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Abstract—Today, interconnected embedded devices are widely
used in the Internet of Things, in sensor networks or in security
critical areas such as the automotive industry or smart grids.
Security on these devices is often considered to be bad which is
in part due to the challenging security testing approaches that
are necessary to conduct security audits. Security researchers
often turn to firmware extraction with the intention to execute
the device firmware inside a virtual analysis environment. The
drawback of this approach is that required peripheral devices are
typically no longer accessible from within the Virtual Machine
and the firmware does no longer work as intended. To improve
the situation, several ways to make the actual peripheral devices
accessible to software running inside an emulator have been
demonstrated. Yet, a persistent problem of peripheral device
forwarding approaches is the typically significant slowdown inside
the analysis environment, rendering resource intense software
security analysis techniques infeasible. In addition, security tests
are hard to parallelize as each instance would also require its
own embedded system hardware. In this work, we demonstrate
an approach that could address both of these issues by utilizing
a cache for peripheral device communication in combination
with runtime program state approximation. We evaluated our
approach utilizing well known programs from the GNU core
utilities package. Our feasibility study indicates that caching of
peripheral device communication in combination with runtime
program state approximation might be an approach for some
of the major drawbacks in embedded firmware security analysis
but, similar to symbolic execution, it suffers from state explosion.

Keywords–Embedded Systems; Security Analysis; State Explo-
sion; Program Slicing; Virtual Machine Introspection.

I. INTRODUCTION

The widespread use of embedded systems in security criti-
cal environments calls for better security testing techniques.
However, testing embedded system firmware in its native
environment imposes severe restrictions. Embedded systems
can often be interfaced over debugging interfaces such as JTAG
(Joint Test Action Group) or serial communication, but they
typically only provide very basic debugging functionalities
insufficient for more powerful security analysis techniques
based on dynamic instrumentation. A possible solution to these
problems is to create a VM (Virtual Machine) that emulates
the entire embedded system. Since only the most common
hardware is emulated by existing emulators, such as QEMU,

real world embedded devices may require implementing ad-
ditional peripheral device emulators. Yet, extending a VM
with peripheral devices can not only be too time consuming
for a resource constrained embedded security audit, but the
information on the internals of these peripherals might not
be available in the first place. Ultimately, this renders the
emulation based approach infeasible in many cases. Previ-
ous work [3, 10] showed how peripheral devices can be
transparently connected to a VM. This allows the embedded
system firmware to run inside an emulator as if it were
running on the original hardware with the peripheral devices
directly attached. The extracted system firmware can thus
be inspected outside its original system environment. The
drawback of the peripheral device forwarding approach is
the typically significant slowdown of device communication
and the lack of possibilities to parallelize slow analysis runs
or to leverage snapshots in presence of external peripheral
device states. Since typical security testing techniques such
as fuzz testing are highly repetitive in nature, in this work, we
evaluate an approach utilizing caching of peripheral device
communication in combination with runtime program state
approximation. Our approach could ultimately render existing
dynamic firmware security analysis techniques more powerful
by enabling functions such as snapshotting, test parallelization
or testing without physical access to the embedded system.
We show that the challenge is not the caching itself but the
sufficiently accurate approximation of the embedded program
state to decide which peripheral device response in the cache
needs to be returned to the firmware under test. We address
this problem with runtime program state approximation and
show that, similar to symbolic execution, the approach suffers
from state explosion. Specifically, the contributions presented
in this paper are as follows:

• We present a peripheral device caching approach for
embedded security testing.

• We present a state variable detection heuristic allowing
runtime program state approximation as key to peripheral
device communication caching.

