
Secure Software Development – Models, Tools, Architectures and Algorithms

Aspen Olmsted

College of Charleston

Department of Computer Science, Charleston, SC 29401

e-mail: olmsteda@cofc.edu

Abstract— Secure software development is a process which

integrates people and practices to ensure application

Confidentiality, Integrity, Availability, Non-Repudiation, and

Authentication (CIANA). Secure software is the result of a

security- aware software development process in which CIANA

is established when an application is first developed. Current

secure software development lifecycles are simply old software

development lifecycles with security training prepended to the

traditional development steps and an incident response process

appended to the lifecycle. To solve our application cyber-

security issues, we need to develop the models, tools,

architectures, and algorithms that support CIANA on the first

day of a development project.

Keywords-Cyber-security; Software Engineering; CRM

I. INTRODUCTION

In this work, we investigate the problem of developing
software that is built to provide the security required in our
modern, connected world. Secure software development is the
process involving people and practices that ensure application
Confidentiality, Integrity, Availability, Non-Repudiation, and
Authentication (CIANA). Secure software is the result of a
security aware software development processes where
CIANA is established when an application is first developed.

Current secure software development lifecycles (SSDLC)
are just old software development lifecycles (SDLC) with a
security training prepended before the traditional
development steps and an incident response process append to
the end of the lifecycle. To solve our application cyber-
security issues, we need to develop the models, tools,
architectures, and algorithms that support CIANA on the first
day of a development project.

The organization of the paper is as follows. Section II
describes the related work and the limitations of current
methods. In Section III, we document student work from our
lab in the creation of algorithms and architectures that provide
consistency, availability, and partition tolerance for
distributed systems. Section IV looks at algorithms the lab has
developed to provide correctness guarantees for the
integration of heterogeneous systems. Section V explores our
solutions for authenticating autonomous processes and
securing the communication between them. Section VI
analyzes the lab’s solutions for securing code and data in an
operating system. In Section VII, we share our additions to
UML modeling to move the awareness of potential system
vulnerabilities to an earlier point in the software development
life-cycle. Finally, in Section VIII, we look at ways to reduce
the software development cost through the use of cloud
architectures. We conclude and discuss future work that needs
to be done to advance our algorithms, architectures, tools, and
modeling in Section IX.

II. RELATED WORK

For many years, software engineering firms followed an
SDLC that consisted of five steps: requirements gathering,
solution design, implementation, testing, and maintenance.
Many new SSDLCs have evolved with the goal of helping
software developers write software with fewer
vulnerabilities. Microsoft created the Security Development
Lifecycle [1] as a recommended solution to a more SDLC. In
the Microsoft recommendations, a preliminary training phase
is introduced to teach users to not only distrust data from
external sources but also to understand typical vulnerabilities
found in software applications. In the testing phase, they
recommend using penetration testing software to ensure
typical secure programming mistakes are caught. At the end
of the development lifecycle, they recommend implementing
a response system to address the software once a vulnerability
has been found. Our work attempts to be more proactive in
developing the models, tools architectures, and algorithms
the developers need to guarantee vulnerabilities are
discovered and addressed earlier in the development
lifecycle.

Over the last decade, many books have been written to
help developers understand the technical programming
solutions to two standard problems:

1. SQL Injection – A vulnerability in an application
through which a malicious user can execute
malicious SQL statements against the
application's back end data store.

2. Cross Site Scripting – A vulnerability in an
application through which a malicious user can
execute client side JavaScript inside a page of
the application.

One such book is Edmund's recent book Securing PHP
Applications [2]. In each of these books, algorithms which
sanitize user input that may be coming from user forms,
cookies, or even the back-end database are explained in
detail. The basic premise these books espouse is trust no-one.
We attempt to give the developer some trust in addition to
their programming repertoire already consisting of the
models, tools, architectures, and algorithms to guarantee
security in the development process.
Walden, Doyle, Lenhof and Murray [3] studied whether the
variation in vulnerability density is greater between languages
or between different applications written in a single language
by comparing eleven open source web applications written in
Java with fourteen such applications written in PHP. To
compare the languages, they created a Common Vulnerability
Metric (CVM) which represents the count of four
vulnerability categories common to both languages. Our work

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

here looks to find common vulnerabilities in enterprise
applications and provide solutions to those vulnerabilities.

