
Towards a Policy-Framework for the Deployment and

Management of Cloud Services

Tim Waizenegger, Matthias Wieland

Institute of Parallel and Distributed Systems

University of Stuttgart

Stuttgart, Germany

{waizentm, wieland}@ipvs.uni-stuttgart.de

Tobias Binz, Uwe Breitenbücher, Frank Leymann

Institute of Architecture of Application Systems

University of Stuttgart

Stuttgart, Germany

{binz, breitenbuecher, leymann}@iaas.uni-stuttgart.de

Abstract—As the adoption of Cloud Computing is growing, the

automated deployment of cloud-based systems is becoming

more and more important. New standards, such as TOSCA

(OASIS), allow the modeling of interoperable Cloud services. It

is now possible to build reusable and portable cloud services

that can be (semi-) automatically deployed by different cloud-

deployment-engines at various Cloud environments. However,

there is still an acceptance problem among potential users,

especially in the enterprise segment, that stems from security

issues like data security. To improve security in automatic

Cloud management engines, this paper proposes a framework

for processing non-functional requirements of Cloud services.

Keywords-Cloud Computing; Security; Policy-Framework;

TOSCA; Cloud Service; Cloud Management

I. INTRODUCTION

According to the definition of NIST [3], Cloud
Computing is a model for enabling ubiquitous, convenient,
and on-demand network access to a shared pool of
configurable computing resources. An important aspect is
the fast deployment of Cloud Computing resources with
minimal management effort. To achieve this goal, the new
Cloud standard TOSCA [2] was developed allowing the
portable modeling and automatic deployment and

management of Cloud services. This enables the effortless
migration of Cloud services across different Cloud
environments. The TOSCA specification provides a domain-
specific language to describe Cloud services based on
different components and their relationships using a so-
called Service Template (ST), which describes the topology
of services. The orchestration via so-called management
plans enables automated deployment and management of
Cloud services. This allows the deployment of a TOSCA-
based service in any Cloud environment that supports the
execution of these models. In addition, TOSCA allows
defining non-functional requirements of Cloud services
based on so-called policy types that we use to define security
requirements.

We work on implementing OpenTOSCA - an open
source TOSCA container - that enables the automatic
deployment of TOSCA based application models. Figure 1
shows an example for such an application. The diagram uses
the visual notation Vino4TOSCA [1]. It defines a Cloud
service running on two virtual machines with a separate
stack for the database and web server. Both machines run the
Ubuntu Linux operating system. The diagram shows the web
server, PHP module and web application installed on one
machine, and the database on the other.

To secure the application, we define different policies for

My Web Application (CSAR)

Virtual Server1

(AmazonEC2)

OperatingSystem1

(Ubuntu)

Webserver

(ApacheWebServer)

Virtual Server2

(AmazonEC2)

OperatingSystem2

(Ubuntu)

DBMS

(SQL RDBMS)

Database

(MyDB)

Node (Type) (hosted on)

Legend:

(connects to)

M
PHP Interpreter

(PhpModule)

MyApp

(WebApp)

Policy1

Name: Region

Property: EU

Stage: Deployment

Layer: Global

Effect: Enforcement

Policy2

Name:

Response Time

Property: 100ms

Stage: Runtime

Layer: Local

Effect: Monitoring

Policy3

Name:

Prevent SQL

injection

Property:

Include firewall

Stage:

Design

Layer:

Local

Effect:

Assurance

Policy definition Policy annotation

Figure 1. Example Scenario for a Cloud Service Policy in TOSCA.

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

the service model. Policy1 requires that all components have
to be deployed in a specific geographic region, due to data
privacy reasons, as the data managed in the system must not
leave Europe. Policy2 specifies the maximum response time
for HTTP requests on the web server in order to stay within
customer requirements. When the defined response time is
exceeded, the policy will deploy another instance of the web
server to provide more capacity. Policy3 is a security policy
for the database system. When enabled, it adds a special
application-firewall to the service topology, which provides
protection against SQL-injection attacks.

OpenTOSCA does not yet support Policies; so, our next
step is to make OpenTOSCA policy-aware. For that purpose,
this paper presents the architecture of a Policy-Framework
for security related issues in Cloud service deployment and
management. The focus of the proposed Policy-Framework
is the specification of non-functional requirements and their
automatic processing in a Cloud service deployment engine
(TOSCA container). OpenTOSCA can already deploy this
application but without fulfilment of the policies. In the
remainder of the paper we show how we plan to extend the
system to realize the implementation of the policies.