• We evaluate the feasibility of our approach with programs
from the GNU core utilities and show that it might
be usable to address persistent drawbacks in embedded
firmware security analysis in the future.
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The remainder of this paper is organized as follows. Section
II provides an overview of related work. In Section III, we
explain how peripheral devices are typically accessed from
within an embedded operating system and describe why these
devices are a challenge for current embedded system security
testing methods. In Section IV, we present our peripheral
caching approach leveraging runtime program state approxi-
mation which is described in Section V. The results of our
feasibility study are presented in Section VI. The conclusions
and suggestions on further work can be found in Section VII.

II. RELATED WORK

In previous work, at least two different peripheral device
forwarding approaches have been implemented. In [10], Zad-
dach et al. presented the Avatar framework allowing existing
tools such as the QEMU emulator or symbolic execution tools
to be connected to embedded target systems. Based on memory
mappings, their system can forward peripheral device access
from the emulator to the corresponding memory region of the
peripheral device on the target embedded system. Similarly,
Kammerstetter et al. presented the PROSPECT framework [3],
an operating system centric approach that forwards peripheral
device accesses from within the kernel in the VM to a stub
on the embedded target device via a network connection.
In addition to peripheral device communication forwarding,
Koscher et al. presented SURROGATES [6], a system that
uses Field Programmable Gate Arrays (FPGAs) to speed up
the connection between the forwarding system (i.e., Avatar or
PROSPECT) and the embedded hardware itself. In contrast,
our work does not focus on the peripheral device forwarding
techniques themselves, but instead adds a peripheral device
communication caching layer in between the VM and the
target device. We thus aim to simplify embedded security
testing by enabling powerful mechanisms such as snapshotting,
parallelization or testing without the analysis environment
being connected to the real embedded system. The concept
underlying our caching heuristic is related to the problem of
program slicing where our peripheral caching system identifies
states of the program slice that deal with peripheral hardware
access. In general, program slicing typically focuses on source
code and has been broadly covered by Weiser et al. [9],
Korel et al. [5], Frank Tip [8] and Binkley et al. [1]. More
recently, Kiss et al. [4] and Cifuentes et al. [2] also covered the
problem of slicing binary executables. Considering the work
on binary slicing, our cache heuristic is loosely related as the
cache needs to identify states in a program slice based on the
runtime environment of the process. We thus aim at identifying
individual states in a program slice of the running process
without extracting the whole program slice.

III. PERIPHERAL DEVICE ACCESS

By leveraging peripheral device forwarding, medium to
large scale embedded systems can be analyzed for security
vulnerabilities. Within this work, we exemplary focus on
embedded systems that utilize Linux on a MIPS architecture
such as routers or Cyber Physical System (CPS) components.
These systems are typically composed of a System-on-Chip
(SoC) containing a processor, ROM, SRAM and I/O Con-
trollers. The I/O Controllers are used to connect the SoC
to external components such as DRAM, flash memory or
peripheral devices (see Figure 1). Depending on the embedded

system use cases, connected external peripheral devices are
often customly designed by system manufacturers and can
range from simple sensors and actuators to complex modules
such as communication interfaces or security modules.

Figure 1. Typical Embedded System Hardware.

A. Challenges in Embedded System Security Testing
The security of embedded systems can be tested in several

ways. The manufacturer of an embedded system typically has
very detailed information about all components within the
system and can thus resort to techniques such as whitebox
security auditing and source code security analysis. Embedded
systems often provide JTAG or serial console access allowing
developers to access the running system. Depending on the
specific implementation, these interfaces can provide a varying
range of device access ranging from simple status readout to
full dynamic system analysis. If the embedded system does
not already provide tools for dynamic system analysis, the
tester may be able to install necessary tools via an exposed
debugging interface. However, embedded systems are typically
resource constrained and tailored to a specific task. Without the
resources to run additional software like debuggers on the sys-
tem, dynamic analysis on the device itself is often infeasible.
In addition, the operating system kernel may be tailored to
the specific use case of the system with debugging or system
analysis features stripped to reduce hardware requirements and
thus production costs. Whenever dynamic security analysis
on the embedded system is not feasible, analysts typically
aim at extracting the firmware from the device for further
investigation. This can either involve static analysis techniques
on the firmware with its well known limitations [7], as well
as dynamic analysis approaches utilizing debugging interfaces
such as JTAG or VM emulation. At this point, the challenge
arises that embedded systems typically make extensive use
of peripheral devices that are typically not available from
within the VM. The analyst thus needs to resort to peripheral
device forwarding frameworks such as Avatar or PROSPECT
that have limitations on their own. Specifically, forwarding
peripheral device communication is typically impeded by a
significant slowdown and a lack of possibilities to parallelize
slow analysis runs as each testing instance would require its
own connected embedded target system.

