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Abstract—This paper presents an unsupervised Non-Negative Ma-
trix Factorization (NMF) approach to extract percussive sounds
from monaural music signals. Due to unconstrained NMF can-
not discriminate between percussive, harmonic or singing-voice
components in the decomposition process, we propose a novel
method to extract percussive sounds based on the anisotropic
smoothness of percussive chroma. Thus, percussive sounds can
be discriminate because chroma from percussive sounds clearly
draws lines along the chroma. Under a NMF framework, a time-
domain signal related to a component is labelled as percussive
is the energy distribution of its chroma is approximately flat.
This proposal does not require information about the num-
ber of active sound sources neither prior knowledge about
the instruments nor supervised training to classify the bases.
Real-world audio mixtures composed of Harmonic/Percussive
and Harmonic/Percussive/Singing-voice sounds were evaluated.
Experimental results showed that the proposal was effective
compared to state-of-the-art methods. An interesting advantage
of the proposal is that it can remove most of the singing-voice
components from the extracted percussive signals.

Keywords–Non-negative matrix factorization; Sound source sep-
aration; monaural; percussive; chroma; spectral flatness; distor-
tion;

I. INTRODUCTION

The extraction of percussive sounds from monaural audio
mixtures has received much attention over the last decade.
Percussive sounds, e.g., snare drum, are impulsive and are
typically smooth in frequency. Harmonic sounds, e.g, bass
or piano, are quasi-stationary and are typically smooth in
time. Therefore, percussive sounds have a structure that is
vertically smooth in frequency, whereas harmonic sounds have
a structure that is horizontally smooth in time. However,
singing-voice sounds are not smooth in frequency because
most of them are composed of spectral peaks located at integer
multiples of the fundamental frequency and are not smooth in
time due to pitch fluctuations (e.g., vibrato effect) as can be
seen in Figure 1. Specifically, Figure1 shows that percussive
sounds draw vertical lines whereas harmonic sounds draw
horizontal lines. Singing-voice sounds draw fluctuated lines
over the time. A method capable of separating percussive
sounds from audio can be used to facilitate a wide range
of Music Information Retrieval (MIR) applications. Some of
these include onset detection, beat tracking, rhythm pattern
recognition, remixing and for audio to score alignment.

Several approaches have exploited the concept of
anisotropic smoothness which is related to the difference in the
directions of continuity between the spectrograms of harmonic
and percussive sounds. Ono et al. [1] [2] separate harmonic and
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Figure 1. Spectrogram of an audio excerpt composed of percussive,
harmonic and singing-voice sounds.

percussive sounds by exploiting the anisotropy of harmonic
and percussive sounds in a Maximum A Posteriori (MAP)
framework. Fitzgerald’s system [3] extracts percussive sounds
using the anisotropy smoothness by means of a median filter-
ing. In this manner, the harmonics are considered to be outliers
in a temporal slice that contains a mixture of percussive and
pitched instruments. In [4], percussive extraction is performed
using non-negative matrix partial co-factorization. Thus, the
shared basis vectors in this co-factorization are associated with
the percussive features, which are used to extract drum-related
components from audio.

Recently, a measure [5] based on a segmental spectral
flatness is used to distinguish between harmonic and per-
cussive signals. However, evaluation was performed using
mixtures composed of one harmonic source and one percussive
source not providing experimental results with commercial
real-world excerpts. Becker et al. [6] propose an extension
that supports spectral continuity and a new temporal continuity
constraint using temporal flatness. Canadas et al. [7] propose
an unsupervised learning process based on a modified Non-
Negative Matrix Factorization (NMF) approach that automat-
ically distinguishes between percussive and harmonic bases
by integrating spectro-temporal features, such as anisotropic
smoothness or time-frequency sparseness, into the factorization
process.

In this paper, we propose an intuitive, novel and fast
method to separate percussive sounds from monaural music.
Using the concept of anisotropic smoothness, in a similar way
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as the spectrogram of a percussive sound draws a line along
the frequency direction, the chroma of a percussive sound
draws a line along the 12 distinct semitones. A time-domain
signal related to a component decomposed by NMF can be
labelled as percussive if the energy distribution of its chroma
is approximately flat.

