SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

Policy-Aware Provisioning of Cloud Applications

Uwe Breitenbiicher, Tobias Binz, Oliver Kopp, Frank Leymann, Matthias Wieland
Institute of Architecture of Application Systems
University of Stuttgart, Stuttgart, Germany
{breitenbuecher, lastname} @iaas.uni-stuttgart.de

Abstract—The automated provisioning of complex composite
Cloud applications is a major issue and of vital importance
in Cloud computing. It is key to enable Cloud properties such
as pay-as-you-go pricing, on-demand self-service, and elasticity.
The functional aspects of provisioning such as instantiating
virtual machines or installing software components are covered
by several technologies on different technical levels: some are
targeted to a pretty high level such as Amazon’s Cloud Formation,
some deal with deep technical issues based on scripts such as Chef
or Puppet. However, the currently available solutions are tightly
coupled to individual technologies without being able to consider
non-functional security requirements in a non-proprietary and
interoperable way. In this paper, we present a concept and
framework extension enabling the integration of heterogeneous
provisioning technologies under compliance with non-functional
aspects defined by policies.

Keywords—Cloud Applications; Provisioning; Security; Policies

I. INTRODUCTION

The increasing use of IT in almost every part of enterprises
leads to a higher management effort in terms of development,
deployment, delivery, and maintenance of applications. For
enterprises, IT management becomes a challenge as each new
technology increases the degree of complexity while operator
errors account for the largest fraction of failures [1]. These
issues have been tackled by outsourcing IT to external providers
and automating the management of IT—both enabled by Cloud
computing [2]. The modular component-based architectures
that are the consequence of using Cloud services allow to
benefit from Cloud properties such as elasticity, scalability,
and high availability without the need to have technical
insight [3]. Unfortunately, the necessary balance between
functional possibilities and non-functional security issues has
been often skewed toward the first. Cloud services are typically
easy to use on their own but hard to configure and extend in
terms of non-functional aspects that are not covered natively
by the offering. Creating applications that integrate different
heterogeneous components which are hosted on or interact
with Cloud services while fulfilling non-functional security
requirements can quickly degenerate to a serious problem,
especially if the technical insight is missing. Even the initial
provisioning of applications can be a difficult challenge if non-
functional requirements of different domains with focus on
heterogeneous technologies have to be fulfilled.

In this paper, we present a concept and extend an existing
Management Framework [4] to tackle these issues. The exten-
sion enables the fully automated provisioning of composite
Cloud applications complying with non-functional security
requirements from different domains which are expressed
by Provisioning Policies. We introduce Policy-Aware Man-

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

agement Planlets that allow the implementation of policy-
aware provisioning logic in a reusable way independently from
individual applications. The presented framework enables Cloud
providers as well as application developers to specify security
requirements for the provisioning without the need to have
the deep technical management knowledge needed in other
approaches. In addition, the concept allows security experts
of different domains to work together in a collaborative way.
We evaluate the approach in terms of performance, complexity,
economics, feasibility, extensibility, and the implementation
of a prototype. The remainder of this paper is structured as
follows. In Section II, we explain fundamentals and motivate our
approach by a scenario presented in Section III. In Section IV,
we introduce Provisioning Policies. Section V describes the
Management Framework that is extended by our approach,
which is presented in Section VI. Section VII evaluates the
approach and Section VIII reviews related work. We conclude
this paper and give an outlook on future work in Section IX.

II. FUNDAMENTALS

In this section, we explain two fundamental concepts pro-
viding the basis for the remainder of the paper: (i) Application
Topologies and (ii) Management Plans.

A. Application Topologies

An application topology is a directed, possibly cyclic graph
describing the structure of an application. It consists of nodes,
which represent the different components of an application such
as Virtual Machines (VM) or Java applications, and the relations
among them, which are the edges between the nodes. Nodes
and relations are called elements of the topology and have a
type attribute defining its semantics. Each element may have a
set of arbitrary properties used to describe the element in detail.
Figure 1 shows an example, which describes a PHP-based Web
shop application that stores data in a database backend. We
use the visual notation Vino4TOSCA [5] to depict topologies
graphically. Following this notation, the type of an element
is enclosed by parentheses whereas its name is undecorated
text. The application’s infrastructure is provided by Amazon’s
public Cloud in the form of two virtual machines of type
AmazonEC2VM. Thereon, operating systems are installed of
type Windows7 and UbuntuLinux. A PHP runtime of type
ApachePHPWebServer hosts the application of type PHP. This
application connects to a database of type MySQL which
is hosted on the Linux operating system of the right stack.
We modeled all relations as hostedOn relation and left out
properties to simplify the diagram. Our approach employs
application topologies to describe the structure of applications to
be provisioned and to attach policies to the contained elements.

86

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

WebShopFrontend (connectsTo)
(PHP)
K -
(hostedOn)
A 4
s N 'e b)
(ApachePHPWebServer) Dt
\ J g (MySE
(hostedOn) (hostedOn)
A 4 A 4
() ()
(Windows7) (UbuntuLinux)
\. v, \ W,
(hostedOn) (hostedOn)
A 4 A 4
s) e N
(AmazonEC2VM) (AmazonEC2VM)
\. W, \. .

Figure 1. Example of a PHP-based application topology.

B. Management Plans

Management Plans are executable workflows used to auto-
mate the management of applications such as the provisioning
of applications. They enable a much more robust and reliable
way to manage applications than the manual or script-based
management through technologies on a deep technical level.
They inherit features from workflow technology such as recov-
erability, compensation, and fault handling mechanisms. One
workflow language to implement these plans is the Business
Process Execution Language (BPEL), which is, for example,
used for the provisioning of applications [6]. Management
Plans are often created manually by the application developers
themselves. However, this is a difficult and time-consuming
task and, as plans are typically coupled tightly to single
applications, of limited value: Plans are mostly sensitive to
structural differences and, therefore, hardly reusable for the
management of other applications. In this paper, we generate so-
called Provisioning Plans, which are a subclass of Management
Plans, to fully automate the provisioning of applications based
on their topologies.