B. Communication with Peripheral Devices
On UNIX systems such as Linux, peripheral devices are

accessible via system calls that are handled by the kernel which
in turn uses device specific hardware drivers for the actual
device communication (Figure 2). In our test environment, the
peripheral devices are represented as character devices. De-
pending on which commands the device driver supports, a user
space program with the right permissions can thus access these
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devices with system calls such as open, read, write or
close. To enable dynamic analysis on an otherwise resource
constrained system, we utilize the PROSPECT framework [3].
The Linux kernel and all encompassing software running on
the system are extracted from the embedded system and moved
into an emulator such as QEMU.

Figure 2. Typical Embedded System Software Stack.

To allow programs in the VM to communicate with the periph-
eral devices in a way similar to the original embedded system,
PROSPECT replaces the embedded system software on the
original hardware with a server stub that forwards all device
communication over a network connection to the peripheral
devices. We thus tunnel all device communication from the
VM to the peripheral devices via a network connection such
as TCP/IP over Ethernet. This allows us to run the embedded
system software inside the analysis environment and thus en-
ables the use of resource intense analysis techniques. Although
the analysis environment typically provides significantly more
system resources such as file system space, CPU speed or
RAM, previous research showed that due to the peripheral
device forwarding [3] most device communication will be
significantly slowed down. Besides, another drawback is that
each VM will require a dedicated set of embedded system
hardware.

IV. CACHING PERIPHERAL DEVICE COMMUNICATION

Considering security testing techniques such as fuzz test-
ing, tests are typically highly repetitive and focused on very
specific (i.e., security critical) code regions in the firmware.
Triggered by each of those very similar test cases, the firmware
of the embedded system performs the very same communica-
tion actions with its peripheral devices over and over again. For
instance, consider a Real Time Clock (RTC) peripheral device
that would be queried by the embedded firmware each time a
network packet is received. Although the security analyst might
only target the network packet handling code in the firmware
with the fuzz tester, the peripheral device communication to
the RTC would still need to be carried out as otherwise the
firmware would stop to function and could not be tested. As
long as the values returned from the RTC allow the firmware
to continue its normal execution, it is not necessary that the re-
turned values are actually correct. Although two subsequently
read timestamps should represent an amount of time that has
passed between the successive reads, the functionality of the
firmware during the focused fuzz tests will in most cases not
be impeded by the fact that the time itself is not correct. By
adding a peripheral device communication cache between the
analysis environment and the embedded system, the repetitive
device communication actions could be stored so that during
the highly similar test cases valid device responses can be
served from the cache. Ultimately, this would enable very

powerful supporting technologies such as snapshotting, parallel
testing or even testing without the embedded system attached.

A. Caching Strategies
In the first step, we implemented a cache between the

PROSPECT driver and its stub on the target device (Figure
3). For each peripheral device interaction, the cache receives
the following information:

• Process Id (PID) and Thread Group Id (TGID)
• Name of the peripheral device
• Command type and command data

When the cache receives a command, it has to decide between
two options:

1) Cache hit - An appropriate device response is already
in the cache. The cached response is returned to the
program without querying the actual device.