This work takes a different approach than other
publications that focus on specifying frameworks for
implementing different methods to provide security features,
e.g., authentication across different providers or trust
management [4]. The goal of this paper is to introduce
different aspects of policies and to evaluate how to use
policies for secure Cloud service deployment and
management with TOSCA. It is not meant to be a complete
list covering all aspects of policies. We are working towards
building a generic framework that supports the aspects
mentioned in this paper as well as the ones emerging in
future research. The definition of interoperable standard
policy types should be addressed in future publications in the
context of the TOSCA specification.

The remainder of this paper is structured as follows:
Section II explains the ecosystem where policies are used.
Section III presents a taxonomy for describing policies.
Section IV describes an architecture implementing the
different technical aspects of policies for Cloud service
deployment. In Section V, we summarize our findings.

II. POLICY ECOSYSTEM

The source of policies, especially in the context of Cloud
security, is usually a Service Level Agreement (SLA)
between the Cloud provider and the customer. This SLA
comprises the business perspective of the policy, whereas the
specific implementation is considered the technical
perspective.

The business perspective determines the business aspects
of the policy such as price, penalties, and legal obligations as
well as the subject.

The technical perspective is derived from the
requirements given by the business perspective and describes
the specific way in which the policy is implemented.

Cloud Solution

Marketplace

Cloud Provider Customer

Search for

solution with

required Policy

Candidate

list and price

Buy solution that

fits requirements

Register offered

solutions with

policies and price

Figure 2. Actors in Ecosystem and Their Perspective on Policies.

Figure 2 shows the actors in this ecosystem. The
customer requests the policy that he requires for his service.
Then either a marketplace already provides the requested
solution with the needed policy or the customer orders such a
solution from a service provider. The customer can then buy
the solution and contract a Cloud provider to deploy it while
complying with the negotiated SLA and, therefore, the
resulting policies.

III. TAXONOMY AND ASPECTS OF POLICIES

A policy in its most basic form is a single property that is

attached to a service, a component of a service, or a

relationship between components. That property is used as a

parameter for determining the behavior of a system or

process within the lifecycle of the service. A policy is

therefore, defined by a) its property and b) the aspects that

define the type of property and for which operation or

system it is used during which stage of the lifecycle. We

propose the following list of policy aspects as a generic

model:
1) Stage in service lifecycle

a) Design
b) Provider selection
c) Deployment
d) Runtime
e) Termination

2) Layer in topology
a) Global policy (for whole Service Template)
b) Local policy (for specific node or relationship type)

3) Policy effect:
a) Assurance
b) Enforcement
c) Monitoring

A. The Signature of a Policy

The aspects introduced above identify a policy and comprise
its signature much like the signature of a program function.
The values for name, stage, layer, and effect are fixed since

they are determined by the implementation of the specific

policy. The policy property is variable and can be selected

by the customer in order to fine-tune the behavior of the

policy (see response-time policy example below) or if

appropriate, it can be a fixed value as well. It should be

noted that a property can be an atomic value or a complex

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

type with multiple values. Policy internal dependencies

between property values have to be considered when

defining the properties. Dependencies to properties of other

policies should be handled by providing dependency-aware

policy implementations.

B. Policy Aspects in Detail

For our Cloud policy taxonomy, we define three categories

of aspects: 1) lifecycle stage, 2) affected topology layer, and

3) policy effect. The following list gives a detailed

description of the aspect categories.

1) Stage in Service Lifecycle
The first aspect defines the stage in the lifecycle of a

Cloud service. Figure 3 shows the different stages that every
Cloud service undergoes. This aspect describes at which
stage the policy has to be fulfilled and implemented.
However, a policy implemented at one stage might still
affect the service behavior during the subsequent stages.

Deployment

Runtime

Termination

Design

Provider selection

Figure 3. Lifecycle Aspects of Policies.

a) Design

In this phase, a service provider develops the solution as
a Service Template (TOSCA model). Policies in this stage of
the lifecycle are non-functional requirements either provided
by the customer or chosen by the service provider himself.
This includes the choice of software components,
infrastructure requirements, and topology layout. These
policies are not programmatically enforced or defined; they
rather comprise a set of guidelines for service development
to which the provider adheres.

b) Provider Selection

The provider selection is the first stage where policies are
defined in a machine-readable form in order to be
automatically evaluated. The requirements defined by these
policies are used to determine, which Cloud providers are
suited for service deployment. They include capabilities like

redundant networking and disaster recovery, off-site backup,
and the geographic location of the data center.

