. A tool capable of
predicting the behavior of this kind of applications in High
Performance Computing (HPC) would be very useful for parallel
application developers. On the other hand, Agent-Based Modeling
and Simulation (ABMS) has been used to model and simulate
problems and complex systems for various science fields. This
work presents a preliminary analysis to model a component of
the I/0 system in HPC using ABMS.

Keywords-Agent-Based Modeling and Simulation (ABMS);
HPC-1/0 System; Parallel File System.

I. INTRODUCTION

In HPC, increasing demands in I/O system can cause
bottlenecks more often. Parallel I/O plays a fundamental
role to balance the fast increase in computational power and
the progress of processor architectures. Although hierarchical
memory architecture helps to mitigate performance penaliza-
tions due to disk accesses, its capacity is limited. In critical
research areas, like nanotechnology, astrophysics, weather pre-
diction and physical energy, several scientific and engineer
simulations are processing more and more data. This fact also
reflects the development of new fault-tolerance tools through
periodical process state savings (checkpointing). Therefore, it
is necessary to identify the factors that affect the performance
and to propose new solutions that are capable of reducing
performance gap between Central Processing Unit (CPU) and
I/0.

The I/O system becomes more complex to provide an
appropriate performance and to fulfill the requirements of the
parallel applications on the HPC systems. Currently, an I/O
system is a multilayer system where each layer has its respon-
sibility and a behavior depending on the system workload.
This layered structure hinders to observe the system global
behavior, identify which layer is a bottleneck and whether it
is doing the I/O inefficiently.

Running the same application with different I/O configura-
tions gives the possibility to tune the I/O system according to
the application access pattern. However, tuning the I/O system
configuration on the production environment, it is only possible
in some layers. Therefore, analyzing application requirements
before configuring the real system could be an advantage. One
way to predict application performance in HPC systems with

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

Sandra Méndez

High Performance Systems Division
Leibniz Supercomputing Centre (LRZ) and Operating Systems Department
Garching, Munich, Germany
Email: sandra.mendez@lrz.de

Dolores Rexachs
and Emilio Luque

Computer Architecture

University Autonoma of Barcelona
Bellaterra, Barcelona, Spain
Email: {dolores.rexachs,
emilio.luque}@uab.es

different I/O configurations is using modelling and simulation
techniques.

In HPC field, several I/O system simulators have been
developed for parallel I/O. Simulator Framework for Computer
Architectures and Storage Networks (SIMCAN) [1] is aimed
at optimization of communications and I/O algorithms. Paral-
lel I/O Simulator of Hierarchical Data (PIOsimHD) [2] was
developed to analyze Message Passing Interface-Input/Output
(MPI-I/O) performance and cluster hardware configurations.
Co-design of Exascale Storage System (CODES) [3] is a
framework for evaluating exascale storage system design
points. High-Performance Simulator for Hybrid Parallel 1I/O
and Storage Systems (HPIS3) [4] models the application
workloads, parallel file system and storage system of the
HPC environment. SIMCAN is based on OMNET++ and
PIOsimHD is written in Java. CODES and HPIS3 are built
on Rensselaer’s Optimistic Simulation System [5], a parallel
simulation platform. All these simulators are based on Discrete
Event Simulation (DES).

ABMS is an approach to modelling complex systems
composed of autonomous agents. Agents have behaviours,
often described by simple rules, and interactions with other
agents, which in turn influence their behaviours. DES and
ABMS work mostly in discrete time but DES is used at
low to middle abstraction. Compared to DES, in ABMS the
behavior is defined at individual level, and the global behavior
emerges as a result of many individuals, each following its
own behavior rules, living together in some environment and
communicating with each other and with the environment.
ABMS is also typically easier to maintain because the model
refinements normally result in very local, not global changes
[6]. ABMS has been used in various fields, such as economics
[7], health [8], biology [9] and sensor networks [10].

Due to the complexity of the modern HPC I/O systems,
we consider ABMS appropriate to model and simulate it. We
propose a model that represents the global behavior of the I/O
system through the interaction of the different agents identified
in each layer of the system. For tuning the I/O system, the
agent attributes can be modified to observe how impact on the
global behavior. When a performance problem is observed, this
will be evaluated focusing on a layer, its agents and interactions
with environment to detect the source of the problem.

