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Jakub Křoustek, Peter Matula, Jaromír Končický, Dušan Kolář
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Abstract—In this paper, we present an extension of an
existing automatically generated retargetable decompiler that
is capable to parse, process, and utilize compiler-generated
debugging information. This tool can be used for dealing
with several security-related issues (e.g., forensics, malware
analysis, vulnerability detection). Additional debugging infor-
mation is used for an accurate reconstruction of platform-
dependent binary applications into a well-readable high-level-
language representation. The proposed solution is platform
and debugging-format independent. In present, two major
debugging formats—DWARF and Microsoft PDB—are sup-
ported; the extracted information is used for a recovery of
several high-level constructions (e.g., variables, functions and
their arguments). The proposed concept was validated by
experimental results.

Keywords-decompilation; debugging information; PDB;
DWARF; Lissom.

I. INTRODUCTION

Reverse engineering is an old method used for analysis
and reconstruction of a given object. In information technol-
ogy, a lot of reverse-engineering tools have been created for
understanding and reconstruction of binary software, e.g.,
disassemblers, dumpers, and sniffers. However, the result of
mentioned tools is usually a very low-level representation
of the input object, e.g., assembler code, raw dump of
memory, or data stream. Therefore, it is hard to understand
its meaning. The reconstruction of the original object is not
automatic and it requires manual re-implementation based
on the gathered information.

A machine-code decompiler (i.e., reverse compiler) is
a more advanced reverse-engineering tool. It can theoret-
ically produce the most readable and re-compilable code;
it transforms the input binary executable application into a
particular high-level-language (HLL) representation. In soft-
ware maintenance, this process can be used for source code
recovery, translation of code written in an obsolete language
into a newer language (see [1] for such an application),
migration of binary code to a new platform, injection of
additional features into an existing application, etc.

However, decompilation is typically used in the field of
computer security and forensics. Within this field, decom-
pilation is used for compiler verification (i.e., verification
of code and debugging information generated by compiler

in software-critical systems, since the compiler cannot be
trusted in these systems [2]), vulnerabilities detection, and
for malicious code analysis and its understanding.

In comparison, disassemblers have been used for malware
analysis in the past decades, but decompilers are used more
and more often last years. Their primary advantage over
disassemblers is a more readable output (i.e., HLL code)
that is independent on a particular processor architecture.
Moreover, it is possible to precisely analyse code without a
deep knowledge of underlying architecture (e.g., processor
resources, instruction set, micro-architecture). This is very
useful because of a massive expansion of malware to the
new platforms (e.g., smartphones, tablets, or even cars [3]).
Therefore, for a malware analyst, it is not necessary to learn
all the details about these platforms.

However, the machine-code decompilation is very com-
plicated task because the input applications are often obfus-
cated by packers or heavily optimized by compilers. There-
fore, it is necessary to take advantage of every available
information. The decompiled code must meet two essential
criteria—it has to be functionally equivalent to the input
binary code, and it has to be highly readable. It is a great
advantage if the decompiled code is re-compilable too.

In this paper, we present a concept of a debugging-
information exploitation within a decompilation process. The
proposed solution allows extracting additional information
from two major debugging formats—DWARF and Microsoft
PDB. It is possible to find a lot of valuable information
within these two formats, such as lists of original source
files, line numbers, functions, or variable names and their
types.

Such information is used for the recovery of several
high-level constructions (e.g., functions together with their
arguments and local variables) in an existing automati-
cally generated retargetable decompiler developed within
the Lissom project [4]. This decompiler is independent on
a particular target architecture, operating system, or origin
of the decompiled application (i.e., the used programming
language and its compiler). This tool can be used in every
previously mentioned area.

The paper is organized as follows. Section II discusses
existing debugging information formats. Then, we briefly
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describe the retargetable decompiler developed within the
Lissom project in Section III. The exploitation of debug-
ging information within the decompiler is then presented
in Section IV. Section V describes the state of the art
of debugging information exploitation in decompilation.
Experimental results are given in Section VI. Section VII
closes the paper by discussing future research.