The remainder of the paper is organized as follows. Sec-
tion II introduces NMF and its application to sound source
separation briefly. Section III describes the proposed method.
Experimental results and performance analysis are shown in
Section IV. Conclusions and future work are reported in
Section V.

II. BACKGROUND

NMF [8] is a technique for multivariate data analysis
which aims to obtain a parts-based representation of objects,
by imposing non-negative constraints. Given a matrix X of
dimensions F × T with non-negative entries, it is possible
to model it as linear combinations of K elementary non-
negative spectra. Therefore, NMF is the problem of finding
a factorization:

X ≈ X̂ = WH (1)

where X̂ is the estimated matrix, W ∈ RF×K is the matrix
whose columns are the bases, spectral patterns or components.
H ∈ RK×T is a matrix of component gains or activations for
all frames. K is usually chosen such that FK+KT << FT ,
hence reducing the data dimension. In typical audio applica-
tions, the matrix X is chosen as a time-frequency represen-
tation (e.g., magnitude or power spectrogram), f = 1, ..., F
denoting the frequency bin and t = 1, ..., T the time frame.

In the case of magnitude spectra, the parameters are
restricted to be non-negative, then, a common way to compute
the factorization in Eq. (1) is generally obtained by minimizing
a cost function defined as

D(X|X̂) =

F∑
f=1

T∑
t=1

d(Xft|X̂ft) (2)

where d(a|b) is a function of two scalar variables, d is typically
non-negative and takes value zero if and only if a = b. In this
work, the generalized Kullback-Leibler divergence has been
used since it is the most frequently used cost function in sound
source separation [9] and our preliminary experiments showed
that the generalized Kullback-Leibler divergence obtained bet-
ter separation performance compared to Euclidean distance and
the Itakura Saito divergence [10].

An iterative algorithm based on multiplicative update rules
is proposed in [8] to obtain the model parameters that minimize
the cost function. Under these rules, the generalized Kullback-
Leibler divergence DKL(X|X̂) is non-increasing at each iter-
ation and it is ensured the non negativity of the bases and the
gains [8].

DKL(X|X̂) =
∑
f

∑
t

Xft log
Xft

X̂ft

−Xft+X̂ft (3)

The update rules can be defined as follows,

H← H�
WT X

(WH)

WT1F,T
(4)

W←W �
X

(WH)H
T

1F,THT
(5)

where W and H are initialized as random positive matrices,
1F,T represents a matrix of all-one composed of F rows and
T columns, T is the transpose operator, � represents the
Hadamard (element-wise) multiplication and the division is
also element-wise.

III. PROPOSED METHOD

An intuitive, novel and fast method to extract percussive
sounds in music recordings is proposed. It is composed of three
stages (NMF, Chroma and Spectral flatness) shown in Figure
2.

Figure 2. Block diagram of the proposed percussive separation method

The main idea of the proposal is based on the concept
of anisotropic smoothness. Instead of using the anisotropic
smoothness with the spectrogram data [2] [3], we use the
anisotropic smoothness with the chroma data. To obtain the
chroma data, a time-frequency representation is used in which
the entire spectrum is projected onto 12 bins representing
the 12 distinct semitones (or chroma) of the musical octave.
As a result, the chroma representation reports the intensity
of each of the 12 distinct musical chroma of the octave at
each time frame [11]. Just like a spectrogram of percussive
sounds draw lines along the frequency direction, Figure 3
shows that chroma of a percussive sound also draws lines
along the 12 distinct semitones because percussive sounds
are characterized by smoothness in frequency. Therefore, our
aim is to classify what components from NMF are percussive
using the information provided by the energy distribution of
the chroma.

