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Abstract—In this paper, the architecture and evaluation of
a new system for recognizing textual entailment (RTE) is
presented. It is conceived as an adaptable and modular environ-
ment allowing for a high-coverage syntactic and semantic text
analysis combined with logical inference. For the syntactic and
semantic analysis it combines an HPSG-based deep semantic
analysis with a shallow one supported by statistical models
in order to increase the quality and accuracy of results. For
recognizing textual entailment we use logical inference of first-
order employing model-theoretic techniques and automated
reasoning tools. The inference is supported with problem-
relevant background knowledge extracted automatically and on
demand from external sources like, e.g., WordNet, YAGO, and
OpenCyc, or other, experimental sources with, e.g., manually
defined presupposition resolutions, or with general and com-
mon sense knowledge. The system comes with a graphical user
interface for control and presentation purposes. The evaluation
shows that the success rate of the presented RTE system is
comparable with that of the best logic-based approaches.

Keywords-recognizing textual entailment; semantic analysis;
logical inference; knowledge integration; semantic reasoning.

I. INTRODUCTION

In this paper, we present a new system for recognizing
textual entailment (RTE, see [1], [2]). Our aim is to provide
a robust, modular, and highly adaptable environment for a
linguistically motivated large-scale semantic text analysis.
In RTE we want to identify automatically the type of a
logical relation between two input texts. In particular, we
are interested in proving the existence of an entailment
between them. The concept of textual entailment indicates
the situation in which the semantics of a natural language
written text can be inferred from the semantics of another
one. RTE requires a processing at the lexical, as well as
at the semantic and discourse level with an access to vast
amounts of problem-relevant background knowledge [3].
RTE is without doubt one of the ultimate challenges for
any natural language processing (NLP) system. If it suc-
ceeds with reasonable accuracy, it is a clear indication for
some thorough understanding how language works. As a
generic problem, it has many useful applications in NLP [4].
Interestingly, many application settings like, e.g., informa-
tion retrieval, paraphrase acquisition, question answering,
or machine translation can fully or partly be modeled as
RTE [2]. Entailment problems between natural language

texts have been studied extensively in the last few years,
either as independent applications or as a part of more
complex systems, e.g., during the RTE Challenges [2].

In our setting, we try to recognize the type of the logical
relation between two English input texts, i.e., between the
text T (usually several sentences) and the hypothesis H
(one short sentence). More formally, given a pair {T,H},
our system can be used to find answers to the following,
mutually exclusive conjectures with respect to background
knowledge relevant both for T and H [5]:

1) T entails H ,
2) T ∧ H is inconsistent, i.e., T ∧ H contains some

contradiction, or
3) H is informative with respect to T , i.e., T does not

entail H and T ∧H is consistent.

We aim to solve an RTE problem by applying a model-
theoretic approach where a formal semantic representation
of the RTE problem, i.e., of the texts T and H , is computed.
However, in contrast to automated deduction systems [6],
which compare the atomic propositions obtained from the
text and the hypothesis in order to determine the existence
of entailment, we apply logical inference of first-order. To
compute semantic representations for input problems, we
build on a combination of deep and shallow techniques
for semantic analysis. The main problem with approaches
processing the text in a shallow fashion is that they can
be tricked easily, e.g., by negation, or by systematically
replacing quantifiers. Also an analysis solely relying on
some deep approach may be jeopardized by a lack of
fault tolerance or robustness when trying to formalize some
erroneous text (e.g., with grammatical or orthographical
errors) or a shorthand note (e.g., short text message). The
main advantage when integrating deep and shallow NLP
components is increased robustness of deep parsing by
exploiting information for words that are not contained in
the deep lexicon [7]. The type of unknown words can then
be guessed, e.g., by usage of statistical models.

The semantic representation language used for the results
of the deep-shallow analysis is a first-order fragment of Min-
imal Recursion Semantics (MRS, see [8]). However, for their
further usage in the logical inference, the MRS expressions
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are translated into another, semantic equivalent representa-
tion of First-Order Logic with Equality (FOLE) [5]. This
logical form with a well-defined model-theoretic semantics
was already successfully applied for RTE in [9].