III. MOTIVATING SCENARIO

The following scenario is used to motivate the approach
presented in this paper. Let us assume a company wants to host
the PHP-based Web shop application described in the previous
section on Amazon’s public Cloud (Figure 1). Depending on
the importance of that application for the company, there may
be different non-functional security requirements. For example,
the Web server hosting the functional logic typically comes
up with default credentials, i.e., username and password are
both “admin”. If this is ignored, the Web server is open for
attacks and may be misused. Thus, we need a mechanism
to ensure that the strength of these credentials is considered
during the deployment. The second example deals with the
products data stored in the database. If the company financially
depends on this Web shop, data loss caused by a failure may
ruin the business. Thus, a frequent data backup of this database
is needed. The last example deals with the geographic location
of the company’s customer data, which is also stored in the
database. Legal aspects may require that this data has to remain
in the European Union (EU). Thus, the virtual machine must
be hosted on a physical server located in one of its states.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

IV. POLICIES FOR PROVISIONING OF APPLICATIONS

In this section, we introduce Provisioning Policies which
are used by our approach to express non-functional security
requirements on the provisioning of applications. Provisioning
Policies are a subclass of Management Policies which are
employed in systems and network management. We describe
Management Policies in detail and refine them into Provisioning
Policies afterwards to clearly define the kinds of policies that
are supported by the presented approach.

A. Management Policies

Management Policies are a well-known concept and com-
mon in research as well as in industry. They are derived from
management goals and used to influence the management
of applications, resources, and IT in general based on non-
functional aspects such as security, performance, or cost
requirements. They provide a (semi-) formal concept used to
capture, structure, and enforce the objectives [7]. A lot of work
on policies exists dealing with classifications, methodologies,
and applications. To classify and identify the policies covered
by our approach, we use the hierarchy of Wies [7] that
classifies policies based on the level on which they influence
the management. The hierarchy was developed based on
criteria such as policy life-time, how they are triggered and
performed, and the type of its targets. Wies differentiates
between four classes: (i) Corporate/High-Level Policies, (ii)
Task Oriented Policies, (iii) Functional Policies, and (iv) Low-
Level Policies. Corporate Policies are directly derived from
corporate goals and embody strategic business management
rather than technical management aspects. The other three
classes embody technology oriented management in terms of
applying management tools, using management functions, and
direct operation on the managed objects. Our approach covers
the technology oriented management in terms of security. The
most important requirement of security policies is to ensure
strict adherence. The system must prevent that the security
requirements defined by a policy get violated. This is vital as
many types of policies cause actions that cannot be undone if
once violated. For example, if a Data Location Policy defines
that the application data must not leave a certain region (legal
rights), i.e., the physical servers must be located in that region,
and the data gets distributed over the world by a public Cloud,
then the policy is violated and it is impossible to undo this
violation. Violating such policies may result in high penalties.

B. Provisioning Policies

Provisioning Policies are a subclass of Management Policies
and responsible for ensuring non-functional requirements during
the provisioning of applications. During our research on
application provisioning, we identified three different kinds
of policies that must be considered: (i) Configuring Policy, (ii)
Guarding Policy, and (iii) Extending Policy. We explain these
three kinds in the following and give examples based on the
motivating scenario introduced in Section III. Our approach
supports primarily these three kinds of policies. A Configuring
Policy configures the provisioning of components or relations.
For example, a Data Location Policy attached to a virtual
machine with region value “EU” configures the provisioning in
a way that the virtual machine is hosted on a server located in
the European Union. A Guarding Policy guards the provisioning

87

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

of components or relations, i.e., it supervises the instantiation
in terms of certain specified values or thresholds. For example,
a Safe Credentials Policy ensures that the strength of login
credentials, i.e., username and password, is strong enough. A
Extending Policy extends the provisioning in terms of structure,
i.e., it may add new components or relations which are not
contained in the original application topology to be provisioned.
For example, a Frequent Data Backup Policy for a database
causes the installation of an additional software component on
the operating system which backups specified database tables
in a certain time interval to a certain location.

V. USED MANAGEMENT FRAMEWORK

In this section, we explain the Management Framework that
gets extended to support processing non-functional security
policies. We presented this framework in a former paper [4],
which describes all details about the framework, Management
Planlets, and Management Annotations.

The main functionality of the framework is managing
running applications by generating Management Plans that
are executed to perform the desired changes. Therefore, a
Plan Generator gets a so-called Desired Application State
Model as input which defines the desired state the application
shall have after executing the management task. This model
is an application topology which reflects the desired state:
Components may have to be added or removed, relations must
be established, or updates must be installed, to mention a
few examples. To define the low-level management tasks that
have to be performed to achieve the desired state, we use so-
called Management Annotations, which are described in the
next section. Based on this topology, a Management Plan is
generated that brings the application from the current state to
this desired state, i.e., performs the management tasks. This
generation orchestrates so-called Management Planlets that
provide small management tasks such as installing or removing
components or establishing a database connection. Details are
explained in Subsection V-A. All available planlets are stored
in a repository which is used by the plan generator to find
appropriate planlets to generate the plan. For example, if such a
management task defines that a database of type MySQL must be
installed on an existing operating system of type UbuntuLinux
and data needs to be imported afterwards, the plan generator
uses a planlet that installs the database and another planlet
to import the data. Thus, planlets enable separating different
functional low-level tasks in order to be orchestrated to provide
a higher level of management tasks.

Plan Generator

Application — T Provisioning

Topology Planlet Plan
Repository

Figure 2. Management Framework for generating Provisioning Plans.

The framework also supports generation of provisioning
plans, i.e., plans that provision a complex composite Cloud
application on each level: from infrastructure to software

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

components with all required relations among them. This is
shown in Figure 2: The plan generator gets an application
topology as input and generates the corresponding Provisioning
Plan by orchestrating several planlets. In addition, the whole
application to be provisioned is packaged into a so-called
Application Package that contains all artifacts needed for
provisioning such as installables. Planlets may be also contained
in this package. This enables the developer to implement own
custom planlets that are taken into account by the plan generator.
Thus, the concept of planlets enables even the developers of the
application themselves to define and influence the provisioning
logic. However, the framework currently does not support the
consideration of non-functional requirements. Therefore, one
contribution of this paper is making the framework policy-
aware to tackle this issue. In the next subsections, we provide
more details about the framework to help understanding our
extension presented in Section 6.