c) Deployment

After handling the previous aspects, the selected provider
deploys the solution. Policies affecting this lifecycle stage
determine the structure of the service topology and the
configuration of its components. The service is set up
according to the value of the policy property. Policies at this
stage may determine characteristics such as the amount of
memory and processing that get assigned to a certain node,
the type of encryption used in transport protocols or the level
of error-logging.

d) Runtime

The runtime phase starts after the service is deployed and
available. It ends when service termination is requested.
Policies belonging to the runtime stage determine the
behavior of the service in a certain situation. This includes
the response to events such as a high response time or system
load, components becoming unavailable or other events such
as suspicious system/user behavior. Therefore, policies at
this stage often have a policy effect of the type monitoring.

e) Termination

This is the last stage in the service lifecycle. Policies of this

type determine the actions that are taken when the service is

terminated. This includes secure deletion of customer data

and sending shutdown-notifications to connected clients.

2) Layer in Topology and Ecosystem
The second aspect classifies the annotation of the policy

in the topology template. Policies may be annotated to a
specific node or relationship with a specific type, e.g., a
database or database-connection relationship. These are local
policies. Global policies are annotated to the whole topology
template. These affect the entire service and often
recursively apply to many components of the topology. By
defining boundary definitions, it is possible to select a subset
of a topology and annotate this subset only. This subset is
handled in a similar way as a global policy.

3) Policy Effect
This aspect defines what effect a policy has or what

operations it triggers.

a) Assurance

This policy effect indicates that the property of a policy is
assured by the design of the service or the Cloud provider. It
is not programmatically enforced during runtime or
deployment but rather the service provider has to engineer
the service in a way that it guarantees compliance with the
policy. Policies with this effect usually affect the lifecycle
stages prior to runtime. Policies with this effect include
geographical data center location and redundant networking.

b) Enforcement

Policies with this effect are actively enforced during a
certain stage of the service lifecycle. They determine the
service behavior according to the set property. They usually
occur in the lifecycle stages including and after deployment.
Policies with this effect include setting up encrypted
transport channels and encrypting stored data.

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

c) Monitoring

Monitoring policies determine certain parameters of the
service that trigger an operation. They usually occur in the
lifecycle stages after deployment. Contrary to enforcement
policies, they do not determine service behavior by default
but rather react to a certain event, although these two policy
effects are similar in the way that they trigger operations.
Policies with this effect include automatic scaling and error
notification. Table I shows three example policies and their
main aspects.

TABLE I. EXAMPLE POLICIES WITH DIFFERENT ASPECTS

 Region

policy

SQL-Injection

firewall policy

Response time

policy

Property EU Include firewall 100ms

Lifecycle

stage

Deployment Design Runtime

Topology

layer

Global Local (DB node) Local (HTTP node)

Policy effect Enforcement Assurance Monitoring

Aspects of policies often depend on the specific

implementation and most policies can be defined and
implemented using different aspects. The Region Policy, for
example, could be enforced during provider selection by
selecting a provider that uses data centers in the EU. It could
also be enforced during service design by implementing the
service model in a way that it will only deploy on servers
within the EU.

IV. ARCHITECTURE OF THE POLICY-FRAMEWORK

Figure 4 shows the architecture consisting of components
for the different lifecycle stages of the Cloud service:

Policy Framework

Plan Engine

OpenTOSCA Container

Transformation

(resolve

requirements)

Deployment

Plan

Input Topology (Fig. 5)

Policy-Enforcing Management Plans

(PEMPs)

Runtime

Monitoring

Policy

Violation

Handler

Termination

Plan

Transformed Output

Topology (Fig. 6)

Figure 4. Architecture of the Policy-Framework.

Initially, the Cloud service is described as a solution
package using TOSCA. This solution can be annotated with
various policies. This TOSCA description is the input for the
first stage, the transformation. The solution can contain
abstract components that represent a requirement for a
certain functionality. These abstract components are refined
to specific components during the transformation while the
annotated policies and functional requirements are
considered. We therefore, differentiate between the
requirement for a policy and a policy. A policy is provided as
part of a system component and it can be enabled and
configured according to its property. A requirement for a
policy, therefore, limits the choice of components to the ones
providing that policy. The transformation also adapts the

deployment plan of the solution in order to cope with and
install the newly added components.