In a first stage, the magnitude of the Short-Time Fourier
Transform (STFT) X of a music signal x(t), with a complex
spectrogram Xc composed of T frames and F frequency
bins, is calculated (details are shown in section IV-B). Us-
ing the generalized Kullback-Leibler divergence as previously
mentioned, an unconstrained NMF is applied to the input
spectrogram X using the update rules Eq. (4)-(5) obtaining
a set of K bases or components.
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Figure 3. Chroma of a percussive time-domain reconstructed component
obtained from NMF. There exists six drum sounds along the time.

In a second stage, each time-domain signal xi(t) from each
component ith is synthesized by the inverse overlap-add STFT
of the product of the basis Wi and the activations Hi related
to the component ith and using the phase spectrogram of the
input signal x(t). Next, the chroma matrix [11] of the signal
xi(t) is calculated generating a sequence of 12 frequency bins
and T short-time frames and finally a chroma vector Ci is
calculated summing all frames.

Initially, we applied the measure spectral flatness [12]
directly on the bases Wi obtained in the NMF decomposition
but results showed that it does not work because this measure
is very sensitive to small values [5]. In order to overcome
this problem, we propose to compute the chroma spectral
flatness SFi because each chroma bin has lower probability
of having a small value. The measure chroma spectral flatness
SFi is computed using the measure spectral flatness [12] on
the chroma vector Ci instead of basis vector Wi to avoid the
high dependency of the spectral flatness related to the small
values. SFi = 0 implies a perfect harmonic sound while a
SFi = 1 implies a perfect percussive sound.

SFi =
(
∏12

k=1 Ci(k))
1
12

1
12

∑12
k=1 Ci(k)

∈ [0, 1] (6)

Therefore, the extracted percussive signal xp(t) is the sum
of all the signals xi(t) whose spectral flatness SFi is higher
than a threshold U . In this manner, xp(t) is composed of
all signals xi(t) whose energy distribution of its chroma is
approximately flat.

IV. EVALUATION

A. Data set, metrics and State-of-the-art methods
Two data sets T1 and T2, composed of the same nine

monaural real-world music excerpts, taken from the Guitar
Hero game [13] [14], have been generated to evaluate the
proposed method as can be seen in Table I. To perform
an objective evaluation, each music excerpt from database
T1 was created mixing the original percussive and harmonic
instrumental tracks without using any singing-voice track.
However, each music excerpt from database T2 was created
mixing the same percussive and harmonic instrumental tracks

of the database T1 and the original singing-voice track. Each
excerpt has a duration about 30 seconds. All of the signals
were converted from stereo to mono and sampled at 16 kHz.

TABLE I. IDENTIFIER, TITLE AND ARTIST OF THE FILES OF THE
DATABASES T1 AND T2

IDENTIFIER TITLE ARTIST
M1 Hollywood Nights Bob Seger & The Silver Bullet Band
M2 Hotel California Eagles
M3 Hurts So Good John Mellencamp
M4 La Bamba Los Lobos
M5 Make It Wit Chu Queens Of The Stone Age
M6 Ring of Fire Johnny Cash
M7 Rooftops Lost prophets
M8 Sultans of Swing Dire Straits
M9 Under Pressure Queen

The assessment of the performance of the proposed method
has been performed using the metrics Source to Distortion
Ratio (SDR), Source to Interference Ratio (SIR) and Source
to Artifacts Ratio (SAR) [15] [16] widely used in the field
of sound source separation. Specifically, SDR provides infor-
mation on the overall quality of the separation process. SIR
is a measure of the presence of non-percussive sounds in the
percussive signal and vice versa. SAR provides information
on the artifacts in the separated signal from separation and/or
resynthesis. Higher values of these ratios indicate better sepa-
ration quality. More details can be found in [15].

We compare the separation performance of the proposed
method with two reference percussive and harmonic sound
separation methods. The first one is the method HPSS [2] and
the second one is the method MFS [3].

B. Parameters
The STFT of each mixture has been calculated using

half-overlapping Hamming window of L = 1024 samples,
corresponding to a duration of 64 milliseconds at a sampling
rate of 16KHz [1] [2] [7].