67

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

In this context, our aim is to define a preliminary model
of the HPC I/O system using ABMS. The proposed model
will allow to design different configurations of the I/O system
to assess their impact on the system performance. By using
the model, we will be able to identify possible bottlenecks
and predict the adjustments that will maximize overall system
performance.

The rest of this paper is organized as follows. Section
IT presents the proposed methodology. Section III briefly
describes 1/0O system in HPC. Section IV addresses the de-
velopment of the initial model. Finally, Section V presents our
conclusions and future work.

II. METHODOLOGY

Methodology applied to develop the model is an iterative
spiral process. Each iteration involves 5 phases:

1) Collecting information of the general functionality of
the I/O system in HPC.

2) Modeling I/O components and their interactions.

3) Implementation of the Model in a Simulator.

4) Validation of the simulator considering the informa-
tion of the general functionality.

5) Identifying those components that affect application
performance.

Modeling Agent-Based allow represent I/O components
that may be either Hardware modules or Software and to
refine or update them more easily. Compute nodes, I/O nodes,
storage nodes and the network in a computer cluster exhibit
a behavior depending on their roles. The processes and the
components that form these systems can be modeled with
interactions and attributes. The generated models can be used
to model a particular cluster. The models must be adjusted with
the characteristics of interest and combine them to represent
the system behavior.

In the HPC scenario, modeling the behavior of hardware
and software requires an appropriate level of abstraction to
avoid a degree of detail that will cause a too complex and/or
costly simulation. Therefore, the use of agents to model system
components and attributes would provide a useful tool for
analyzing the I/O behavior of the applications while each
component is refined.

III. COMPONENTS OF THE I/O SYSTEM IN HPC

In this section, we present the results of the first phase of
the methodology and section III-A details the Parallel Virtual
File System (PVES) selected for the first proposed model.

The HPC I/O systems have different configurations in
each computer cluster. Usually, the parallel /O system is
represented as is shown in Figure 1. In this case, it is organized
hierarchically according to the path that data follow in a
computer cluster.

The parallel I/O system can be observed from three points
of view:

e I/O architecture is related to storage and intercon-
nection network features, data management, storage
devices location, buffering/caching and storage node
availability [11].

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

e I/O software stack comprises Scientific Data Library
(like HDF5 and NetCDF), I/O Middleware (like MPI-
I0) and Parallel File System (like GPFS, Lustre and
PVES2) [12].

e I/O access patterns of parallel applications. A parallel
application I/O behavior model based on I/O patterns
can be used to support the evaluation, design and
selection of different I/O configurations [13].

Hardware components can have different roles depending
on the data management that is performed by the parallel file
system. Therefore, we have selected a parallel file system and
analyze its functionality.

I/O libraries can be present in the compute nodes and
their configurations affect the performance of the parallel
applications.

I/O access patterns of parallel application could obtain
different performance depending on the configuration of the
I/O libraries, parallel file system or network interconnections.
For this reason, the global behavior of the I/O system must
consider the software and the configuration of the hardware
components.

A. Parallel File System

In HPC, data management is carried out by a parallel
file system that supports concurrent access to partitioned and
distributed data in the storage system.

PVFS2 is an open source file system developed to support
efficient read and write operations of large amounts of data.
Due to its modular architecture, it is easy to include new
hardware media and new algorithms. This fact demonstrates
the PVFS suitability for parallel file system research.

Figure 2 illustrates the modular architecture of PVFS2 [14].
It is designed as a client-server architecture where the server
provides the storage and the client contains the access logic
to the distributed storage. Servers can be classified into data
servers and metadata servers. The formers keep parts of logical
files while the latters keep attributes of the logical file system
objects (files and directories in PVES).

IV. PROPOSED MODEL
Our approach for Modeling I/O System in HPC considers:

e I/O components (hardware and/or software) will be
individually modelled defining its internal behavior
(functional level) and the interactions (interfaces and
communication actions) with the rest of the compo-
nents.

o The functional level allows modelling each one of the
specific components through the use of:

o “State variables” characterizing the main “fea-
tures” of the specific module/component.
o “State transition maps” modelling, in a simple

and powerful way, the dynamic internal behav-
ior of each component based on the different
interactions with other modules guided by the
communication actions.