2) Cache miss - The cache has not stored a suitable device
response. In this case, the cache first needs to bring
the hardware into the state it would normally be before
this request. This is done by resetting the hardware and
replaying all communication that the requesting program
performed until this point. The approach can thus forward
the new command to the peripheral device, store the new
reply and forward it to the VM. This means that the cache
needs to retain information not just about the commands
and their replies, but also about the previous command
history for each VM.

The main challenge is to find a strategy that can be applied to
decide whether for a specific firmware program state a valid
peripheral device response is already in the cache. We explored
several strategies and describe them in the following:

1) Choosing Responses by Command: Very simple devices
may be cached by command. To do so, the device must either
be stateless, or the device’s state must be deducible from
the command. For example, if the device is a simple switch
that is only controlled by an open and close command, the
cache does not need any information other than the command
itself to react accordingly. For instance, whenever the cache
receives a control request to turn on the switch it could
just return the cached response confirming that the switch
has been turned on. However, as soon as a single control
command can return different responses this approach is no
longer applicable. An example where this approach would not
work is the above mentioned RTC module which would return
a different timestamp value for every read command.

2) Choosing Responses by Command and Command His-
tory: An improved strategy is to store information about the
previously issued commands to a peripheral device. Based
on the command history, the cache can decide if a suitable
device response is already in the cache or not. A simplified
deterministic example could be a program that reads from a
peripheral device representing an incrementing counter with an
initial reset. After reset, the program would read continuously
increasing counter values (i.e., 1, 2, 3, etc.) on each execution.
The read command itself may look the same, but depending on
which and how many commands were issued to the peripheral
device before, the replies to each command need to be different
for every call. If the cache can learn a sufficient amount
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Figure 3. Embedded System Testing Utilizing PROSPECT with an Intermediate Cache.

of requests and replies from the first training execution, it
can replay the answers every subsequent time the program
is executed. The problem with this strategy is that even
if the behavior of the peripheral device is deterministic, it
becomes insufficient as soon as multiple threads access the
same device. In this case, the thread scheduler will cause a
different execution order of threads for the same input and
the behavior from the perspective of the cache will no longer
be deterministic. Since the cache would need to consider all
possible thread execution orders to respond to future requests,
the strategy quickly becomes ineffective with an increasing
amount of program indeterminism. Listing 1 shows an example
where two threads cause the mentioned problem by accessing a
temperature sensor and a communication interface at the same
time.

1 def Thread1():
2 while(True):
3 temp = readTemperature()
4 if (temp > max):
5 sendMessage("High temperature")
6 sleep(0.1)
7

8 def Thread2():
9 while(True):

10 statusMsg = getStatusMessage()
11 statusMsg += readTemperature()
12 sendMessage(status)
13 sleep(2)

Listing 1. Threading Example with Read-Loop.

3) Choosing Responses by Program State Approximation:
A more advanced strategy is to find a heuristic to identify
abstract program states reflecting the current position within
the program flow. When program execution is started, the
program typically makes use of resources such as the CPU
or stack memory. We could thus derive a set of relevant
CPU registers (i.e., the instruction register, the stack pointer,
the general purpose registers) and use this information to
determine in which state the program currently resides in.
Whenever a peripheral device is accessed (e.g., with a read
system call), we use the program state to determine whether
there is already a known peripheral device response in the
cache. If this is not the case, we forward the peripheral
device communication from the analysis environment to the
real system and cache the response for later use. However,
considering typical program constructs such as a loop reading
a temperature value (Listing 1), it is very likely that the CPU
registers will be identical within the readTemperature()
function at the call site of the read system call for different
loop iterations. It is thus necessary to include the program stack
into the state computation so that the state of the outer function
will be considered as well. However taking the stack memory
into account, determining the program states gets much more

challenging as it is no longer clear which memory regions are
relevant with regard to the peripheral device communication. If
the state approximation granularity is too low, many irrelevant
memory regions will influence the program state approxima-
tion and different program states will be derived for the same
peripheral device communication action (state duplication). As
a result, most of the device accesses would be cache misses.
In contrast, if the granularity is too high, we would get wrong
cache hits and the program would receive invalid peripheral
device responses. In the following, we present the runtime
program state approximation approach we took and the results
we were able to obtain with it.