Figure 5 shows an example for the transformation with
an annotated requirement for a policy, here a requirement for
SQL injection prevention is annotated. Figure 5 is an excerpt
of the main example in Figure 1 and shows the database
stack from the example service topology only. The
transformation then processes this Service Template and
retrieves a security-policy-pattern for the annotated
requirement.

Database Server (CSAR)

(HostedOn)

(HostedOn)

VirtualMachine

(x86)

OperatingSystem

(Linux)

Database

(SQL RDBMS)

Requirement

Policy:

Prevent SQL

injection

Functional:

SQL 98

support

Functional:

Provide JDBC

driver

Figure 5. Transformation Example - Input Topology.

Figure 6 shows the result where the abstract database is
replaced by a specific one (Oracle 11g). Furthermore, to
secure this Database System a new node database firewall is
added. To show that the new solution implements the policy
requirement. Additionally, the new node it annotated by a
“Prevent SQL injection” policy that is realized by the design
of the system, which documents that the system is now
fulfilling the policy.

Database Server (CSAR)

(HostedOn)

(HostedOn)

VirtualMachine

(Amazon EC2)

OperatingSystem

(Ubuntu 12.04)

Database

(Oracle 11g)

Firewall

(Database Firewall)

Policy

Name:

Prevent SQL

injection

Property:

Include firewall

Stage:

Design

Layer:

Local

Effect:

Assurance

Figure 6. Transformation Example - Resulting Topology.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

The next step in the architecture in Figure 4 is the
installation of the transformed solution to the TOSCA
container. For that purpose, the TOSCA container interprets
the solution and starts the Cloud service deployment. The
plan engine installs the package. Afterwards, Cloud services
can be instantiated by using the deployment plan.

Policies that have the aspects enforcement and
deployment must be enforced during deployment of the
service. For that purpose, so-called Policy-Enforcing
Management Plans (PEMPs) are used, which implement the
functionality that guarantees that the defined policies are
met.

The next step in the lifecycle is the runtime phase of the
Cloud service. This phase starts after the deployment has
successfully finished. During the runtime phase, different
policies can be in effect, e.g., the response time policy. For
this purpose, a Runtime Monitoring component is used,
which continuously monitors the service and detects policy
violations. A violation is handled based on the requirements,
e.g., stop the service or scale up using a Policy Violation
Handler.

The last step in the lifecycle is the termination of the
service. In this step, the same mechanism used during
deployment (PEMPs) is used. A typical task for termination
policies is to guarantee secure deletion of all customer data.

V. CONCLUSION AND OUTLOOK

The contribution of this paper is to introduce and
establish aspects of policies in the context of Cloud service
definition and to present a first architecture realizing these
aspects in a Policy-Framework. The proposed framework

supports non-functional aspects in Cloud service models that
are built using TOSCA.

Security is a major concern in using Cloud Computing
for outsourcing data and services especially in the enterprise
segment. It is, therefore, important to agree upon a common
standard for describing, implementing, and realizing security
policies in Cloud service models.

The next steps are to implement the different components
of the proposed policy-framework, but even more important
is the definition of a catalog of security policies and their
implementation in topology components using TOSCA.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

[1] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and D.
Schumm. Vino4TOSCA: A Visual Notation for Application
Topologies based on TOSCA. In CoopIS, pp. 416–424.
Springer-Verlag, 2012.

[2] P. Lipton, S. Moser, D. Palma, and T. Spatzier. Topology and
Orchestration Specification for Cloud Applications (TOSCA).
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-
v1.0.html, March 2013.

[3] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Recommendations of the National Institute of
Standards and Technology, Special Publication 800-145:7,
2011.

[4] H. Takabi, J.B.D. Joshi, and G.-J. Ahn. SecureCloud:
Towards a Comprehensive Security Framework for Cloud
Computing Environments. In Computer Software and
Applications Conference Workshops (COMPSACW), IEEE
34th Annual, pp. 393–398, 2010.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

	I. Introduction
	II. Policy Ecosystem
	III. Taxonomy and Aspects of Policies
	A. The Signature of a Policy
	B. Policy Aspects in Detail
	1) Stage in Service Lifecycle
	a) Design
	b) Provider Selection
	c) Deployment
	d) Runtime
	e) Termination

	2) Layer in Topology and Ecosystem
	3) Policy Effect
	a) Assurance
	b) Enforcement
	c) Monitoring

	IV. Architecture of the Policy-Framework
	V. Conclusion and Outlook
	Acknowledgment
	References