As already mentioned, an adequate representation of a
natural language semantics requires access to vast amounts
of common sense and domain-specific world knowledge.
RTE systems need problem-relevant background knowledge
to support their proofs [3], [10]. The logical inference in
our system is supported by external background knowledge
integrated automatically and only as needed into the input
problem in form of additional first-order axioms. In contrast
to already existing applications (see, e.g., [2], [9]), our
system enables flexible integration of background knowledge
from more than one external source (see Section IV-A for
details). In its current implementation, our system supports
RTE, but can also be used for other NLP tasks like, e.g.,
large-scale syntactic and semantic analysis of English texts,
or multilingual information extraction.

In the remainder of the paper, we give first a short
overview of related work (Section II). Then we present in
detail the architecture of our system (Section III) and explain
how its success rate can be improved by employing external
knowledge and presupposition resolvers (Section IV). The
paper concludes with a discussion of the results (Section V).

II. RELATED WORK

Our work was inspired by the ideas given in [5], [9],
where a similar, model-theoretic approach was used for the
semantic text analysis with logical inference. However, in
contrast to our MRS-based approach, they apply Discourse
Representation Theory [11] for the computation of full se-
mantic representations. Furthermore, we use the framework
Heart of Gold [7] as a basis for the semantic analysis. For
a good overview of a combined application of deep and
shallow NLP methods for RTE, we refer to [7], [12]. The
application of logical inference techniques for RTE was al-
ready elaborately presented in [10], [13], [14]. A discussion
on formal methods for the analysis of the meaning of natural
language expressions can be found in [15].

III. SYSTEM ARCHITECTURE

Our system for RTE provides the user with a number of
essential functionalities for syntactic, semantic, and logical
textual analysis, which can selectively be overridden or spe-
cialized in order to provide new or more specific ones, e.g.,
for anaphora resolution or word sense disambiguation. In its
initial form, the application supplies, among other things,
flexible program interfaces and transformation components,
allows for execution of a deep-shallow syntactic and se-
mantic analysis, integrates external inference machines and
background knowledge, maintains the semantic analysis and
the inference process, and provides the user with a graphical
interface for control and presentation purposes.

Inference
Logical

Analysis
Semantic

Syntactic and

Input
 Text

Results

Result

MRS

resultscontrolinput control

User Interface

Figure 1. Overall architecture of the system.

In the following, we describe our system for RTE in more
detail. It consists of three main modules (see Figure 1):

1) Syntactic and Semantic Analysis, where the combined
deep-shallow semantic analysis of the input text is
performed;

2) Logical Inference, where the logical inference process
is implemented, supported by components with exter-
nal knowledge and inference machines;

3) Graphical User Interface, where the analytical process
is supervised and its results are presented to the user.

In the rest of the section, we discuss the way the particular
modules of the system work. To make our description as
comprehensible as possible, we make use of a small RTE
problem. With its help we explain some crucial aspects of
that how our system proceeds while trying to solve RTE
problems. More specifically, we want to identify the logical
relation between text T :

London’s Tower Bridge is one of the most recogniz-
able bridges in the world. Many falcons inhabit its
old roof nowadays.

and hypothesis H:

Birds live in London.

To prove this textual entailment automatically, among other
things, a precise semantic representation of the problem
must be computed, the anaphoric reference between Tower
Bridge and its in T must be resolved, and world knowledge
(e.g., that Tower Bridge is in London) as well as ontological
relations between the concepts (e.g., that falcons are birds)
must be provided to the logical inference. We show how our
system works while solving problems of such complexity.

A. Syntactic and Semantic Analysis

The texts of the input RTE problem after entering the
system via the user interface go first through the syntactic
processing and semantic construction of the first system
module. To this end, they are analyzed by the compo-
nents of the XML-based middleware architecture Heart of
Gold (see Figure 2). It allows for a flexible integration of
shallow and deep linguistics-based and semantics-oriented
NLP components, and thus constitutes a sufficiently complex
research instrument for experimenting with novel processing
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Figure 2. Module for syntactic and semantic analysis.

