
Generic, Secure and Modular (GSM) Methodology for Design and Implementation

of Secure Mobile Applications

Feng Zhang1, Ioannis Kounelis1,2, and Sead Muftic1
1Communication Systems

School of Information and Communication Technology

Royal Institute of Technology, Stockholm, Sweden
2Institute for the Protection and Security of the Citizen,

Joint Research Centre (JRC), European Commission, Ispra (VA), Italy

{fengz, kounelis, sead}@kth.se

Abstract—The generic, secure and modular methodology,

described in this paper, provides a generic approach for the

design and development of secure mobile applications. It is

applicable to multiple mobile phone platforms and mobile

operating environments. This approach treats a mobile

application in a holistic way and structures it into four groups

of modules: user interface modules, communication modules,

security modules, and business logic modules. These four

groups of modules can be designed and implemented

independently and finally be integrated together. This

approach not only simplifies the process of design and

development of mobile applications, but also improves the

reusability and robustness of mobile applications. In addition,

this paper proposes a trusted layer model for designing the

security modules of mobile applications, which provides

generic application interfaces and comprehensive data

protection. The paper finally gives an example of a secure

mobile application, called SAFE Mobile Wallet, which was

designed and implemented using GSM methodology.

Keywords - mobile; generic; secure; modular.

I. INTRODUCTION

With the significant growth of mobile technologies,
mobile phones have already become one of the most
important accessories in people’s everyday lives all over the
world. Hundreds of thousands mobile applications exist
today and their number is largely increasing every day. Until
March 2012, only Apple’s App Store offered over 500,000
iPhone applications [1]. There are various platforms, such as
Android, Research In Motion (RIM), Symbian, Windows
Phone, iOS (Apple), etc., allowing third parties to easily
develop, test and deploy various mobile applications. Based
on the reasons mentioned above, a lot of researchers,
developers and fans of mobile technologies make great
efforts today to design and develop various mobile
applications.

At the moment, there are numerous hardware and
software platforms used by different mobile devices.
Therefore, the methodology of designing and
implementating mobile applications varies. In addition, even
though there are some generic approaches for building
mobile applications [2], [3], these approaches have not taken
security into account. Many security flaws [2] violate users’

privacy [3] and data security and eventually affect wider
deployment of those applications.

In order to solve the issues described above, this paper
proposes the, here called, Generic, Secure and Modular
(GSM) methodology for the design and implementation of
mobile applications. The distinguished features of our GSM
methodology are the following:

 It treats mobile applications in a holistic way,
meaning that our methodology can be applied to
develop applications for any platform, using any
programming language;

 It uses a modular approach and structures mobile
applications into several groups of modules. Each
module is independently designed and implemented,
making the implementation results reusable;

 It provides an approach for the design and
implementation of security modules, which provides
comprehensive security features for the mobile
applications. The details are described in Section 3.4.

Therefore, we expect that the GSM methodology is a
significant contribution to the process of designing,
developing and deploying secure mobile applications.

The next section continues with related work and then
our methodology is described in detail, covering all four
modules. Finally, there is a conclusion section.

II. RELATED WORK

This section gives an overview of what has been already
published related to secure mobile applications. Most of
these contributions indicate how to design or implement a
mobile application and how to integrate some specific
features into it. Some describe suggestions for mobile
application development, while others point out the
challenges for the development of secure mobile
applications.

Ueyama, Pinto and Madeira proposed a generic approach
for constructing mobile device applications [4]. It is a
middleware solution, based on generic components
approach, to build adaptive applications, which can be
deployed across heterogeneous devices with minimum
resources overhead. It effectively solved the adaptability and
flexibility issues.

Andre and Segarra proposed another generic approach,
called MoleNE [5]. It works in such a way that it provides a

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

set of generic base services as the abstraction of concepts to
the developers so that they could use it to create customized
applications.

Serhani, Benharref, Dssouli, and Mizouni listed the main
issues to consider when developing mobile applications and
mobile Web services [6]. A framework, which includes a
mobile client environment and backend server/mobile Web
services, is described. Finally, an example of a mobile
application, developed by using the proposed framework, is
given.