A random initialization of the matrices W and H was
used and the convergence of the NMF decomposition was
empirically observed which was achieved after 100 iterations.
Due to NMF is not guaranteed to find a global minimum, the
performance of the proposed method depends on the initial
values of NMF [9] leads to different results. For this reason,
we have repeated three times for each excerpt and the results
in the paper are averaged values.

Highlight that the best separation performance will be
obtained using an optimization process which is data depen-
dent because NMF is a blind decomposition method and it
is not based on the physics of the problem. As a result,
the separated signals from NMF are not independent, nor
uncorrelated, it generates many false positives and/or mix-
ing of percussive/non-percussive sounds. In our preliminary
results, we have evaluated different numbers of components
K = 10, 20, 30, 40 and we selected the value K = 10
because it obtained the best separation performance. It seems
that a small number of components improves the percussive
separation because the subspace of percussive sounds is of
lower rank compared to harmonic or singing-voice rank [17]
[18].

C. Optimization
Figure 4 and Figure 5 show the optimization of the

threshold U in the database T1 and T2. A lower value
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of U < 0.5 captures higher percentage of non-percussive
sounds that implies a reduction of the percussive SIR. A value
around U = 0.6 allows a promising discrimination between
percussive and non-percussive sounds. The optimum value of
the threshold Uo1 = 0.6 in the database T1 and Uo2 = 0.7
in the database T2 have been selected because reach the best
percussive and non-percussive SDR and a high percussive SIR
associated with the highest non-percussive SIR. This situation
reports that the proposed system extracts a high percentage of
percussive sounds avoiding the extraction of non-percussive
sounds and viceversa. It can be seen that higher values of
U > 0.7 lose a high amount of percussive sounds that causes
a drastically reduction of the non-percussive SIR. Comparing
Figure 4 and Figure 5, an optimum threshold Uo2 > Uo1 must
be set because the system needs to be more strict to separate
sounds from singing-voice active in the database T2.

Figure 4. Average SDR-SIR obtained in function of the threshold Um for
the database T1. The legend P is related to percussive results and the legend

NP is related to non-percussive results.

The optimum thresholds Uo2 and Uo1 will be used in
the next section in order to evaluate the performance of the
proposed system.

D. Results
Figure 6 and Figure 7 show SDR, SIR and SAR results

evaluating the database T1 and T2 for the proposed method and
the two state-of-the-art methods. Each box represents nine data
points, one for each excerpt of the test database. Each method
evaluated shows three boxes in figures. The left box represents
the average value of the percussive separation results. The
center box represents the average value of the non-percussive
(harmonic sounds in the database T1 and harmonic+singing-
voice sounds in database T2) separation results. The right box
represents the overall average value considering the percussive
and non-percussive separation results. The lower and upper
lines of each box show the 25th and 75th percentiles for the
database. The line in the middle of each box represents the
median value of the dataset. The lines extending above and
below each box show the extent of the rest of the samples,
excluding outliers. Outliers are defined as points that are over

Figure 5. Average SDR-SIR obtained in function of the threshold Um for
the database T2. The legend P is related to percussive results and the legend

NP is related to non-percussive results.

1.5 times the interquartile range from the sample median,
which are shown as crosses.

Figure 6 displays the SDR separation performance for the
database T1. It shows that MFS and the proposed method
obtain the best percussive separation performance but HPSS
can be considered as competitive method. Moreover, MFS
achieves the best SDR taking into account non-percussive
and overall separation followed by the proposed method.
Taking into account SIR results, HPSS produces the best
percussive SIR and MFS provides the best non-percussive SIR.
However, the non-percussive SIR of the proposed method is
the worst of them. This performance is because not all the
bases decomposed by NMF and labelled as percussive are
purely percussive bases (ideally, each component represents
parts of a single sound source). It implies that some of the non-
percussive sounds are also synthesized as percussive sounds by
the proposed method. Therefore, the proposed method depends
on the randomized initialization of the two matrices W and H
in the NMF decomposition. Taking into account SAR results,
HPSS achieves a high percussive SIR at the expense of intro-
ducing more artifacts, which it can be observed by the worst
percussive and harmonic SAR. Nevertheless, the proposed
method provides the best percussive and non-percussive SAR
results because the artifacts in the reconstruction signal are
minimized.