strategies. Here, we use its slightly modified standard con-
figuration for English centered around the English Resource
HPSG Grammar (ERG, see [16]). The shallow processing is
performed through statistical or simple rule-based, typically
finite-state methods, with sufficient precision and recall. The
particular tasks are realized as follows: the tokenization
with the Java tool JTok, the part-of-speech tagging with
the statistical tagger TnT [17] trained for English on the
Penn Treebank [18], and the named entity recognition with
SProUT [19]. The latter one, by combining finite state
and typed feature structure technology, plays an important
role for the deep-shallow integration, i.e., it prepares the
generic named entity lexical entries for the deep HPSG
parser PET [20]. This makes sharing of linguistic knowledge
among deep and shallow grammars natural and easy. PET
is a highly efficient runtime parser for unification-based
grammars and constitutes the core of the rule-based, fine-
grained deep analysis. The integration of NLP components
is done either by means of an XSLT-based transformation,
or with the help of the Robust Minimal Recursion Semantics
(RMRS, see [21]), when a given NLP component supports it
natively. RMRS is a generalization of MRS. It can not only
be underspecified for scope as MRS, but also partially spec-
ified, e.g., when some parts of the text cannot be resolved
by a given NLP component. Thus, RMRS is well suited
for representing output also from shallow NLP components.
This can be seen as a clear advantage over approaches based
strictly on some specified semantic representation like those
presented, e.g., in [13], [22].

Furthermore, RMRS is a common semantic formalism for
HPSG grammars within the context of the LinGO Grammar
Matrix [23]. Besides ERG, which we use for English,

there are also grammars for other languages like, e.g., the
Japanese HPSG grammar JaCY [24], the Korean Resource
Grammar [25], the Spanish Resource Grammar [26], or the
proprietary German HPSG grammar [27]. Since all of those
grammars can be used to generate semantic representations
in form of RMRS, a replacement of ERG with another
grammar in our system can be considered and thus a high
degree of multilinguality achieved. To our best knowledge,
it would be the first time that RTE problems in languages
other than English could be considered.

The combined results of the deep-shallow analysis in
RMRS form are transformed into MRS and resolved with
Utool 3.1 [28]. Utool translates the input first from MRS
into dominance constraints [29], a closely related scope
underspecification formalism, and then enumerates in poly-
nomial time all text readings represented by the dominance
graph. In the current implementation, one of the most
reasonable readings is chosen manually by the analyst for
the further processing. A full automation of this task is still
not possible in the current state-of-the-art. It requires much
more knowledge about the RTE problem itself and about the
discourse background. This important problem will be part
of the further investigations.

For our small RTE example, the result of the combined
syntactic and semantic analysis for H in form of RMRS,
given as attribute value matrix, is presented in Figure 3.
The results of the shallow analysis (marked bold) describe
the named entities from H . Subsequently, the structure is
transformed into MRS and resolved by Utool. The resulting
first-order MRS in Prolog notation for the hypothesis H
from our example is given below. The predicates with _q_,
_n_, _v_, and _p_ in their names represent quantifiers,
nouns, verbs, and prepositions, respectively.

udef_q_rel(X6,
bird_n_1_rel(X6),
proper_q_rel( X9, and(

named_rel(X9, london), and(
locname_rel(london, X9),
loctype_rel(city, X9))), and(
live_v_1_rel(E2, X6),
in_p_dir_rel(E10, E2, X9)))).

B. Logical Inference

The results of the semantic analysis in form of specified
MRS combining deep-shallow predicates are translated into
another, logical equivalent semantic representation FOLE
(see Figure 4). The rule-based transformation conveys ar-
gument structure with a neo-Davidsonian analysis with se-
mantic roles [30]. A definite article is translated according to
the theory of definite description of Russell [31]. Temporal
relations are modeled by adding additional predicates similar
to [9], i.e., without explicit usage of time operators. Fur-
thermore, it is possible to extend the translation mechanism
to cover plural and modal forms. Appropriate ideas can be
found, e.g., in [9], [32]. However, by applying them, one
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ARG1 e2
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LBL h14
ARG0 x9
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
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ING {h8 ing h10001}


Figure 3. RMRS as attribute value matrix for hypothesis H from the example.

needs to be careful since the complexity and the amount of
the resulting FOLE formulas will grow rapidly, making the
input problem apparently much harder to solve.

The translated FOLE formulas are stored locally and
can be used for the further analysis. Furthermore, such
formally expressed input text can and should be extended
with additional knowledge in form of background knowledge
axioms. The additional axioms are formulated in FOLE and
integrated into the input problem. The integration of back-
ground knowledge will be discussed in detail in Section IV.