III. DISTRIBUTED CONSISTENCY, AVAILABILITY AND

PARTITION TOLERANCE

Modern web-based transaction systems need to support

many concurrent clients consuming a limited quantity of

resources. These applications are often developed using a

Service Oriented Architecture (SOA). SOA supports the

composition of multiple web services (WSs) to perform

complex business processes. SOA applications provide a

high-level of concurrency; we can think of the measure of

concurrency as the availability of the service to all clients

requesting services. Replication of these services and their

corresponding resources increases availability.

Unfortunately, designers sacrifice consistency and durability

to achieve this availability. The CAP theory [4] [5] states that

distributed database designers can achieve at most two of the

following properties: consistency (C), availability (A), and

partition tolerance (P). Distributed database designers often

relax the consistency requirements under its influence.

Our proposed system [6] has three benefits: it decreases

the risk of losing committed transactional data in the event of

a site failure, increases consistency of transactions, and

increases the availability of “read” requests. The three main

components of our proposed system are 1) Synchronous

Transactional Buddy System, 2) Version Master-Slave Lazy

Replication, and 3) Serializable Snapshot Isolation Schedule.

Our solution [6] adopts the WS-Farm (WSF) architecture

(Figure 1) to allow the system to provide the features iterated

above. Transactions arrive at the dispatcher at the TCP/IP

level 7 allowing the dispatcher to use application specific data

for transaction distribution and buddy selection. The

dispatcher also receives the requests from clients and

distributes them to the WS clusters which each contain a load

balancer, a single database, and replicated services. The load

balancer receives the service requests from the dispatcher and

distributes them among the service replicas. Within a WS

cluster, each service shares the same database, and database

updates among the clusters are propagated using lazy

replication propagation [6].

This method of propagation is vulnerable to a loss of

updates in the event of a database server failure, though [6].

If a server failure occurs after the transaction has committed,

but before the replica updates are initiated, the updates are

lost. To guarantee data persistence even in the presence of

hardware failures, we propose to form strict replication

between pairs of replica clusters “buddies.” In this method of

replication, at least one replica in addition to the primary

replica is updated and, therefore, preserves the updates.

After receiving a transaction, the dispatcher picks the

two clusters, chosen by versioning history, to form the buddy-

system. The primary buddy (b1) receives the transaction

along with its buddy’s (b2) IP address. The primary buddy

(b1) becomes the coordinator in a simplified commit protocol

between the two buddies. Both then buddies perform the

transaction and commit or abort together. The dispatcher

maintains metadata about the freshness of data items in the

different clusters in addition to incrementing the version

number for each data item after it has been modified. Any

two service providers in two different clusters with the latest

version of the requested data items can be selected as a

buddy. Note, that the databases (DBR) maintained by the two

clusters must have the same version of the requested data

items but may not for the other data items.

IV. HETEROGENEOUS SYSTEM INTEGRATION

Enterprise transaction processing systems support several

different use cases to fulfill the entire set of requirements of

an organization. An organization will partition an enterprise

system at the department level for several different reasons.

Two of these reasons are to simplify the functional model and

to enable geographic proximity to the users entering the

transactional data.

The result of the departmental partitioning is a

duplication of data across departmental systems, and the

management of this duplication is a difficult problem. Often,

an organization will enter this data manually in each local

system. The organization is then forced to tolerate the data

inconsistencies that come from the difference not only in

human interpretation of the source data but also transcription

differences.

In our previous work [7], we investigated the problem of

providing guarantees for heterogeneous system integration.