A. Orchestration of Management Planlets

Management Planlets are small workflows implementing
reusable low-level management tasks such as creating a virtual
machine on Amazon EC2, installing a Tomcat on an operating
system, or establishing a connection between an application’s
frontend and its database backend. Planlets are intended to be
orchestrated by so-called Management Plans, which provide
a higher level of management tasks such as the provisioning
of a whole application consisting of multiple interconnected
nodes. Thus, they serve as generic building blocks for the
generation of Management Plans. In general, planlets are used
to manage a running application, but they can be used for the
initial provisioning as shown in [4], too. Management Planlets
express their functionality through an annotated application
topology fragment. This fragment contains a small application
topology consisting of typed nodes and relations which may
be annotated with so-called Management Annotations. These
annotations express small low-level management tasks that are
performed by the planlet on the respective nodes or relations.
The types of components and relations and the annotations
are used by the plan generator to find suitable planlets for the
desired tasks. A more detailed description of these annotations
is given in Section V-B. A single planlet may perform multiple
of these small management tasks in order to implement a more
sophisticated task, e. g., a single planlet may install a database
on an operating system and imports data afterwards. Planlets
often need to express preconditions which must be fulfilled to
make the planlet applicable, e. g., the previous mentioned planlet
which installs the database on an operating system and imports
data afterwards requires the operating system to be already
running. These preconditions are also expressed through the
topology fragment: all therein contained elements, i. e., all nodes
and relations, and their properties which have no Management
Annotations are treated as precondition. Thus, the operating
system would be contained in the topology fragment without
any annotation but with state-property value “Instantiated” as
shown in Figure 4. This indicates that the operating system
must be running. The state-property may be set by another
planlet which provisioned the virtual machine and the operating
system before. Thus, the ordering and selection of planlets in the
overall Management Plan is calculated based on these properties
and Management Annotations. During the plan generation, a
virtual representation of the current state of the application gets

88

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

WebShopFrontend (connectsTo)
(PHP)
. (hostedOn)
\ 4
([= (Database
& a
(ApachePHPWebServer) g (MySQL) J
\ v, i \,
: 2 .
' (hostedOn) E ' (hostedOn)
4 v E 4 v
(Windows7) i (UbuntuLinux) J
\ v, \
o (hostedOn) o (hostedOn)
h 4 h 4
4 4
(AmazonEC2VM) J (AmazonEC2VM) J
\ \

Figure 3. Annotated application topology to be provisioned.

transferred towards the goal state, i.e., all elements are created.
In each state, all planlets whose preconditions match the current
virtual state are called Candidate Planlets. These planlets are
eligible to be applied. The plan generator then decides which
planlet to choose to transfer the application into the next state.
Planlets may also communicate with each other via properties,
e. g., one planlet writes the [P-address and credentials of a Web
server to the corresponding node which are used by another
planlet to deploy applications on it. In addition, planlets may
have input parameters used to get information they need from
the user. These parameters are exposed to the input message
of the overall generated Management Plan. For example, if a
planlet needs Amazon credentials to acquire a virtual machine,
it defines them in its local input message and the system exposes
them to the global input message of the overall generated plan.
Therefore, the plan generator adds activities transferring the
data internally to the planlet. In the next section, we explain
the used Management Annotations in detail.

B. Management Annotations

Management Annotations express low-level management
tasks which have to be performed on the nodes and relations
they are attached to. They are subdivided into two disjoint
classes: Structural Management Annotations and Domain-
Specific Management Annotations. The first class contains
annotations that structurally change the application in terms
of creating or destroying nodes or relations. Thus, there
is a Create-Annotation and a Destroy-Annotation. For plain
provisioning of applications only the Create-Annotation is used
and annotated to all elements in the topology model as shown
in Figure 3. The green circle with the star inside represents the
Create-Annotation. These annotations tell the system that the
corresponding nodes and relations shall be created. Figure 4
shows a planlet fragment that may be used to provision a part
of this topology: The shown planlet creates a node of type
MySQL and a relation of type hostedOn to an already existing
node of type Linux, i.e., it installs a MySQL database on a
Linux operating system. The precondition of the planlet is that
the operating system is already running which is expressed by
its state-property set to “Instantiated”. The MySQL node to be

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

created also has this state-property but with a Create-Annotation,
which means that the planlet sets this property to the specified
value “Instantiated”. This property may be a precondition for
another planlet which connects an application to this database
or imports initial data. Thus, the installation planlet has to be
executed before them. Application components connected by
hostedOn relations are typically instantiated bottom up, i.e.,
the first planlets matching the topology are those creating the
infrastructure and middleware components. After creating the
basis, other planlets are applicable that have the existence of
those components as precondition.

o Install MySQL on Linux Planlet

[(MysaL)

L State:lnstantiatedJ

A (hostedOn)
v

(UbuntuLinux)

State: Instantiated

TopologyFragment Workflow

Figure 4. Planlet installing a database on a running operating system.

The second class is used to express domain-specific manage-
ment tasks such as importing data into a database. Management
Annotations are identified by a unique id, which is used
for matchmaking. Thus, this enables defining any additional
management task needed to configure the overall provisioning.

o Import Data to MySQL Database Planlet

1+
[(MysQL)

L State: Instantiated J

TopologyFragment

Workflow

Figure 5.

Planlet doing a database import.

Figure 5 shows a planlet that imports data to a database. This
is expressed by the domain-specific ImportData-Annotation
attached to the MySQL node, which is depicted by the purple
cycle. This planlet must not be executed before the database
is instantiated because of the state-property precondition.
Therefore, considering the two example planlets shown in
Figure 4 and Figure 5, the planlet that installs the database has
to be executed before the planlet doing the import. Based
on this concept, planlets get selected and ordered by the
plan generator. Of course, the second planlet may have much
more property preconditions such as database credentials and
endpoint information. We ignore these to simplify the figures.