As an example here, the translation of the specified MRS
into FOLE for the hypothesis H from our example given
earlier in Section III-A produces the following formula with
a neo-Davidsonian event representation:

some(X6,and(
bird_n_1(X6),
some(X9,and(and(

named_r_1(X9),and(
location_n_1(X9),and(
london_loc_1(X9),
city_n_1(X9)))),
some(E2,and(

event_n_1(E2),and(and(
live_v_1(E2),
agent_r_1(E2,X6)),
in_r_1(E2,X9)))))))).

C. Inference Process

The goal here is to prove the logical relation between two
input texts represented formally by corresponding FOLE for-
mulas. We are interested in answering the question whether
the relation is an entailment, a contradiction, or whether
maybe the hypothesis H provides just new information with
respect to the text T (i.e., is informative, see Section I). To
check which type of a logical relation for the input problem
holds, we use two kinds of automated reasoning tools:

• Finite model builders: Mace 2.2 [33], Paradox 3.0 [34],
and Mace4 [35], and

• First-order provers: Bliksem 1.12 [36], Otter 3.3 [37],
Vampire 8.1 [38], and Prover9 [39].

bliksem

vampire

prover9

otter

Theorem provers

mace4

paradox3

mace2

Model builders

Inference Engines

Presupposition
Knowledge

Inference
Process
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control
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External Knowledge

Formulas
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FOLE

MRS to FOLE

WordNet

OpenCyc

...

YAGO

Logical

Calculation

Knowledge

Background

Knowledge
Axioms

Background

Extraction

Knowledge

Background

Figure 4. Module for logical inference with external inference machines
and background knowledge.

While theorem provers are designed to prove that a
formula is valid (i.e., the formula is true in any model),
they are generally not good at deciding that a formula is
not valid [40]. Model builders are designed to show that a
formula is true in at least one model. The experiments with

121

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-104-5



different inference machines show that solely relying on the-
orem proving is in most cases insufficient due to low recall.
Indeed, our inference process incorporates model building
as a central part of the inference process. Similar to [9],
[40], we exploit the complementarity of model builders and
theorem provers by applying them in parallel to the input
RTE problem in order to tackle with its undecidability more
efficiently. More specifically, the theorem prover attempts to
prove the input whereas the model builder simultaneously
tries to find a model for the negation of the input.

All reasoning machines were developed to deal with
inference problems stated in FOLE. They are successfully
integrated into our system for RTE. To this end, we use
a translation from FOLE into the formats required by the
inference tools. Furthermore, the user can specify via the
user interface which inference machines (i.e., which theorem
prover and which model builder) should be used by the
inference process. The tests have shown that the efficiency
and the success of solving a given RTE problem depend
much on the inference machines chosen for it.

D. User Interface
The results of the syntactic processing, semantic con-

struction, and logical inference like, e.g., HPSG and MRS
structures, FOLE formulas, models, proofs, integrated back-
ground knowledge, and other detailed information are pre-
sented to the user within a dedicated GUI. With its help,
one can further customize and control both the semantic and
logical analysis, e.g., choose the input text or the background
knowledge source, inspect the results of shallow-deep anal-
ysis, or select other inference machines.

IV. IMPROVING THE INFERENCE QUALITY

Many applications in modern information technology uti-
lize ontological background knowledge. This applies partic-
ularly to the applications from the Semantic Web, but also
to other domains like, e.g., information retrieval, question
answering, or recognizing textual entailment. The existing
RTE applications today use typically only one source of
background knowledge, e.g., WordNet [41] or Wikipedia.
However, they could boost their performance if a huge ontol-
ogy with knowledge from several sources were available. We
show here how more than one knowledge source can be used
successfully for RTE. In this paper, we mean by ontology
any set of facts and/or axioms comprising potentially both
individuals (e.g., London) and concepts (e.g., city).

The inference process needs background knowledge to
support its proofs. However, with increasing number of
background knowledge axioms the search for finite models
becomes more time-consuming. Thus, only problem-relevant
knowledge should be considered in the inference process.