We proposed a set of strong properties: Fresh, Atomic,

Consistent and Durable (FACD), which will deliver correct

results when held in the integration transaction. The strong

properties support an integration technique called

Continuous, Consistent, Extract, Translate, and Load

(CCETL). CCETL consumes UML class diagrams to identify

transactional membership of the data elements that make up

the integration. CCETL transforms the hierarchical

relationships using a version of the topological sort that

maintains a navigation path from the original UML classes.

Figure 1. WS Farm with Buddy System.

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

The CCETL approach guarantees ACID properties up to the

level of snapshot isolation between systems supporting a

continuous integration.

The example application for CCETL used a collection of

Zoho web-service and a back-office ERP solution for

Cultural Arts Organizations named Tessitura [8]. Tessitura

transactions include patron donations and ticket purchases.

The Zoho web services [9] provide a timestamp on every

entity record modification. This timestamp is used to identify

all records changed since the last execution of the integration.

For this project, we choose to use a sub-model of the Zoho

CRM service. Zoho CRM is a software-as-a-service product

for managing customer data such as biographical data,

emails, phone calls, etc. We choose Zoho for the project

because the Zoho CRM product provides web services that

allow user-defined data queries against all the available entity

objects. Figure 2 shows a UML diagram of a subset of the

web-services provided by Zoho. Each web service represents

a coarse-grained entity object. The diagram shows the

navigation knowledge of each web-service with respect to

other web services. The associations form a directed

cyclical-graph.

There are two ways to identify transactional data:

intercept original transactions synchronously or reform

transactions asynchronously from the original transaction.

To intercept the original transaction synchronously, we need

an application hook to inform the integration when a

transaction is taking place. An example of this application

hook is available in Oracle Forms [10]. Synchronous

integration increases the latency of the original transaction.

To reform a transaction asynchronously from the original

transaction, we need to identify what data changed in the

original transaction. To identify which records make-up a

transaction, CCETL includes all associated records modified

along with the parent record. This identification requires an

ordering of the original UML diagram Figure 2. In our

previous work [7] we provide an algorithm that de-cycles and

sorts the original graph.

Figure 3 shows a version of the original UML diagram

from Figure 2 with cycles removed and sorted. The algorithm

inserts mock objects when there are identical inbound edges

into a node. The addition of the mock objects reduces the

branches in the path of the UML graph.

We ran the integration two ways: integrate on a record

by record change (Record Integration) and use CCETL.

(Snapshot Integration). We ran the two integration

techniques with transaction sizes in blocks of 100 up to 1000.

The snapshot isolation method provided much higher

throughput and provided isolation guarantees at snapshot

isolation. The record integration method was slower and only

provided isolation at the read committed isolation level. The

higher latency and lower consistency stems from dealing with

a single record at a time.

V. PROCESS AUTHENTICATION AND COMMUNICATION

Authentication is used to verify that a specific user or
process is who they say they are and is one of the major
domains in cyber security research. Unfortunately,
autonomous process authentication is a neglected segment of
this domain. The autonomous processes are often native
operating system services, but sometimes the autonomous
process is a part of a larger enterprise application where the
process needs access to different resources unavailable to the
user who is operating the application. In this case, the process
needs different credentials. The resources protected fall into
three categories: operating system files, data and process
execution. Operating system files are traditionally secured
based on the user logged into the operating system.
Permissions can be discreetly assigned to the user or inherited
from a user’s group membership. Data permissions are
normally managed by a relational database system. In the
database system, access is granted to tables, columns and
tuples in the database based on the user’s credentials or the
user’s group membership. The permission to launch

Figure 3. Acyclic Sorted UML Class Diagram.

Figure 2. Cyclical UML Class Diagram.

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

processes is often guarded by the operating system based on
the logged in user and the user’s group membership.

There are four standard ways we authenticate users:

• Something you know – In this form of
authentication, a user or process must know a
secret. The typical secret used in authentication
is a combination of a user and a password.