II. DEBUGGING INFORMATION FORMATS

Despite all programmers efforts, any meaningful program
contains bugs or defects that need to be found and fixed.
This process is called debugging and it can be done in
several different ways (e.g., code insertion, stepping through
instructions, displaying registers or memory). The goal of
today’s debuggers is to provide source-level approach, which
matches lines of source code with machine-code instruc-
tions. For this purpose, debugged executables or libraries
must contain additional information to identify the corre-
sponding positions, variables, functions and other useful
details in the form of debugging data format. This section
introduces two of today’s the most common formats.

A. DWARF (Debugging With Attributed Record Formats)

DWARF [5] is a debugging data format originally de-
veloped in the mid-1980s at Bell Labs for Unix System V
Release 4. Even though it is mainly associated with ELF [6],
it is independent on the used object file format, program-
ing language, operating system, or target architecture (e.g.,
MIPS, ARM, Intel x86). The latest, fourth version was
published in 2010, but its second version (DWARFv2) is
still the most commonly used one among compilers and
debuggers.

DWARF information is stored in special sections in the
same object file as machine code. Each of these sections
contains different kind of debugging data, such as basic
file information, line numbers, look-up tables, call frames,
and macros. The whole program is represented as a tree,
whose nodes can have children or siblings. Each node is a
Debugging Information Entry (DIE) structure that has a tag
and a list of attributes. A tag specifies the type of the DIE
(e.g., function, data type, variable) and attributes contain all
the description details. There are two general types of DIEs:

• Those describing data and types such as base types,
variables, arrays, structures, classes, etc. Locations of
data are defined by location expressions, consisting of
a sequence of operations and values, evaluated by a
simple stack machine.

• Those describing executable code. Functions (they have
a return value) and subprograms are treated as two
flavours of the same construction. These DIEs typically
own many other DIEs that describe them (e.g., param-
eters, local variables, lexical blocks).

There is also a special type of DIE called compilation
unit which is the parent for all DIEs created by a separate

compilation of a single source file. It holds information about
compilation (e.g., name of the source, language, producer)
and locations of other DWARF data not described by DIEs
(e.g., line number table, macro information).

DWARF is generated by the most major compilers (e.g.,
gcc, LLVM llc, Intel icc), supported by nearly all
debuggers, and there are several libraries and utilities that
allow its examination or manipulation (e.g., libdwarf,
dwarfdump, objdump).

B. PDB (Program Database)

PDB is a format developed by Microsoft Corporation. It
is generated only by Microsoft Visual Studio compilers and
used by Microsoft debuggers. PDB is mainly used on the
ARM and Intel x86 architectures and it is based on the
older CodeView format. PDB debugging information for a
particular application is stored in a separate file with the pdb
extension. Each executable binary file in a PE format [7]
has its counterpart in a PDB file. Both files are paired by a
unique GUID code.

PDB is a proprietary format, and its specification has
never been publicly published. Therefore, the analysis of
this format can be only done via reverse engineering. A PDB
file structure is similar to a file system. A PDB file consists
of many streams (i.e., sub-files), each of them contains a
different kind of information. There is a stream with type
information (e.g., common types, enumeration, structures),
compilation units (i.e., modules), symbol tables and PE
sections. Furthermore, each module has its own stream with
information about functions, local and global variables, and
line number information within the module.

The official DIA SDK is provided for processing de-
bugging information [8]. However, this toolkit is platform
dependent because it can be used only under the MS
Windows operating system.

C. Other Formats

Except the two aforementioned formats, there are some
other formats that can be used to store debugging informa-
tion. The best known are Symbol Table Strings (STABS),
where data are stored as special entries in symbol table,
and Common Object File Format (COFF) [9], that could
contain debugging information in special sections much like
DWARF. Both were strongly tied to specific object file
formats and became obsolete along with them.

III. LISSOM PROJECT’S RETARGETABLE DECOMPILER

In this section, a brief description of an existing auto-
matically generated machine-code retargetable decompiler is
presented. This tool is developed within the Lissom project
at Brno University of Technology [4]. It is supposed to
be independent on a particular target architecture, operating
system, or executable file format. See [10] for its detailed
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Figure 1. The concept of the Lissom project’s retargetable decompiler.

description. The decompilation process consists of four
phases, see Figure 1.