89

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

The concept allows distributing logic across several planlets
which do not need to know each other. Each planlet implements
a small functionality and can be used in combination with other
planlets to achieve an overall goal. The approach also enables
separating concerns in terms of management domains: Database
experts are able to implement knowledge about databases into
planlets without the need to know anything about the PHP
applications connecting to databases. All in all, this provides a
holistic and collaborative framework for managing applications.

VI. POLICY-AWARE PROVISIONING OF COMPLEX
COMPOSITE CLOUD APPLICATIONS

In this section, we present the two major contributions of
this paper. We propose (i) a concept for defining and processing
the Provisioning Policies introduced in Section IV and (ii) show
how the Management Framework presented in Section V is
extended to support policy-aware provisioning of applications.

The general concept is based on attaching policies to
elements in application topologies and elements in planlet
fragments which are matched during plan generation to compare
non-functional requirements of the topology and non-functional
capabilities offered by planlets. Therefore, we introduce Policy-
aware Management Planlets that consider policies. This concept
allows a fine grained definition of non-functional requirements
and capabilities targeted directly to individual elements while
preserving the functional description. In contrast to many
existing bidirectional policy processing approaches, we use
a strict one-way requirement-driven perspective for policies:
policies attached to an application topology define requirements
whereas policies attached to the fragment of a planlet define the
planlet’s capabilities. Planlets cannot express non-functional
requirements and topologies cannot express capabilities. Thus,
the planlet’s policies may be ignored if they are not required.

Planlet

Application Topology

Figure 6. General concept of the presented approach.

Figure 6 explains the concept visually: On the left, it
depicts an application topology consisting of three components
connected by hostedOn relations that have to be provisioned.
The node of type X and Z have a policy attached, which
defines the non-functional security requirements that have to
be fulfilled during the provisioning. On the right, there is a
Policy-aware Management Planlet that provisions nodes of type
Z and Y connected by a hostedOn relation. The policy attached
to the node of type Z expresses the non-functional capabilities
that may be provided by the planlet for that provisioning.
During plan generation, the policies are compared and checked
for compatibility. If the planlet fulfills all policies attached
to elements in the topology that are covered by its topology
fragment, the planlet is applicable. In the next section, we
introduce the technical structure of Provisioning Policies.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

A. Structure and Properties of Provisioning Policies

In this section, we introduce the format for Provisioning
Policies to bind non-functional security requirements and
capabilities to the tasks performed by planlets. A Provisioning
Policy has a mandatory unique id within the topology it is
contained in and an optional fype defining the semantics of the
policy, e. g., a policy of type Safe Credentials Policy ensures
that username and password of a component to be provisioned
are strong enough to resist attacks. The semantics of a policy
type have to be well-defined and documented, i.e., application
topology modelers and planlet developers must be aware of
its meaning and how to use and implement it. There are a lot
of existing policy languages in research and industry such as
WS-Policy, Ponder, or KAOS [8]. Our approach supports their
integration through an optional content field and an optional
language attribute: The content field enables to fill in any
policy- or language-specific information whereas the language
attribute defines the used language. A processing mode attribute
defines how the policy has to be fulfilled, e. g., whether it is
sufficient to compare only the types of topology and planlet
policy or if the content of the policy needs to be analyzed. That
is the reason why the type and language attributes are optional:
if only the type need to be compared, the language attribute is
unnecessary. This is explained in detail in Section VI-D. The
processing mode is used only by policies attached to elements
in the topology as only they impose requirements. Each policy
has an attribute optional that defines if the processing of the
policy is mandatory. Topologies may use optional policies to
express security requirements which are “nice to have” but
not necessarily required. Planlets may use optional policies
to enable configuration and reusability by offering additional
non-functional capabilities that are fulfilled only if explicitly
required. To target policies exactly to the affected management
tasks, each policy in the topology may define the management
tasks that have to consider the policies. Therefore, Provisioning
Policies have a MustProcess list that may contain Management
Annotations. All planlets implementing one of these tasks
must consider the policy. If this list is empty, all planlets
must consider the policy. To add exceptions, each policy has a
NeedNotProcess list containing the Management Annotations
that do not have to consider the policy. This concept allows
separating concerns and targeting policies exactly to the affected
tasks: Only planlets executing the Management Annotations
defined in the MustProcess list must consider the policy while
all other planlets do not have to care.

Figure 7 shows Data Location Policies attached to the
application used in the motivating scenario. It depicts two Data
Location Policies which are attached to the virtual machine
and database node. Both are defined in the same language and
must be processed by a type specific plugin. The difference
lies in the MustProcess lists: The virtual machine policy must
be considered only for its creation, which is depicted by the
Create-Annotation in the MustProcess list. The database policy
must be considered only by planlets that handle data, e.g.,
import or export data. This is expressed by the domain-specific
DataHandling-Annotation depicted as blue circle with white
paper inside. This differentiation makes sense as the policies
express requirements on different tasks. As the location of the
physical servers the virtual machine is hosted on determines
also the geographic location of the database and, thus, of the
data itself, the VM has to be located in the region the data has

90

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

y Data Location Policy 1

Type: security.datalocation
Language: TOSCA-Policy
ProcessingMode: TypeSpecific
Optional: False

MustProcess: @

<DataLocation>
<Region>EU</Region>
</DataLocation>

g)
@

Database
(MysQL)

(UbuntuLinux) J

\(y Data Location Policy 2

Type: security.datalocation
Language: TOSCA-Policy
ProcessingMode: TypeSpecific

(AmazonEC2VM) Optional: False
q

MustProcess: S\g

<DataLocation>
<Region>EU</Region>
</DataLocation>

g)

Figure 7. Two Data Location Policies attached to an application topology.

to remain. Thus, the planlet instantiating the VM must consider
this policy, e. g., as shown by the planlet depicted in Figure 8. In
contrast, the location of the database needs not to be considered
by the planlet installing it on the operating system. Therefore,
the planlet shown in Figure 4 can be reused although it does not
define any non-functional location information at all. However,
handling data, e. g., export data, needs special considerations
on the database layer because the data has to remain in the
European Union, too. Thus, this concept allows a fine-grained
definition of requirements on different levels.