In this work, we begin modeling the I/O system for the use
case request attributes of a file to the parallel file system. For
example, a parallel application to execute an I/O operation

68

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

Hardware

Application | Tuqe o sume)

“ores RN
Nodes il ;

f I/0 Hardware I
Interconnection

—
Network [Ao srmeanmsasaasARsAEEARAEES A

I/O Nodes

Storage
Network

I 7 " g
e B =) & |

AAAARAAAASMASAAARARAAARRARSRAR N

N

Software

[pptcaton)
1L

& 110 Software Stack)

(11O Middleware)
Q File System)

o /

[1/Q Hardware]

|
|
|
|
|
|
|
T .
| L Scientific Data Library
|
[
|
[
|
|
|
[

Figure 1. Components of I/O system in a computer cluster. The left picture shows the I/O architecture and the right picture depicts the I/O software stack.

Client

User Level Interface
(MPI-10, Kernel-VFS. ...)

System Interface
aCache I nCache |

Job

Flow

BMI

Server

Main

Job

Flow Trove

BMI

Network (IB, TCP, MX)

/| exr

Figure 2. Software architecture of PVFS-2.

(MPI_File_write) will generally need request attributes.
For this operation, in Figure 3(a) are shown the involved
hardware and software components. The agents Application,
Client, Network, Server are identified at high abstraction
level. These agents are present in all the I/O systems. The
agent Application starts the operation through the Client agent
which communicates with the network interface to request
attributes to the agent I/O server. The environment for the
agents Application and Client is represented by the compute
nodes, for the agent I/O server by I/O nodes and storage nodes;
and for the agent network interface by the compute nodes,
storage nodes and I/O nodes.

The main components for an I/O system that use PVFS2
is shown in Figure 3(b). The interactions of the agents
Client, Network and I/O server were only pointed out at low
abstraction level. However, data have went through several
components that were not pointed out in this design stage,
since only control signals were used as restriction of the
initial modeling. One of the modelled agents is the Trove
component. Trove has been included in the model because
it is the only component that communicates with the storage.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

TABLE I. TROVE AGENT

Agent Variables Concept Possible values

Directories Object attributes Attributes, entries (handles,
Trove keys)

Metafile Object metadata Datafile handle (keyval),

metafile distribution

Datafile Logical files data | Data

Trove is a software layer that is responsible of providing and
managing persistence in the storage space for the implemented
objects. To simulate the significant component behavior, a state
machine can be used. The agent Trove state is defined by a
collection of state variables that have different possible values.
Each state will be associated with a specific combination of
state variable values.

Table I shows an initial set of state variables that are defined
with basic information to model Trove [15]. This component
is selected in first place because it is interesting to model the
disk write operation (HD or SSD) in the server node and Trove
is the interface that manages it.

69

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

Store

Computing Node attributes

Client

System Interface

in the

E— MPI-10 h
| Application f— command
(requires
attributes)

PVFS_SERV_GETATTR

) |

I/0 Components

(1/0 and Storage Node]

1/O Server

1/O Server

Reguest Handler)

(PVFS-Server |

Op State Machine

(a) Preliminary agents of I/O System in a re- (b) Components in an operation to request attributes and preliminary agents

quest attribute operation. in PVFS-2.

Figure 3. Data flow for requesting attributes in PVFS2

In this example, the interactions needed to move from one
state to another will be defined by the agent Trove inputs
and outputs that correspond to categories provided by Trove
interface [16]. These interactions include the management
of storage, collections and dataspace and the accesses to
Key/values and bytestream.

V. CONCLUSION

This paper presents a preliminary analysis to model a
software component of the I/O system in HPC using ABMS.
It has been shown by means an example that it is feasible
to model PVFS-2 components, its state variables and the
interactions with the different agents.

As future work, the agents required to complete the PVFS-
2 model will be defined. Next, the model will be extended to
include components of the I/O system. In addition, a simulation
tool will be defined to implement the simulation model and
thus, to be able to reproduce the behavior of the entire system.