(1) At first, the input binary executable file is transformed
using a binary file converter from a platform-specific exe-
cutable format (e.g., Windows PE, Unix ELF) into an inter-
nal, uniform COFF-based file format, see [11] for details.

(2) The subsequent part of the decompiler is a front-
end, which is its only platform-specific part because of the
instruction decoder that is automatically generated based on
the target architecture model (e.g., MIPS, ARM, Intel x86).
The architecture description language ISAC [12], developed
also within the Lissom project, is used for this purpose. The
front-end analyzes and transforms the input application (i.e.,
its machine code, data and other information) into the LLVM
assembly language code, LLVM IR [13], which is used as
an internal code representation of decompiled applications
in the remaining decompilation phases.

(3) Afterwards, this program representation is optimized
in a middle-end using many optimization passes.

(4) Finally, the program intermediate representation is
emitted as the target HLL in a back-end. Currently, a Python-
like language is used for this purpose, while a support of
other target languages is under development (e.g., the C
language). Both middle-end and back-end are built on the
top of the LLVM Compiler System [14]. This language is
very similar to Python, except a few differences (e.g., we use
several C-like constructs, address and dereference operators).

IV. DEBUGGING INFORMATION EXPLOITATION WITHIN
THE RETARGETABLE DECOMPILER

In this section, the concept of the DWARF and PDB
information parsing, processing, and utilization within the
Lissom project’s retargetable decompiler is discussed.

The debugging information is parsed by two different
parsers, the first for DWARF and the second for PDB.
Afterwards, the parsed information is processed and stored
in a debugging-format-independent way. This information
is utilized for an enhancement of the LLVM IR code
representation within the front-end part of the decompiler;
see Figure 2 for details. Finally, this code representation is
passed to the subsequent decompiler parts, see Section III
for details.

DECOMPILER

F R O N T - E N D

LLVM IR

enhanced
LLVM IR

...

debugging
information

COFFG
E
N
E
R
A
T
O
R

PDB

DWARF

...

DEBUG PROCESSING

D E C O D E R

Figure 2. Debugging information processing within the front-end.

A. DWARF Parsing

Parsing of debugging information from an object file to
structures defined in the DWARF specification is done by
the libdwarf [15] library. Original libdwarf is using
libelf to access sections of interest in ELF binaries.
However, the input of our decompiler are uniform COFF-
based objects. In order to parse information from such
files, we exploited libdwarf object access capabilities
and provided a new interface using our internal object
manipulation library.
libdwarf creates a low-level representation of debug-

ging data, whose usage in a decompiler or debugger would
be very complicated and unintuitive. That is why we de-
cided to create a new, mid-layer library called dwarfAPI,
that builds high-level, object-oriented data structures and
provides convenient access methods. dwarfAPI represents
all debugging information about a binary file as one entity
consisting of several vectors of objects such as compilation
units, lines, types, functions and global variables. Each of
these objects contains complete information about itself and
about all the other objects they own (e.g., local variables
in functions). This way, the information that was in a
low-level representation scattered among multiple DIEs is
grouped together, what allows very natural and easy way
of processing complex DWARF structures. It should be
mentioned that dwarfAPI is not limited to a particular
DWARF version or target architecture.

B. PDB Parsing

The only available official toolkit for PDB parsing—DIA
SDK—is unusable for our aims because of the limitations
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discussed in Section II. Therefore, our own PDB parser has
been created. At first, it was necessary to reverse-engineer
the PDB format and analyze its internal structures. For this
purpose, we reused an existing unofficial PDB analyzer [16].

The PDB file parsing consists of two steps. (1) At first, the
streams have to be extracted and separated. They are divided
into constant-size data blocks. At the end of the PDB file,
there is a root directory, which stores each stream’s size
and the indexes of used data blocks. (2) The main stream
processing is done in a consequent step. Most of the streams
are organized into symbols, which are data structures with a
type, size, and data.

While processing all the symbols, the parser fills the
internal data structures. For example, we can extract and
process an address, length, return type, arguments, local
variables and a line number information (i.e., mapping
between machine-code and HLL code location) for each
function described in the PDB file.