B. Extending Management Annotations

Management Annotations are atomic entities that define
either structural or domain-specific self-contained management
tasks as explained in Section V-B. This is not sufficient for
working with policies as the atomicity allows no abstract
definition of those tasks. For example, the Data Location Policy
attached to the MySQL database as shown in Figure 7 needs to
be processed by all planlets having Management Annotations
that deal with data, e. g., planlets exporting data must ensure
that they do not store the backup at locations violating the
policy. As the complete set of annotations may be unknown in
advance, we need a mechanism to classify annotations of certain
kinds of tasks. In particular, there are Management Annotations
of type Import Data or Export Data as shown in Figure 5 that
need to fulfill the Data Location Policy, i. e., data to be imported
or exported must not be stored on servers outside the European
Union. Listing all these annotations in the MustProcess list of
the policy is not sufficient as mentioned before. Thus, we extend
the concept by introducing inheritance: The data import and
data export Management Annotations inherit all properties from
a superclass annotation of type DataHandling. For example, the
Data Location Policy in Figure 7 specifies that all Management
Annotations having this superclass must process the policy. This
extension allows defining abstract tasks which can be bound
to policies in a generic way. Thus, if the framework processes
a policy having this annotation, it ensures that all planlets
handling data take this Data Location Policy into account. To
achieve flexibility, we also allow multi-inheritance.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

o Create Ubuntu Linux on Amazon EC2 VM Planlet

[(UbuntuLinux) /J\
L State: Instantiated J
. (hostedOn)
.! » ¢
(AmazonEC2VM)
State: Instantiated 9 :
TopologyFragment — Workflow

Figure 8. Planlet that instantiates a virtual machine with Linux operating
system fulfilling a Data Location Policy.

C. Plan Generator Extension

The plan generator of the framework tries to find planlets
that can be orchestrated to provision the application. During
this generation, a set of candidate planlets is calculated for each
state and the planner decides which of the candidate planlets is
applied next—as introduced in Section V-A. This calculation
is based on compatibility: A planlet is applicable if each
element in the planlet’s fragment can be mapped to a compatible
element in the topology. This means, that all preconditions of
the planlet are fulfilled and that the management tasks which
are implemented by the planlet and expressed in the form of
Management Annotations are also specified in the topology.
Details about this compatibility check can be found in [4]. We
extend this compatibility check by taking policies into account:
For each element in the topology that has an attached policy,
the policy needs to be processed as defined by the processing
mode attribute. How to deal with this processing mode attribute
during matchmaking is explained in the next section.

D. Policy Processing Modes and Matchmaking

Each policy specifies a processing mode that defines how the
policy has to be checked during the matchmaking of topology
and planlets. We introduce three processing modes: (i) Type
Equality, (ii) Language Specific, (iii) Type Specific. The mode
defines the minimum criterion that must be met to fulfill the
policy. Thus, the modes are ordered: from weak (Type Equality)
to strong (Type Specific). Every stronger criterion outvotes the
weaker criteria, i.e., if a policy defines processing mode Type
Equality, which cannot be fulfilled by any planlet but there
is a planlet fulfilling the Language Specific processing mode,
the policy is fulfilled. Thus, if a criterion cannot be met, the
system tries the next stronger criterion automatically. If it does
not matter which criterion has to be met, this is equal to set
processing mode to Type Equality.

1) Type Equality: This processing mode defines that only
the types of two policies must be equal to fulfill the policy
attached to an element in the topology. That means, that for
each policy attached to an element in the topology there must be
a policy of the same type attached to the corresponding element
in the planlet’s fragment. This processing mode is sufficient
for policies that can express all their requirements and needs

91

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

by a well-defined keyword used as type, for example, a No
Connection To Internet Policy attached to a virtual machine
node is expressive enough to define the requirement.

2) Language Specific: Language specific processing means
that the policy must be processed by a dedicated framework
plugin that is responsible for the used language. For example,
if a policy is written in WS-Policy, there must be a corre-
sponding WS-Policy plugin. All the language-specific logic is
implemented by the plugins themselves, i.e., in the case of
WS-Policy, operations such as intersection or normalization
are up to the language plugin. The language plugin gets a
reference to the policy to be checked, the whole topology, the
candidate planlet’s fragment, and a mapping of elements as
input. The mapping defines which elements in the topology
would correspond to which elements in the planlet’s fragment
if the policy can be fulfilled by the planlet. The plugins are
free to interpret their policy language in any way. For example,
if a certain language defines a key-value format for defining
policy requirements, the plugin is allowed to compare these
requirements with properties of the corresponding fragment
node. If requirements and properties are compatible, the policy
is fulfilled. Thus, there is no explicit need that a matching
policy exists in the fragment at all.

3) Type Specific: This processing mode is the most specific
one and bound to policy language and policy type, i.e., if there
is a policy of type Data Location Policy written in WS-Policy,
there must be a plugin registered for exactly that combination.
Otherwise, the policy cannot be fulfilled. If such a plugin exists,
the processing is equal to language specific: The plugin gets
the same kind of information as input and decides if the planlet
fulfills the policy’s requirements. This processing mode enables
a very specific processing of policies as the mode is bound to
the policy type directly. For example, if a Data Location Policy
with region “EU” (cf. Figure 7) is attached to a MySQL node
that should be created and there are no planlets available in
the system that have a compatible policy attached, the plugin
may analyze the stack the MySQL database shall be hosted
on and recognizes that the virtual machine below runs on
Amazon’s EC2 with region-property set to “EU”. In this case,
the policy would be fulfilled by the simple MySQL-Creation
Planlet shown in Figure 4 that does not know anything about
policies at all. This kind of processing enables complex logic
which can be only known by a very specific type plugin.

E. Language and Type plugins

The processing mode attribute of a policy decides if a
language or type specific plugin has to assess whether the
policy can be fulfilled by a candidate planlet or not. Plugins
may need to pass information about the matchmaking to the
candidate planlet if it fulfills the policy’s requirement, e.g.,
to configure it. Therefore, each plugin may return an XML-
document and a list containing the policy ids of the planlet
which have to be fulfilled as result that is passed to the planlet
via its input message from the calling provisioning plan. This
enables configuring if optional policies provided by the planlet
have to be fulfilled, for example. This document is also linked
with the id of the fragment’s policy. Thus, the planlet is able
to retrieve the policy language- or type-specific information.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

F. Framework Architecture

In this section, we describe how the presented approach is
implemented in the used Management Framework. Figure 9
shows the simplified architecture of the framework with the
new integrated policy extension (gray background).