A. Background Knowledge
Our RTE system supports the extraction of background

knowledge from different kinds of sources (see Figure 4). It

supplies problem-relevant background knowledge automati-
cally as first-order axioms and integrates them into the input
RTE problem. WordNet 3.0 is used as lexical knowledge
source for synonymy, hyperonymy, and hyponymy relations.
With WordNet we try to detect entailments between lexical
units from the text and the hypothesis. Axioms of generic
knowledge cover the semantics of possessives, active-passive
alternation, and spatial knowledge (e.g., that Tower Bridge
is located in London). YAGO [42] with facts automatically
extracted from Wikipedia and unified with WordNet is used
as a source of ontological knowledge. OpenCyc 2.0 [43]
can also be used as a background knowledge source. The
computation of axioms for a given problem is solved using
a variant of Lesk’s WSD algorithm [44].

In the following, we describe the idea we use to combine
individuals and concepts from WordNet with those from
YAGO in order to support RTE. Our integration technique is
composed of two steps. After the first-order representation
of the problem is computed and subsequently translated
into FOLE, the search for relevant background knowledge
begins. First, we list all predicates (i.e., concepts and indi-
viduals) from the FOLE formulas which can be used for the
search. In the current implementation, we consider as search
predicates S all nouns, verbs, and named entities, together
with their sense information (i.e., their readings) specified
by the last number in the predicate name, e.g., bird_n_1.
Having the search predicates, we try to find them in WordNet
and, by employing the hyperonymy/hyponymy relation, we
build a knowledge tree TK with leaves represented by the
concepts from the formulas, whereas inner nodes and the
root are coming from WordNet.

In Figure 5, we show a fragment of a knowledge tree
for {T,H} of our RTE problem from the beginning of
Section III. Here, each node represents at least one concept
or individual, whereas the directed edges correspond to the
hyponym relations between them, e.g., the named entity
london is a hyponym of the concept city. Note that in
the opposite direction they describe the hyperonym relations,
e.g., the concept city is a hyperonym of the named
entity london. Figure 5 depicts also one complex node
representing synonymous concepts live and inhabit.

It is crucial for the integration that the sense infor-
mation computed for the concepts and individuals during
the semantic analysis matches exactly the senses used by
external knowledge sources. This ensures that the semantic
consistency is preserved across the semantic and logical
analysis. However, this constitutes an extremely difficult task
which does not seem to be solved fully automatically yet by
any word sense disambiguation technique. Since in WordNet
but also in ERG the senses are ordered from most to least
frequently used, with the most common sense numbered
1, we take in the current implementation for semantic
representations generated during the semantic analysis the
most frequent concepts from ERG.
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location
n, 1

bird
n, 1

city
n, 1 n, 1

falcon

roof
n, 1

n, 1
object

event
n, 1

inhabit, v, 1

live, v, 1

n, 1
entity

tower_bridge
ne, 1

......

loc, 1
london

Figure 5. Example of knowledge tree for RTE. Here, v, n, loc, and ne
stand for verb, noun, location, and named entity, respectively, whereas the
numbers represent the sense information.

In the second step of our integration technique, we consult
YAGO about the predicates from S that were not found in
WordNet during the first step. If succeed, YAGO returns a
directed acyclic graph (DAG) GK with new concepts which
classify those concepts that were not recognized before.
Unfortunately, as a DAG, it cannot be integrated completely
into the knowledge tree TK . Our experiments have shown
that a knowledge graph, when represented as a tree, assures
that the set of background knowledge axioms, which will be
generated afterwards from that tree stays consistent (i.e., it
includes no contradictions). Thus, in order to preserve the
consistency and correctness of the results, we select for the
integration into the knowledge tree TK only those concepts
and relations from GK , which lay on the longest path from
the root to one of its leaves and which has the most common
nodes with the knowledge tree TK from the first step. This
heuristic can cause some loss of effectivity of the entire RTE
inference process, since some concepts which are relevant
for the RTE problem might not be integrated as background
knowledge into it. Nevertheless, because of its acceptable
performance while solving problems from the development
sets of the past RTE Challenge [4], we have decided to use
it as a good starting point for the further research.

After the background knowledge tree TK has been ex-
tended, the knowledge axioms are generated from it. We
generate axioms expressing the hyperonymy/hyponymy re-
lations (i.e., ontological relations is-a and is-not-a) and the
synonymy relations (is-eq) in TK . For the knowledge tree
given in Figure 5, the following axioms (here not a complete
list) can be generated.