Ray Gonzales gives some suggestions on how to design
mobile applications in [7]. These suggestions include how to
structure user interfaces based on the size of a screen, some
pre-defined design conventions, etc. in order to achieve
convenient and comfortable interactions between users and
mobile devices.

Christien Rioux presented challenges for developing
secure mobile applications in [8]. He also analyzed security
features for three popular mobile platforms: Windows
Mobile, RIM Blackberry, and Google Android and listed
some security vulnerabilities and malicious code for these
platforms.

Our conclusion is that today there are not so many
research and development results in the area of the generic
methodology for developing secure mobile applications.
Specially, few results concentrate on the security during the
design and implementation phases. The methodology
proposed in this paper addresses this shortage.

III. GSM METHODOLOGY

As shown in Figure 1, our GSM methodology structures
mobile applications into four groups of modules: User
Interface (UI) modules, communication modules, security
modules, and business logic modules. The former three
modules are generic, meaning that these three modules can
be reused. The last module is specific, different for each
mobile application. The reason for this approach is that these
four groups of modules are necessary for most of the secure
mobile applications. In other words, in order to create a
secure mobile application, at least these four groups of

modules should be included.
Every mobile application must have user interfaces for

displaying information to users and interacting with them.
Some of them are simple and some are complex; this
depends on the hardware and operating system of mobile
phones. All mobile applications need also to communicate
either with open networks or with internal modules of mobile
devices. Communication modules exchange messages with
networks, with other devices, and/or with other internal
modules of mobile devices. Next, the security of mobile
applications is also very important. Therefore, security
modules that provide security features, such as generation of
RSA keys, encryption, digital signatures, etc. are also
necessary. These three groups of modules are not sufficient
to create a complete secure mobile application, since they are
separated and independent of each other and they do not
perform any function specific to an application. Hence,
business logic modules are needed to link all other modules
together and coordinate them based on the services or
functionalities provided by a specific mobile application.

GSM methodology also organizes the process of
designing and creating mobile applications into three steps:
(a) analyzing target platforms and devices, (b) designing and
implementing the four groups of modules described above,
and finally, (c) integrating all the modules and performing
tests on the actual devices. As Greg Nudelman said, “One of
the challenges of mobile application design is understanding
both the capabilities and limitations of each platform” [9].
Therefore, the first step is to analyze target platforms in
which the mobile application will be loaded. It includes
technical details of the target platform, such as which
programming language should be used, which libraries and
Application Programming Interfaces (APIs) are supported,
etc. The next step for developers is to design and implement
the generic and specific modules as described in this paper
and the final step is testing the application on the mobile
devices.

A. User Interface (UI) Modules

Each mobile application must provide user interfaces for
getting input from a user and for displaying output to a user.
The design of user interfaces directly influences user
experience. The UI may be different for different mobile
devices or platforms, depending on the hardware and APIs.
Therefore, the design and implementation of UI modules
may also be different. There are lots of guidelines and
suggestions for the design of UI modules for various devices
and platforms. One of the approaches is to implement a
generic object, the UIProvider, which provides all the

necessary UI components, such as TextField, Buttons,

RadioBox, etc. that may be used by all mobile applications
running on the same platform. Even though the
implementation of the UIProvider depends on the platform
and the corresponding APIs, it should be implemented as
generically as possible, so that it can be reused by mobile
applications running on the same platform. In this way,
various mobile applications could share one UIProvider,
which saves development time and makes UI components
easy and flexible to modify.

Figure 1. Internal structure of secure mobile application

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

From a security point of view, the design of the
application should always prompt the user when a security
feature is not used. For example, a warning should be used
when mail is sent over an insecure connection. Moreover, it
is important, when having a dialogue that requires the user’s
interaction, to mark as default the response that will be on
the user’s favor, always in respect to his/her security and
privacy. For instance, if an application asks the user if it is ok
to sign on a page although there is no encryption, the default
button should be no.

B. Communication Modules

Mobile applications must always access local or global
networks. Therefore, network communication functions,
such as sending/receiving Short Message Service (SMS),
establishing connections through Bluetooth [10], Wi-Fi [11],
3G [12], etc. should be designed and implemented. As a
result, communication modules should perform
communications with open networks.