• Something you have – In this form of
authentication, a user or process must have
access to a physical entity. The typical example
is a token that is sent to an SMS number. If the
user has their registered phone and can receive
SMS messages then only they can enter back the
one time generated token. This form of
authentication is not typically used with
autonomous processes on servers because an
operator with a mobile device is not typically on
the server’s console. Autonomous processes on
mobile devices with SMS service can use this
technique to validate that a user has the phone,
but a server process does not typically have SMS
support. If they do have SMS support, then the
process is typically using a virtual SMS service
which would no longer be something to which
the process has access.

• Something about you - In this form of
authentication, a unique characteristic is used to
validate access. Examples include retina scans,
fingerprint readers, and facial recognition. This
form of authentication when dealing with a
human operator tends to be the strongest form of
authentication, but it is not used with process
authentication as processes do not have these
characteristics.

• Someplace you are – In this form of
authentication, the address where the user or
process is located controls access to the
resources. Examples in this category include a
range of IP addresses or the geographic longitude

and latitude points where a machine may be
operating.

In our previous work [11], we add autonomous process
authentication in a limited environment. To add “something
about you” security for an autonomous process, we
investigated verifiable properties of an application. These
properties need to validate the process is not a malicious user
or a different process posing as the valid process. In this work,
our solution uses the security certificate used to code-sign an
application that is listed in the Mac Apple Store [12]. This
certificate is not applied to the application for the validation
purpose we propose, but it works quite nicely. The certificate
is signed by Apple to ensure that no malicious user has
changed the application code. Unlike in PKI, where a
certificate can be signed by many different trusted third
parties, the Mac Apple Store certificates are only signed by
Apple, Inc. Algorithm 1 shows the algorithm we use to extract
the certificate and validate the application. The current
application requires a native Mac OS X application signed by
the Apple Mac Store. Our service is a database service written
as a native Mac OS X application. When the 3rd party
application forks to our service app, we can retrieve the
process id of the external application. With the process id, we
can determine the operating system path of the application that
is calling our service. From this path, we can validate the
certificate. The Mac OS X operating system includes a utility
called code-sign [13] that allows you to retrieve and verify the
signature on an application. Our algorithm uses this utility in
the final step to verify the process is the process it says it is.
Figure 4 shows the flow of the algorithm in a UML sequence
diagram. Our current work looks to leverage this work for
inter-process communication.

VI. SECURE DATASTORE AND CODESTORE

In [11], we provide a secure data store that offers
operations to an authorized client application. We also
provide an administration application that can call a method
to add an application’s credentials. This tool allows an
administrator to add other applications with their certificates
to the valid applications list. We sign the code for our
administration application with the Mac App Store and hard
code the certificate for the administration application into our
service provider application. This hard coding enforces at
installation time that the only application authorized to
connect to the data store provider is the administration tool
itself. Using the administration tool, we can grant access to
the service for other applications. One of the services
provided is the ability to add human user credentials that can

Figure 4. Sequence Diagram of Application Authentication Process.

Algorithm 1. Process Authentication Algorithm.

3rd Party App Forks to Service App

Service gets parent pid

Service uses parent pid to get parent path

Service gest parent cert

Cert validated against valid apps

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

authenticate to the application. The addition of these
application credentials allows data to be secured so only a
specific application can get access or so a specific human user
can gain access or by the combination of both the application
and a user authenticated in the application.

VII. SECURE MODELING

The focus of our previous research work in secure

modeling is to investigate the problem of modeling

vulnerable partitions of a software application in the design

and analysis phase of the software development lifecycle.

We focus on two key areas: providing partition tolerance in

cloud-based applications while maintaining application data

integrity [14] and modeling non-functional requirements

using standard UML design tools. Our contribution in this

research field is to experiment with not only modeling

application domain specific NFRs that are used in enterprise

application architectures but also mapping the mode to

application code that will enforce the requirement. Our

hypothesis was that we could use standard modeling tools,

traditionally used to model functional requirements, and

extend them to allow modeling and code generation of NFRs.