Plan Generator
Policy Management

Planlet Management

Planlet
Repository n

Planlet
Repository 1

Language Plugin 1 Language Plugin n

Type Type Type Type
Plugin1 || Pluginn Pluginx |**| Pluginy

Figure 9. Extended framework architecture.

The basic architecture of the Management Framework
substantially consists of a Plan Generator that uses a Planlet
Management to retrieve the planlets and their descriptions
stored in Planlet Repositories. The Plan Generator has a
planlet orchestrator inside, which is responsible for scheduling
planlets in the right order. We extend this orchestrator by the
integration of a new component called Policy Management that
is responsible for policy matchmaking and invoking Language
Plugins and Type Plugins. Each planlet that is analyzed by
the orchestrator gets now additionally checked if it fulfills
the attached policies by a simple call to this new APIL. The
integration is straight forward as the basic architecture of the
Management Framework was built in a modular way.

G. Implementing Policy-aware Planlets—Lessons learned

In this section, we describe our experiences from the
implementation of policy-aware planlets. A planlet providing
additional non-functional capabilities expressed in the form of
attached policies on elements contained in its fragment has to
ensure that the semantics of the policies are only fulfilled if
explicitly needed. This is important as the policy matchmaking
is directed: only policies of the application topology are
considered by the plan generator, not the policies of the planlet.
Thus, if a planlet provides an extending policy, e. g., a Frequent
Data Backup Policy, which exports data frequently from a
database, this additional functionality should be installed only
if needed. If the planlet is able to offer both modes, with and
without fulfilling the policy, the planlet should declare this
policy as optional. Therefore, the planlets get the mapping of
elements in the topology to the elements in its fragment as input.
Based on this mapping, the planlet is capable of recognizing
if a policy is optional.

In many cases, the extension of planlets to policy-aware
planlets is possible by only adding additional activities to
the original planlet workflow—especially for Guarding and
Extending Policies: The Frequent Data Backup Policy and
the Safe Credentials Policy can be implemented by adding
activities that install the additional software or check the chosen
credentials. The actual process needs not to be modified. In

92

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

contrast to this, Configuring Policies often need to adapt the
original process: for example, the Data Location Policy may
influence the provisioning of a virtual machine. Thus, the
activity that creates this VM must be modified.

VII. EVALUATION

In this section, we evaluate the presented approach. We
prove the (i) feasibility, (ii) economics, (iii) analyze perfor-
mance and complexity, (iv) describe our prototypical imple-
mentation, and describe (v) how the approach can be extended.

A. Feasibility

To prove the approach’s feasibility, we evaluated the
framework in terms of the three kinds of Provisioning Policies
discussed in Section IV. We implemented planlets fulfilling
the policy examples which were used throughout the paper. To
prove the feasibility of Configuring Policies, we implemented
the planlet described in Figure 8 that creates a virtual machine
with an Ubuntu Linux operating system on Amazon EC2
complying with a Data Location Policy which defines that all
data must remain in the European Union. The planlet extracts
the region from the policy and uses this value as region-attribute
for creating the VM using the Amazon Web Services APIL
This configures the provisioning in a way that the VM is
hosted on physical servers located in states of the European
Union. To prove the feasibility of Guarding Policies, we defined
a Safe Credentials Policy attached to an Apache PHP Web
server to ensure that username and password are strong enough.
We implemented a planlet that provisions this Web server on
Windows 7 complying with this policy by generating a safe
password on its own. To prove the feasibility of Extending
Policies, we implemented a Frequent Data Backup Policy which
is attached to a MySQL database node. The corresponding
planlet executes an additional bash script via cron job that
frequently backups the data as MySQL dump to an external
storage. This script execution may be seen as additional node
hosted on the operating system. Thus, it extends the application
structurally in order to fulfill a non-functional requirement.
For all policy definitions, we used the properties-based policy
language shown in the TOSCA specification [9].

The approach also enables defining complex non-functional
security requirements that occur in real enterprise systems.
This is enabled by the individual content field of Provisioning
Policies. The field allows specifying any information about the
policy language- or type, e. g., complex system configuration
options and tuning parameters. As planlets that match such a
policy are built to process exactly the information stored in
the content field, the tight coupling of policies to the planlets
processing them enables the implementation of any policy
language and type. Thus, the corresponding planlets may deal
with any individual policy-specific semantics or syntax. For
example, if a security policy of type X specifies a set of complex
system configuration files that must be taken into account during
the provisioning of a certain component, the planlets complying
with this policy type X expect these files and know how to
process them. This enables to integrate expert knowledge about
individual domains through defining own policy types and the
corresponding planlets that deal with them.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

B. Economics

The economic goal of our approach is to lower operating
cost of provisioning. It is obvious that automating IT operations
in order to reduce manual effort leads to a cost reduction in
many cases. However, Brown and Hellerstein [10] analyzed the
automation of operational processes and how this influences
costs. They found out that three issues must be considered
which counteract this reduction by causing additional effort:
(1) Deploying and maintaining the automation environment,
(ii) structured inputs must be created to use automation
infrastructures, and (iii) potential errors in automated processes
must be detected and recovered which is considerably more
complicated than for manual processes. The presented approach
tackles these issues. Planlets are reusable building blocks for the
generation of provisioning plans. They are developed by expert
users of several domains and provided to communities similar to
DevOps. Therefore, free accessible planlet repositories enable
continuous maintenance without the need for individual effort.
Of course, maintaining local management infrastructure and the
development of own custom planlets for special tasks causes
additional effort, but this is a general problem that cannot
be solved generically. The second issue of upfront-costs for
creating structured input is reduced to a minimum as we provide
tools for the modeling of application topologies and policies.
The third issue of occurring errors is tackled implicitly by the
workflow technology: every planlet defines its own error and
compensation handling. Thus, errors are handled either locally
by planlets themselves or by the generated provisioning plan,
which triggers the compensation of all executed planlets to
undo all operations for errors that cannot be handled.