Meaning of many data entries depends on a context
(i.e., the previous data entries). The information stored in
a particular stream is often interconnected with another
stream. For example, each data type has an index to its
definition—base types (e.g., int, float) have a predefined
index, but the user types are defined in a type information
stream.

In present, we are able to extract and utilize most of the
PDB streams, but a few remaining streams are still unknown
for us. As well as the DWARF parser, the PDB parser is not
limited to a particular target architecture (e.g., ARM, Intel
x86).

C. Decompiler

After the debugging information is extracted by a parser, it
is ready to be used in the decompiler’s front-end, which up-
dates its intermediate code representation (LLVM IR) based
on this extracted information. In the following paragraphs,
we depict the useful information and its usage within the
front-end.

Module information: Based on the type of the original
HLL, the decompiled binary application is created from
one or more modules (e.g., source files). The debugging
information is usually divided into smaller pieces, where
each piece corresponds to one particular module. This is
useful for the decompiler because it is possible to divide
the resulting code into similar modules, e.g., the decompiler
can divide the decompiled code into several files with the
original names.

Function information: Probably the most important
debugging information is related to functions. A proper
function detection and recovery is a crucial task of each
decompiler. Otherwise, the unstructured and hardly readable
(“spaghetti”) code will be generated (e.g., code containing
goto statements). The Lissom project’s retargetable decom-
piler utilizes its own function detection heuristics based on

the principles described in [17], [18], [19]. However, the
function’s debugging information is used instead whenever
it is available because it is essentially more precise. For
example, it is possible to obtain the function location within
the machine code, its name, the number of its arguments,
their names and types, and many others.

Variables: Our retargetable decompiler is able to detect
both global and local variables, and guess their types. In the
resulting code, it generates variable names from a fixed list
of well-readable names, see [10] for details. However, the
decompiler emits the original name whenever it is stored
in the debugging data. This is just a detail, but it gives
the feeling of listing the original code. Furthermore, both
DWARF and PDB support storage of variable types, too.
This is handy because the recovery of composite data types
is a non-trivial task, see [20].

Line Information: Mapping of source-code locations to
the machine-code is done via so-called line information and
it is an essential part of each debugger. However, its usage
within decompilation is not so important. It can be only
used for re-formatting the decompiled code to better fit its
original format (e.g., splitting the complex expressions into
more statements).

In present, the decompiler uses the function and variable
debugging information, while exploitation of other informa-
tion is under development.

V. RELATED WORK

We can find two existing decompilers that exploit de-
bugging information. Both of them support more target
architectures; however, none of them is truly retargetable
because the support of such architectures is hand-coded by
their authors.

The Hex-Rays Decompiler [21] supports decompilation
of the ARM and Intel x86 target architectures. It allows
using PDB debugging information for enhancing the gen-
erated C code. However, this proprietary software probably
uses the Microsoft DIA SDK [8] or Microsoft Debugging
Tools for Windows (see their limitations in Section II) for
PDB parsing and processing. Therefore, this feature is only
available in the MS Windows version of this software.
The Unix version of Hex-Rays Decompiler needs a remote
MS Windows server with this library for gathering PDB
information. This decompiler can exploit the PDB debugging
information for reconstruction of functions, their arguments,
global variables, etc. However, recovery of local variables is
not always correct (details about this problem are described
in Section VI).

The REC decompiler [22] has a more extensive list
of supported target architectures (e.g., MIPS, PowerPC).
According to the official homepage [22], the DWARFv2
support is in an early stage of development. However, it is
supported only for a subset of the supported architectures.
Therefore, it is plausible that their DWARF parser is also not
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retargetable and it needs to be manually re-configured for
each given architecture. Finally, the PDB support is planned
as well.

As can be seen, the debugging information is a valuable
resource of additional information and it is already exploited
by existing decompilers. However, their current implemen-
tation is limited for several reasons.

VI. EXPERIMENTAL RESULTS

To demonstrate several selected abilities and advantages
of our solution, this section presents a decompilation of a
simple program calculating factorial function for the ARMv4
architecture. The C source code for this program is given in
Figure 3. It was compiled using Microsoft Visual Studio
2005 compiler with enabled PDB debugging-information
(/Zi) and disabled optimizations (/Od).