We modeled the NFRs using the extensibility mechanisms

built into the standard modeling notations of UML and OCL

to specify those NFRs. The models are exported to the XML

standard XMI to enable our tooling to read the model. Java

code is then generated to enforce each NFR by parsing the

XMI of the model, matching the stereotype or OCL constraint

to a Java fragment and producing the code.

In the first iteration of our work, different scalar values

were represented by different stereotypes. For example, to

represent different quantities of concurrent users, we had to

create different stereotypes to represent each specific

quantity, such as “1000 concurrent users” and “500

concurrent users”. Though this method allowed us the

granular control to specify specific NFR requirements, there

are two flaws. First, there is no way to group stereotypes into

categories in standard UML notation. The stereotype only

method does not allow any semantic relationship between the

two stereotypes that both represent quantities of concurrent

users. A developer would need to know the relationship to

avoid making an error when switching between values, thus

causing the semantics of the NFR to change completely.

Second, on a large enterprise development project, the

number of stereotypes required to represent all the different

combinations of NFRs and scalar measurements would

become unwieldy.

The solution we developed to solve both of these two

challenges combines OCL and mock objects in the UML

class diagrams. Specifically, we insert mock objects that

provide new attributes to represent the scalar values

measured in the enforcement of the NFR into the UML class

diagram inheritance tree. The mock objects are

generalizations that specify attributes that are inherited by the

real façade objects. Once the new attributes are added

through inheritance, we can specify standard OCL constraints

to express the NFR and the appropriate measurement. Figure

5 shows a design using the mock multi-inheritance to enforce

two non-functional requirements (“Low Latency” and

“Concurrent Users”). Java code is generated from the mock

objects using the single inheritance the programming

language supports.

VIII. PLATFORM, EFFORT, AND SECURITY

With the advent of cloud computing, Platform-As-A-
Service (PAAS) has become a way that a developer can
leverage pre-built components to reduce the time to market.
The goal of PAAS is to allow the developer to focus on the
development of a solution for the business functions and not
software functions that span many application domains. A
good example of PAAS is force.com where the developer is
provided many of the essential parts of an application out of
the box. In [15], we evaluate the programming effort savings
from leveraging different PAAS providers. In [16] we
investigate the technical debt arising from software engineers
ignoring the security vulnerabilities while developing
software. In both works, we leverage COCOMO II [17] to
estimate the development costs to track code leverage and
technical debt accrued.

The 21st century has been dominated by bytecode
compiled languages that have runtime engines that execute
the code on different hardware platforms. The Java Runtime
Engine (JRE) and the Microsoft .NET Runtime Engine
(.NET) are the most dominant examples of the bytecode
engines that free the developer from thinking about the
underlying hardware. PAAS is the next evolution in freeing

Figure 5. UML with Multi-Inheritance.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

up the developer's time so they can focus on the problem they
are trying to solve instead of the technical plumbing required
for the solution.

A hypervisor is computer software, firmware, or
hardware, which executes virtual machines. A computer on
which a hypervisor is called a host machine and each virtual
machine is called a guest machine. Type 1 hypervisors run
directly on top of hardware. Type 2 is a hypervisor that
operates as an application on top of an existing operating
system. If you were deploying an application to a Java PAAS
today, it would be in a JRE running on a Type 1 hypervisor.
OSv [18] is a JRE that can execute directly on a Type 2
hypervisor. Not having an extra operating system layer
removes all the security vulnerabilities found in the OS layer
below the JRE. Developing a solution that executes in OSv
will be naturally more secure than other PAAS providers due
to the fewer layers of potential exploits.