V. RUNTIME PROGRAM STATE APPROXIMATION

On an Operating System (OS), the program state can be
determined through its allocated memory (i.e., stack and heap),
the CPU registers and handles received from the OS kernel
(e.g., file handles). However, especially considering binary
executables where the source code is not available, determining
which variables need to be considered during the determination
of the program state is considered to be a hard problem related
to program slicing [2, 4]. Since it would not be feasible to
deterministically detect exact program states, we implemented
a heuristic (Figure 4) that attempts to approximate sufficiently
exact program states to use them for our caching approach.

A. System Call Interception and Kernel/VM Hooking
In the first two steps of the heuristic (Figure 4), we need to

intercept the systems calls used for peripheral device commu-
nication. For each intercepted system call, we need to decide
whether the system call is utilized for communication with a
device that is forwarded through PROSPECT. Furthermore, for
runtime program state approximation we need to have access
to the internals of the OS kernel and the program accessing the
device as well. This includes the state of the virtual memory
at the time of a call, the CPU registers and open file handles.
We implemented and practically tested the following methods
to obtain the required low-level information.

1) Virtual Machine Introspection (VMI): The first method
was implemented by extending QEMU with a Virtual Machine
Introspection (VMI) module. VMI has the advantage that
any low-level state information from the machine including
physical memory or otherwise hard to access kernel internals
can not only be accessed and read, but can be modified just
the same. An additional advantage is that any introspection
logic runs directly on the host machine and not inside the VM,
leading to significantly higher performance. Although the VMI
approach is very powerful, our VMI module implementation
uncovered two major drawbacks. First, due to the low level
VMI operates on, important functions inside the kernel such as
those providing paging information and memory mapping need
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Figure 4. State Approximation Heuristic.

to be reimplemented. Even worse, important offsets to internal
kernel structures can be configuration dependent requiring fre-
quent adaptations of the VMI analysis code. Second, to reliably
hook system calls, Translation Block Chaining (TBC) needs
to be disabled. TBC is an optimization technique the QEMU
emulator uses to drastically speed up emulation. Translation
blocks are basic blocks of code from the guest system that
are translated to the host system architecture. With TBC, these
blocks are chained together and cached so that they do not have
to be translated again each time the process counter arrives at
that specific address. However, due to the caching, the program
addresses within these cached blocks are no longer processed
by QEMU’s TBC lookup logic which ultimately causes our
hooks on those addresses to no longer get executed. Disabling
the TBC optimization allows reliable VMI hooking but at the
same time significantly slows down the emulator.

2) Kernel Module: The second state approximation method
was implemented as a loadable Linux kernel module running
within the QEMU guest system. Since PROSPECT already
performs system call hooking from within the kernel, we
extended it with functions to read registers and mapped virtual
memory regions of the calling process. Compared to the VMI
approach, using a kernel module simplifies access to swapped
out pages and kernel structures.

3) File Handles: Each time an open system call is used
to return a new file handle, the value of the file handle is
determined by the operating system kernel. Since the returned
file handles frequently differ between executions, we use a
file descriptor tracking mechanism. The mechanism places a
hook on the open and close system calls. It can thus track
the currently active file descriptors and remove them from the
stack region of interest by overwriting the descriptors with zero
bytes.

4) Registers: The register content has a central role in
our program state variable detection heuristic. While the most
important register to be utilized in this case is the instruction
pointer, we found that the subset of registers leading to the
best results also included the return address, the stack pointer
and several general purpose registers.