#include <stdio.h>

volatile int value = 6;

int fact(int n)
{

if (n==0)
return(1);

else
return n*fact(n-1);

}

int main(int argc, char *argv[])
{

int a = fact(value);
printf("%d\n", a);
return a;

}

Figure 3. Source code in C.

The size of the generated PDB file is 1.07MB. Its pro-
cessing by our parser is almost instant (approximately one
second on Intel Core i5 with 3.3 GHz, 8GB RAM running
Windows 7 64-bit operating system). The resulting HLL
code generated by our decompiler can be seen in Figure 4.
Observe the following key aspects of our solution.

(1) With the use of debugging information, we are able to
completely recover functions, i.e., their names, arguments,
and their mapping to a machine code (e.g., fact, main).
Our other algorithms of functions, arguments, and return
values detection that do not use debugging information
(briefly mentioned in Section IV) achieve 80-90% accuracy
of detection. However, the detection method based on debug-
ging information is absolutely precise as long as a compiler
generates the correct debugging information.

(2) Furthermore, the recovery of global and local variable
names is also possible in most cases (e.g., value, a, n).
The only limitation is for local variables because LLVM
optimizations, used in the decompiler’s middle-end, some-
times remove them in the resulting code. On the other hand,
the optimizations can produce variables that were not in the
original code; therefore, they are missing in the debugging

information. In such situations, the decompiler assigns more
appropriate names to such variables than just their addresses.

# -------- Global Variables --------
value = 6

# -------- User Functions ----------
def fact(n):

if n == 0:
return 1

return n * fact(n - 1)

# -------- Main Function -----------
def main(argc, argv):

a = fact(value)
printf("%d\n", a)
return a

Figure 4. Decompilation result in the Python-like language.

In the real world, the debugging information is not always
available for the decompiled binaries. Its presence strongly
depends on a type of decompiled binary application and
purpose of its decompilation. In a case of source code
recovery, binary code migration, or vulnerability detection,
there is a very good chance that the debugging information
is present because applications are usually not stripped,
obfuscated or protected. Presence of debugging information
within the decompiled application is guaranteed in the case
of compiler verification.

On the other hand, malware rarely contains such addi-
tional information. The main reason is that this harmful code
is stripped after creation (i.e., the unnecessary information is
removed). Furthermore, the application is often obfuscated,
ciphered, and packed by some of the existing packing or
protecting software. Based on our internal malware database,
only a few percents of malware contain debugging or
symbolic information. However, as has been said in the
introduction, the decompilation is so much complicated
process that every possible additional information must be
exploited.

Finally, it should be noted that decompilation of compiler-
optimized application can produce a more readable code than
decompilation of a non-optimized application in some cases.
For example, it is easier to track values in registers (i.e.,
optimizations enabled) than in memory (i.e., optimizations
disabled) for the decompiler. However, this is possible only
for several compilers because debugging-information gener-
ation sometimes disables the most aggressive optimizations.

VII. CONCLUSION AND FUTURE WORK

This paper has proposed an extension of the existing
retargetable decompiler which produces a more accurate
decompiled code. The presented solution is based on the
exploitation of compiler-generated debugging information
whenever it is available. The available debugging informa-
tion is utilized for a precise recovery of several HLL con-
structions and enhancement of code readability. In present,
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two common debugging formats are supported—DWARF
and Microsoft PDB.

The fundamentals of debugging information parsing, pro-
cessing, and utilization were briefly discussed and we have
presented results of the current state of the implementation.
As can be seen, we are already able to use debugging
information for the recovery of several HLL constructions
(e.g., functions, their arguments, variables). The resulting
code is a highly readable code in a Python-like language that
can be used in many areas related to software maintenance
and security.

However, there is still a lot of space for improvements.
In the first place, it is necessary to finish the reverse-
engineering analysis of the remaining PDB streams. More-
over, the decompiler does not use several extracted informa-
tion (e.g., source-code line information, information about
modules) at the moment. After that, we will be able to
produce a more accurate LLVM IR code, which will improve
the resulting HLL code.
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