C. Performance and Complexity

The performance of the approach is of vital importance as
the generation of provisioning plans must be possible within
a few seconds to obtain Cloud properties such as scalability
or on-demand self-service. The employed Management Frame-
work presented in Section V uses a partial order planning
algorithm [11] for the generation of Management Plans [4].
As described by Bylander [12], the complexity of planning
varies from polynomial to PSPACE-complete, depending on the
preconditions, effects, and goals. The Management Framework
tackles this issue by introducing restrictions on the design of
planlets: it is forbidden to use multiple planlets providing the
same or overlapping functionality but having different effects.
For example, it is forbidden to have two planlets installing
a MySQL database on an Ubuntu Linux operating system
that differ in the set properties. This reduces the number of
nondeterministic choices that have to be made during plan
generation in terms of selecting planlets: if a Management
Annotation can be processed by multiple different planlets, it
does not matter which one is chosen because they have the
same effects and may differ only in their preconditions. Thus,
planlets having preconditions on the effects of these planlets are
not affected by the plan generator’s choice. This decreases the
complexity to polynomial time [11]. Extending the framework
by policies must follow this restriction: If a policy-aware planlet
implements a functionality that is provided already by an
existing planlet, the existing planlet has to be merged with the
new policy-aware planlet. The new planlet must also support the
original functionality which is trivial in most cases as policies
only deal with non-functional requirements but do not change

93

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

the original functionality. The only difference is additional
effort as calling plugins might be necessary. In worst case,
each policy in a topology must be processed by a plugin. As
the number n of used policies within a topology is constant, the
extension has no influence on the complexity. We evaluated the
performance of the policy-aware framework with the following
setting: Based on a set of 25 fully-implemented real planlets,
we developed different application topologies of different size
- from small (5 nodes, 4 hostedOn relations) to large (100
nodes, more than 100 relations). We added 1000 randomly
generated test planlets without workflow implementation to
simulate a real environment. Thus, the plan generator has to
consider 1025 planlets during plan generation. The generation
of provisioning plans for all test application topologies (small to
large) required only a few milliseconds. Serialization to BPEL
and deployment on the used process engine (WSO2 Business
Process Server 2.1.2) increased this by approx. 7 seconds. Thus,
the time for generating plans is negligible in comparison to the
time-consuming serialization to BPEL and the deployment.

D. Prototype

To validate the concept technically, we implemented the
approach on the basis of the Management Framework prototype
presented in Section V. This prototype is implemented in Java
and uses OSGi in order to provide a flexible and dynamic
plugin system. Planlets are implemented in the Business Process
Execution Language (BPEL) whereas topologies and planlet
fragments are implemented using an internal data model similar
to the structure of TOSCA [9]. We extended this topology
model with the possibility to attach policies to nodes and
relations. The policies are provided as XML files following
the simple properties-based policy language used in this paper.
We use declarative OSGi services to build the plugin system
for language- and type-plugins, as described in Section VI-F.
To prove the technical feasibility of the conceptually evaluated
policies described in Section VI we implemented these policies
and others by extending already existing planlets. The successful
implementation of this prototype extension proves that the
presented approach works in reality.

E. Extensibility

As there are many different existing policy types and
languages, the presented approach must support extensibility.
The used Management Framework (cf. Section V) supports
creating own custom planlets that implement Management
Annotations for any conceivable management task. As the
approach presented in this paper relies on this concept, it
is possible to implement new policy types the same way.
The plugin-based architecture for language and type plugins
complements the planlet-based policy extension: If a new policy
type needs a dedicated type plugin for advanced processing,
the architecture allows installing new plugins that handle these
types. In addition, the architecture enables the integration of
any existing policy language as well as the development of own
languages. We successfully validated this criterion based on the
integration of WS-Policy. As WS-Policy has its own type system
in the form of assertions, the type attribute of the Provisioning
Policy is not needed. In addition, the created plugin retrieves
the information about domain-specific processing of assertions
by extracting the policy-specific content field which defines
this kind of information.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

VIII. RELATED WORK

There are several works focusing on the automated pro-
visioning of Cloud applications. In this section, we describe
the most related ones and compare them to our approach.
The work of Eilam et al. [13] focuses on deployment of
applications by orchestrating low-level operation logic similarly
to planlets by so-called automation signatures. E1 Maghraoui et
al. [14] present a similar approach that orchestrates provisioning
operations provided by existing provisioning platforms and is,
thus, much more restricted than using planlets, which are able
to integrate any technology and system. Both works do not
consider non-functional requirements at all—especially not in
the form of explicitly attached policies, which are able to define
explicitly the tasks that must consider the policy. In contrast to
both works, planlets and Management Annotations allow the
application developer to bind policies to abstract tasks which are
executed during provisioning. Thus, Policy-aware Management
Planlets introduce an additional layer of abstraction in terms
of defining and processing non-functional requirements.

Mietzner and Leymann [15] present an architecture for
a generic provisioning infrastructure based on Web services
and workflow technology that can be used by application
providers to define provisioning flows for applications. These
flows invoke so-called provisioning services that provision
a certain component or resource. Policies can be used by
the provisioning flow to select the specified provisioning
services based on non-functional properties of the resource
to be provisioned, e. g., availability of the provisioned resource.
The general idea of implementing provisioning services is
similar to planlets. However, planlets allow a much more fine
grained differentiation between provisioning tasks, e. g., the
provisioning of a database and the following initial data import
are done by different planlets. Thus, policies can be bound
more specifically to tasks and allow, therefore, a more precise
definition of non-functional security requirements.

The Composite Application Framework (Cafe) [16] is an
approach to describe configurable composite service-oriented
Cloud applications that can be automatically provisioned
across different providers. It allows expressing non-functional
requirements in WS-Policy that can be matched to properties
of resources in an environment. However, these policies are
restricted to the selection of services and lack mechanisms to
configure, guard, or extend application provisioning as enabled
by our approach.