B. Hash Computation and State-ID Matching

In the last two steps of the heuristic (Figure 4), we compute
the SHA-256 digest and use it for cache lookup. The digest
is computed on the concatenated stack region of interest and
the register set. Using the previously described state variable
detection heuristic, we ensure that hash digest results in a
granularity that is suitable for cache lookups. The cache lookup
is implemented as a large dictionary where the SHA-256 hash
value is used as index to a device response data field of
arbitrary size.

VI. RESULTS

Our feasibility study shows that our approach works for
less complex programs but suffers from the well known state
explosion problem for more complex programs. The low
complexity programs we tested required less information from
stack and registers to correctly determine the program state.
However, with growing program complexity, it becomes more
challenging to accurately determine a unique state suitable for
cache lookups resulting in state duplication and cache misses.
Since the number of these duplicates rises exponentially with
increasing program complexity, similar to symbolic execution,
the approach leads to the state explosion problem. In that
regard, the MIPS architecture turned out to be especially
challenging due to its standard calling convention and the
resulting difficulty of stack frame unwinding. To test our
approach, we used programs from the GNU core utilities and
treated their file system accesses as peripheral device accesses
with our caching approach in between. We tested 3 program
classes:

1) Low Complexity Programs:
For very simple programs such as cat, head, sum and
wc, our caching approach hardly depends on stack frame
information, no heap information is required and only a
small subset of the registers is sufficient to correctly de-
termine the program states for peripheral caching. Within
a single execution the cache could thus already learn all
necessary responses and use them correctly. At that point
we were able to completely remove the program’s input
files and still obtain the identical program flow with our
caching approach.

2) Medium Complexity Programs:
Medium complexity programs such as expand rely on
dynamic heap memory management. As a result, some of
the relevant program states for device access may depend
on the information stored at those memory regions. Using
peripheral caching for programs like expand, the lack
of information on heap content led to duplicate states.
These could be compensated for by utilizing several
training executions until the cache had learned all possible
states including duplicates. It also required minor manual
adaptations of the considered stack parameters within the
heuristic. We believe that this problem can be addressed
in future work and the heuristic could be greatly improved
by adding proper stack unwinding. Monitoring the heap
state would be an advantage, but is not mandatory.
Without proper stack unwinding and manual adaptations,
medium complexity programs currently present the limit
of our approach.

3) Higher Complexity Programs
Higher complexity programs such as sort not only
heavily rely on dynamic heap memory management, but
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they also store a large amount of relevant state informa-
tion on the heap. The problem and its possible solution
are thus similar to medium complexity programs, but
in comparison the number of duplicate states is much
higher and can no longer be handled through manual
adaptations. We believe that with stack unwinding and
dynamic memory allocation monitoring the problem can
be improved, but higher complexity programs will remain
challenging.

VII. CONCLUSION AND FUTURE WORK

Our feasibility study showed that the presented peripheral
caching concept could be an approach for some of the major
drawbacks in embedded firmware security analysis. When
applying typical embedded security testing techniques such as
fuzz testing, sufficiently precise caching of peripheral device
communication could thus enable powerful features such as
snapshotting or test parallelization. After sufficient cache train-
ing the firmware can even be tested without requiring physical
access to the embedded system. We showed that the problem
is related to program slicing and may lead, similar to symbolic
execution, to the well known state explosion problem. We
created a VMI-based as well as a kernel-module based imple-
mentation and tested the feasibility of our approach with pro-
grams from the well known GNU core utilities package. Our
results show that the peripheral caching approach works for
low and medium complexity programs. However, depending on
the architecture and the difficulty of stack frame unwinding, the
program state approximation can become increasingly difficult.
In future work, we’re looking forward to port our approach to
embedded architectures such as ARM allowing more precise
stack unwinding. We believe that this will further increase the
precision of the program state approximation so that more
complex programs can be addressed with our approach as
well. Furthermore, we aim to implement a kernel module/VMI
hybrid implementation to benefit from the speed improvements
of running the program state approximation heuristic outside
the VM while still utilizing the OS kernel insight provided
through a kernel module.
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