Figure 7 displays the separation performance for the
database T2. Hereafter, all the comments are related to the
comparison between Figure 6 and Figure 7. It can be ob-
served that the addition of the singing-voice in the non-
percussive sounds reduces about 1dB the overall SDR both
MFS and HPSS but not in the proposed method. Specifically,
the proposed method improves the overall SDR in about 1dB,
obtaining approximately the same overall SDR that MFS.
While HPSS and MFS reduces its percussive SIR about 5dB,
the SIR reduction of the proposed method is only about 0.7dB.
This performance indicates that a high amount of singing-
voice sounds are active in the separated percussive signals
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Figure 6. Separation performance in SDR, SIR and SAR results evaluating
the database T1. The left box represents the average value of the percussive

separation results. The center box represents the average value of the
non-percussive separation results. The right box represents the overall

average value considering the percussive and non-percussive separation
results.

from HPSS and MFS. Moreover, the overall SIR in HPSS
and MFS is reduced more than twice compared with the pro-
posed method. As occurred in Figure 6, the proposed method
achieves the best SAR results minimizing the artifacts in the
reconstruction signal. Therefore, results report a strength of the
proposed method, which is not exhibited by the other compared
methods, that is the capability to successfully remove the
singing voice sounds in the separated percussive signal. This
capability implies that the proposed method provides the best
tradeoff between the quality of the separated percussive signal
and the removal of the singing voice sounds. An example of
the mentioned capability to remove the singing voice sounds in
the separated percussive signal is shown in Figures 8-10. It can
be clearly observed that in the spectral range [400Hz-1600Hz]
that most singing-voice sounds, characterized by fluctuated
frequencies over the time, have only been removed using the
proposed method.

To illustrate the separation performance of the proposed
method, some percussive audio examples have been uploaded
to a web page [19].

V. CONCLUSION

A novel, intuitive and fast method to separate percussive
sounds from music, composed by percussive/harmonic instru-
ments and singing-voice, is presented. Due to the fact that
unconstrained NMF cannot discriminate between percussive,
harmonic or singing-voice components in the decomposition
process, we propose to extract percussive sounds based on the
anisotropic smoothness of chroma. If the energy distribution
of its chroma is approximately flat, then a time-domain signal
related to a component decomposed by NMF can be labelled
as percussive. This proposal does not require prior knowledge
about the instruments nor supervised training to classify the
bases.

Figure 7. Separation performance in SDR, SIR and SAR results evaluating
the database T2. The left box represents the average value of the percussive

separation results. The center box represents the average value of the
non-percussive separation results. The right box represents the overall

average value considering the percussive and non-percussive separation
results.
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Figure 8. Percussive separation of the method HPSS evaluating the interval
[10s-20s] of the file M8 of the database T2. Higher grey level represents

higher energy of each frequency.

Although the separation performance of the proposed
method is competitive in evaluating mixtures of percussive
and harmonic instruments, its performance depends on the
randomized initialization of the two matrices W and H in
the NMF decomposition. The reason is because not all the
bases labelled as percussive from NMF are purely percussive
so, non-percussive sounds are also synthesized as percussive
sounds by the proposed method. Taking into account mixtures
of percussive and harmonic instruments and singing-voice, the
proposed method improves the separation performance com-
pared with the other methods. Results show that an advantage
of the proposed method, which is not exhibited by the other
compared methods, is the capability to successfully remove
the singing voice sounds in the separated percussive signal.

Future work will be focused on two topics. First, we
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Figure 9. Percussive separation of the method MFS evaluating the interval
[10s-20s] of the file M8 of the database T2. Higher grey level represents

higher energy of each frequency
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Figure 10. Percussive separation of the proposed method evaluating the
interval [10s-20s] of the file M8 of the database T2. Higher grey level

represents higher energy of each frequency

will investigate smart initializations based on properties of
percussive sounds to improve the quality of the percussive
separation. Second, new measures to discriminate the rhythmic
accompaniment will be investigated (e.g., bass line).
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