∀x(city n 1(x) → location n 1(x))
∀x(event n 1(x) → ¬object n 1(x))
∀x(live v 1(x) ↔ inhabit v 1(x))

B. Presupposition resolution

Many words and phrases trigger presuppositions which
have clearly semantic content important for the inference

process. We try to represent some of them explicitly. Our
trigger-based mechanism uses noun phrases as triggers, but
it can be extended to verb phrases, particles, etc. After a
presupposition is triggered, the mechanism resolves it, and
integrates it as a new FOLE axiom into the RTE problem.
The automatic axiom generation is based on λ-conversion
and employs abstract axioms and a set with possible axiom
arguments. The axioms and their arguments are still part
of an experimental knowledge source (see Presupposition
Knowledge in Figure 4). Here is an example for an abstract
axiom which allows for a translation from a noun phrase
into an intransitive verb phrase:

λP [λR[λS[∀x1(∀x2(P@x1 ∧R@x2 ∧ nn r 1(x1, x2)
→ ∃x3(R@x3 ∧ ∃x4(S@x4 ∧ event n 1(x4) (1)
∧ agent r 1(x4, x3)))))]]].

If text T (expressed with FOLE formulas) contains a noun
phrase being a key for some entry in the set of possible
axiom arguments, then the arguments pointed by that key are
applied to their abstract axiom, and a new background axiom
is generated. For a complex noun phrase price explosion
with its semantic representation price explosion n 1, the
following arguments can be considered:

λx[explosion n 1(x)], λx[price n 1(x)], and
λx[explode v 1(x)],

which after being applied to the abstract axiom (1) produce
the following background knowledge axiom:

∀x1(∀x2(explosion n 1(x1) ∧ price n 1(x2)∧
nn r 1(x1, x2) → ∃x3(price n 1(x3)∧
∃x4(explode v 1(x4) ∧ event n 1(x4)∧
agent r 1(x4, x3))))). (2)

The presupposition axioms having complexity similar to (2)
are first combined with the existing background knowledge
axioms and finally integrated as background knowledge into
the input RTE problem.

V. CONCLUSION AND FUTURE WORK

In this paper, a new adaptable, linguistically motivated
system for RTE was presented. Its deep-shallow semantic
analysis, employing a broad-coverage HPSG grammar ERG,
was combined with a logical inference process supported
by an extended usage of external background knowledge.
The architecture of the system was given in detail and its
functionality was explained with several examples.

The system was successfully implemented and evaluated
in terms of success rate and efficiency. For now, it is still
impossible to measure its exact semantic accuracy as there is
no corpus with gold standard representations which would
make comparison possible. Measuring semantic adequacy
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could be done systematically by running the system on
controlled inference tasks for selected semantic phenomena.

For our tests, we used the RTE problems from the devel-
opment set of the third RTE Challenge [4]. Our system with
was able to solve correctly 64 percent of the RTE problems.
This is better than the most of the other approaches from
that RTE Challenge which are based on some deep approach
combined with logical inference. Unfortunately, it is still not
as good as the success rate of 72 percent obtained by the
best logic-based semantic approach given by [14]. This can
be explained, among other things, by a more extensive and
fine-grained usage of specific semantic phenomena, e.g., a
sophisticated analysis of named entities, in particular person
names, distinguishing first names from last names. This
shows, however, that extending our system with similar
techniques for more accurate treatment of specific semantic
phenomena should further improve its success rate.

Nevertheless, it is interesting to look at the inconsistent
cases of the inference process which were produced during
the evaluation. They were caused by errors in presupposition
and anaphora resolution, incorrect syntactic derivations, and
inadequate semantic representations. They give us good
indications for further improvements. Here, particularly the
word sense disambiguation problem will play a decisive role
for matching the set of senses of the semantic analyzers
with multiple, and likely different, sets of senses from the
different knowledge resources. Once tackled more precisely,
it should decisively improve the success rate of the system.

As being still work-in-progress, we plan to extend our
system with methods for word sense disambiguation, para-
phrase detection, and a better anaphora resolution within a
discourse. We consider also enhancing the logical inference
module with statistical inference techniques in order to
improve its performance and recall. Since the strength but
in some respects also the weakness of our system lies in
the difficulties regarding the computation of a full semantic
representation of the input problem (see, e.g., [45] for a good
discussion), it might be recommended to integrate into the
system some models of natural language inference which
identifies valid entailments by their lexical and syntactic
features, without full semantic interpretation like, e.g., the
one proposed by MacCartney and Manning [46].
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