ACKNOWLEDGMENT

This research has been supported by the MINECO
(MICINN) Spain under contract TIN2011-24384 and
TIN2014-53172-P.

REFERENCES

[1] A. Nufez, J. Fernandez, J. D. Garcia, F. Garcia, and J. Carretero, “New
techniques for simulating high performance mpi applications on large
storage networks,” J. Supercomput., vol. 51, no. 1, Jan. 2010, pp. 40-57.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

(2]

(4]

[5]

(6]

(7]

(8]

(9]

J. Kunkel, “Using Simulation to Validate Performance of MPI(-IO)
Implementations,” in Supercomputing, ser. Lecture Notes in Computer
Science, J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds., no. 7905.
Berlin, Heidelberg: Springer, 06 2013, pp. 181-195.

N. Liu et al., “Modeling a leadership-scale storage system.” in PPAM
(1), ser. Lecture Notes in Computer Science, R. Wyrzykowski, J. Don-
garra, K. Karczewski, and J. Wasniewski, Eds., vol. 7203. Springer,
2011, pp. 10-19.

B. Feng, N. Liu, S. He, and X.-H. Sun, “HPIS3: Towards a High-
performance Simulator for Hybrid Parallel I/O and Storage Systems,”
in Proceedings of the 9th Parallel Data Storage Workshop, ser. PDSW
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 37-42.

C. Carothers, D. Bauer, and S. Pearce, “ROSS: a high-performance,
low memory, modular time warp system,” in Parallel and Distributed
Simulation, 2000. PADS 2000. Proceedings. Fourteenth Workshop on,
2000, pp. 53-60.

A. Borshchev and A. Filippov, “From System Dynamics and Discrete
Event to Practical Agent Based Modeling: Reasons, Techniques, Tools,”
in The 22nd International Conference of the System Dynamics Society,
2004.

L. Tesfatsion, “Introduction to the special issue on agent-based compu-
tational economics,” Iowa State University, Department of Economics,
Staff General Research Papers, 2001.

M. Taboada, E. Cabrera, F. Epelde, M. Iglesias, and E. Luque, “Using
an agent-based simulation for predicting the effects of patients deriva-
tion policies in emergency departments,” Procedia Computer Science,
vol. 18, 2013, pp. 641 — 650.

A. Siddiqga et al., “A new hybrid agent-based modeling & simulation
decision support system for breast cancer data analysis,” in Informa-
tion and Communication Technologies, 2009. ICICT ’09. International

70

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Conference on, Aug 2009, pp. 134-139.

M. Niazi and A. Hussain, “Agent-based tools for modeling and simu-
lation of self-organization in peer-to-peer, ad hoc, and other complex
networks,” Communications Magazine, IEEE, vol. 47, no. 3, March
2009, pp. 166-173.

D. Kotz, “Introduction to multiprocessor I/O architecture,” in Input/Out-
put in Parallel and Distributed Computer Systems, ser. The Kluwer
International Series in Engineering and Computer Science, R. Jain,
J. Werth, and J. C. Browne, Eds. Kluwer Academic Publishers, 1996,
vol. 362, ch. 4, pp. 97-123.

R. Ross, R. Thakur, and A. Choudhary, “Achievements and challenges
for I/O in computational science,” Journal of Physics: Conference
Series, vol. 16, no. 1, 2005, pp. 501+.

S. Méndez, D. Rexachs, and E. Luque, “Modeling parallel scientific ap-
plications through their input/output phases.” in CLUSTER Workshops.
IEEE, 2012, pp. 7-15.

W. Ligon and B. Wilson, “Orangefs,” in High Performance Parallel 1/O,
ser. Chapman & Hall/CRC Computational Science, Q. K. Prabhat, Ed.
Chapman and Hall/CRC, 2014, ch. 10, pp. 119-134.

T. PVFS2, “Trove and PVFS2,” PVFS Development Team, Tech. Rep.,
2015.

S. Lang, “Trove: The PVFS2 Storage Interface,” PVFS Development
Team, Tech. Rep., 2015.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

71