IX. CONCLUSION AND FUTURE WORK

In this paper, we described the work done in our lab to

provide the missing modeling components, development

tools, application architectures, and algorithms to increase

the security guaranteed in software and improve the

estimation of the effort in the SDL. Our current solutions are

examples which prove that robust commercial solutions can

be developed. Our future work includes developing a model-

driven development solution that can be deployed on a secure

bytecode runtime engine. The runtime engine should be

capable of running directly on a hypervisor without the

insecure extra layer of a traditional operating system.

REFERENCES

[1] Microsoft, Inc., "What is the Security Development

Lifecycle ?," 2017. [Online]. Available:

https://www.microsoft.com/en-us/sdl/. [Accessed 26 March

2017].

[2] B. Edmunds, Securing PHP Applications, New York:

Apress, 2016.

[3] J. Walden, M. Doyle, R. Lenhof and J. Murray, "Java vs.

PHP: Security Implications of Language Choice for Web

Applications," in Conference: Engineering Secure Software

and Systems, Second International Symposium, Pisa, Italy,

2010.

[4] S. Gilbert and N. Lynch, "Brewer’s conjecture and the

feasibility of consistent, available, partition-tolerant web

services," SIGACT News, vol. 33, pp. 51-59, 2002.

[5] D. Abadi, "Consistency tradeoffs in modern distributed

database system design: Cap is only part of the story,"

Computer, vol. 45, pp. 37-42, 2012.

[6] A. Olmsted and C. Farkas, "Buddy System: Available,

Consistent, Durable Web Service Transactions.," Journal of

Internet Technology and Secured Transactions (JITST), vol.

2, no. 1/2, pp. 131-140, 2013.

[7] A. Olmsted, "Heterogeneous System Integration Data

Integration Guarantees," Journal of Computational Methods

in Science and Engineering (JCMSE), vol. 17, no. 51, pp.

S85-S94, 2017.

[8] Tessitura Network. Inc, "Tessitura Software," 2017.

[Online]. Available:

http://www.tessituranetwork.com/en/Products/Software.asp

x. [Accessed 13 August 2017].

[9] Zoho Corporation Pvt. Ltd., "Zoho CRM API," 2017.

[Online]. Available: https://www.zoho.com/crm/help/api/.

[Accessed 13 August 2017].

[10] S. C. Corp., Oracle9iDS Forms II: Customize Internet Apps

Vol B, Sideris Courseware Corp., 2003.

[11] A. Olmsted, "Native Autonomous Process Authentication,"

in Proceedings of World Congress on Internet Security 2016

(World-CIS 2016), London, UK, 2016.

[12] Apple Inc, "The Mac App Store," Apple Inc, [Online].

Available: http://www.apple.com/osx/apps/app-store/.

[Accessed 01 June 2016].

[13] OS X Daily, "How to Show & Verify Code Signatures for

Apps in Mac OS X," OS X Daily, [Online]. Available:

http://osxdaily.com/2016/03/14/verify-code-sign-apps-mac-

os-x/. [Accessed 01 June 2016].

[14] A. Olmsted, "Modeling Cloud Applications for Partition

Contingency," in Proceedings of the 11th International

Conference for Internet Technology and Secured

Transactions (ICITST-2016), Barcelona, Spain, 2016.

[15] A. Olmsted and K. Fulford, "Platform-As-A-Service

Application Effort Estimation," in Proceedings of The

Eighth International Conference on Cloud Computing,

GRIDs, and Virtualization (Cloud Computing 2017),

Athens, GR, 2017.

[16] C. Brill and A. Olmsted, "Security and Software

Engineering: Analyzing Effort and Cost," in Proceedings of

the The Third International Conference on Advances and

Trends in Software Engineering , Venice, IT, 2017.

[17] R. Madachy, "COCOMO II - Constructive Cost Model,"

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 10 02

2017].

[18] Cloudius Systems, "OSv Designed for the Cloud," 2016.

[Online]. Available: http://osv.io/. [Accessed 25 March

2017].

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