The CHAMPS System [17] focuses on Change Management
to modify IT systems and resources by processing so-called
Requests For Change (RFC) such as installation, upgrade, or
configuration requests. After receiving an RFC, the system
assesses the impact of the RFC on components and generates a
so-called Task Graph which is afterwards used to generate an
executable plan. The system can be used for initial provisioning
of composite applications, too. Although the system’s plan
generator considers policies and SLAs, the work does not
describe how the executed tasks have to process the artifacts
during provisioning.

Kirschnick et al. [18] present a system architecture and
framework that enables the provisioning of Cloud applica-
tions based on virtual infrastructure whereon the application
components get deployed. However, the framework does not

94

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

support non-functional requirements, is tightly coupled to
virtual machines, and lacks integrating any XaaS offerings.
Thus, the system is not able to provision Cloud applications
that consist of several XaaS offerings complying with non-
functional security requirements.

The DevOps community provides tooling to automate
the provisioning of Cloud applications. To mention the most
important, Chef and Puppet are script-based frameworks used to
automate the installation and configuration of software artifacts
in distributed systems. The DevOps community also provides
additional tooling such as Marionette Collective, ControlTier,
and Capistrano used to improve the orchestration capabilities on
a higher level. The frameworks are extensible in terms of adding
new installation, configuration, and—in general—provisioning
functionalities. This enables to integrate provisioning logic
that considers non-functional requirements. However, all these
frameworks focus on a deep technical level of provisioning
and do not provide a means to express and integrate non-
functional security requirements on such a high level as enabled
by Management Annotations and planlets. The reusability in
terms of provisioning different applications, the interoperability
between script-based and non-script-based technologies as
needed to build complex composite Cloud applications, and
the holistic integration of different policy languages in order
to achieve broad acceptance is not supported yet.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is an upcoming standard to describe
composite Cloud applications and their management [9]. It tack-
les current challenges in Cloud computing such as portability
and interoperability of Cloud applications, prevention of vendor
lock-in, and the automated management of applications includ-
ing provisioning [19]. TOSCA provides a XML-based format
for describing Cloud applications as application topologies and
enables the management of applications through Management
Plans that capture management knowledge in an executable
way. TOSCA provides a similar mechanism to attach policies to
nodes and relations in topologies but, however, only provides
a means to integrate policies into the topology but lacks a
detailed description of their processing.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that enables fully au-
tomated provisioning of complex composite Cloud applications
in compliance with non-functional security requirements. Based
on this approach, we extended an already existing Management
Framework to support policy-aware provisioning. We introduced
a new format for Provisioning Policies that are considered by
Policy-aware Management Planlets during provisioning. In
addition, the extended framework allows Cloud providers as
well as application developers to implement their own policy-
aware provisioning logic in a flexible and reusable manner
independently from individual applications. The paper evaluates
the presented approach in terms of performance, feasibility,
and extensibility. In addition, we implemented a prototype that
serves as a proof of concept of the presented conceptual work.
In future work, we will extend this concept by a policy-aware
preprocessing of topologies in order to increase the reusability

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

of planlets to a higher level. Afterwards, we plan to apply
the presented concept of policy-aware planlets also to runtime
management of applications and extend the approach to support
policies of other domains such as Green IT.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?”” in USITS, June 2003.

[2] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in Proc.
52th Photogrammetric Week, September 2009, pp. 3—12.

[3] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” University of California, Berkeley, Tech. Rep., 2009.

[4] U. Breitenbiicher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
runtime management of composite cloud applications,” in CLOSER,
Mai 2013, pp. 475-482.

[S] U. Breitenbiicher, T. Binz, O. Kopp, F. Leymann, and D. Schumm,
“Vino4TOSCA: A visual notation for application topologies based on
tosca,” in CooplS, September 2012, pp. 416-424.

[6] A. Keller and R. Badonnel, “Automating the provisioning of application
services with the BPELAWS workflow language,” in DSOM, November
2004, pp. 15-27.

[71 R. Wies, “Using a classification of management policies for policy
specification and policy transformation,” in IFIP/IEEE IM, June 1995,
pp. 44-56.

[8] W. Han and C. Lei, “Survey paper: A survey on policy languages in
network and security management,” Comput. Netw., vol. 56, no. 1,
January 2012, pp. 477-489.

[9] OASIS, Topology and Orchestration Specification for Cloud Applications
Version 1.0, May 2013. [Online]. Available: http://docs.oasis-open.org/
tosca/TOSCA/v1.0/cs02/TOSCA-v1.0-cs02.pdf

[10] A. B. Brown and J. L. Hellerstein, “Reducing the cost of it operations:
is automation always the answer?” in HOTOS, June 2005, pp. 12-12.

[11] D. S. Weld, “An introduction to least commitment planning,” Al
Magazine, vol. 15, no. 4, Winter 1994, pp. 27-61.

[12] T. Bylander, “Complexity results for planning,” in IJCAI, August 1991,
pp. 274-279.

[13] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based com-
posite application deployment,” in IFIP/IEEE International Symposium
on Integrated Network Management, May 2011, pp. 217-224.

[14] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and A. V.
Konstantinou, “Model driven provisioning: bridging the gap between
declarative object models and procedural provisioning tools,” in Middle-
ware, November 2006, pp. 404—423.

[15] R. Mietzner and F. Leymann, “Towards provisioning the cloud: On
the usage of multi-granularity flows and services to realize a unified
provisioning infrastructure for saas applications,” in SERVICES, July
2008, pp. 3-10.

[16] R. Mietzner, T. Unger, and F. Leymann, “Cafe: A Generic Configurable
Customizable Composite Cloud Application Framework,” in CoopIS,
November 2009, pp. 357-364.

[17] A. Keller, J. L. Hellerstein, J. L. Wolf, K. L. Wu, and V. Krishnan, “The
CHAMPS system: change management with planning and scheduling.”
in NOMS, April 2004, pp. 395-408.

[18] J. Kirschnick, J. M. A. Calero, L. Wilcock, and N. Edwards, “Toward an
architecture for the automated provisioning of cloud services,” Comm.
Mag., vol. 48, no. 12, December 2010, pp. 124-131.

[19] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable Cloud
Services Using TOSCA,” IEEE Internet Computing, vol. 16, no. 03,
May 2012, pp. 80-85.

95