For the communication with open networks, we
designed a generic object, the CommunicationProvider,
which is convenient to manage all the communication
channels, such as Bluetooth, General Packet Radio Service
(GPRS) [13], Wi-Fi, SMS, etc. The
CommunicationProvider works as a “coordinator” to
support these communication channels, as required. For
example, it dynamically and transparently selects the most
convenient channel, controls the priority of the channels,
adds/removes channels to/from the communication, etc. The
priority of communication channels can be configured,
depending upon usage requirements. Each specific
communication channel is implemented individually and
should be tested for the connections with the
CommunicationProvider. Communication channels
should be independent of each other and the procedure of
establishing connections should be transparent to users.

Moreover, secure channels should be given priority over
insecure ones. So, if there is an option to connect to a page
with both http and https the second should be used by
default, without requiring user intervention.

C. Security Modules

As explained in previous Sections, security is more and
more important for mobile applications. In order to provide
comprehensive security services for mobile applications, we
designed a SecurityProvider, based on our proposed
trusted layer model.

As shown in Figure 2, our trusted layer model structures
the security modules into four trusted layers: Secure Element
(Chip), applets, middleware and applications. The trusted
layer model is equivalent with the Open Systems
Interconnection (OSI) seven layer model; each layer
provides services to its upper layer while receiving services
from the layer below.

Layer 1: Secure Element (Chip)
This layer represents the chips used by mobile devices

for mobile transactions, such as the Subscriber Identity
Module (SIM)/Universal Integrated Circuit Card (UICC)
chip, Micro SD chip, etc. The chip contains a microprocessor

and a small memory, used in the mobile phone. It is secure
and tamper resistant, so that it works as a Secure Element
(SE), storing important information, such as credit card
numbers, private keys, etc. Moreover, because of the
compatibility and mobility of these chips, using them for
storage of data ensures that users can easily migrate their
data between different mobile devices. The chip layer
defines how data is stored in the SE. It also defines the
format of the application protocol data unit (APDU) that is
used for upper layer to invoke the functionalities provided by

the chips.

Layer 2: Applets
This layer represents the applets installed and functioning

in the hardware of a chip. Applets interact with the chips
using APDU commands, invoking functions provided by
chips and providing those functions to the upper layer.

Layer 3: Middleware
Mobile applications use high-level programming APIs,

but applets in the chips understand only APDU commands.
Therefore, in order to make the communication between
mobile applications and chips as smooth as possible, a
middleware is needed. This approach is also suggested in the
FIPS 201 (Personal Identity Verification - PIV) standard
[14]. The middleware works as a “translator” between a high
level application and an applet loaded in the chips. On one
hand, it provides APIs to high level applications, so that
developers should not need any knowledge about chips and
applets loaded in them. As a result, it makes the invocation
of the functions, which are provided by the applet in the
chips, transparent to mobile applications. On the other hand,
the middleware communicates with the chips using APDU
commands.

The middleware layer defines how the upper layer
software applications invoke the functions provided by
applets. It provides APIs, for upper layer mobile applications
to invoke the functions provided by the applets. The
middleware layer contains the implementation of these APIs,

Figure 2. Trusted layer model

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

Figure 3. Hierarchy of UI Panels of SAFE Mobile Wallet

the role of which is to translate the upper layer application
data calls into APDUs and vice versa.

An implementation of the middleware can be seen in
[15]. In this paper, we have created a middleware that allows
the flow of data from a UICC to the upper layer applications
and eventually the user of the mobile device. The core
principle of this implementation was to make the whole
process transparent to the application developers and even
more to the end user. As Saltzer and Schroeder [16] stated in
the 1970s, if the security mechanisms make the product or
device harder to use, then the users will simply avoid using
them.

Layer 4: Applications
The application layer is the one closest to the end-user. It

comprises the Graphical User Interface (GUI), interacting
with and providing security functionalities for users.

A SecurityProvider was designed in order to provide
security functionalities. It is designed as follows:

The application layer comprises the interfaces to access
the implementation of each security service. And it provides
the SecurityProvider as an interface to get the instance
of these security services. For example, the following pieces
of code are used to create an instance of the
GenerateKeyPair service:

SecurityProvider secprovider = new

SecurityProvider();

IGenerateKeyPair genkp =

secprovider.GenerateKeyPair();

genkp.generateKeys(AlgorithmID);

genkp.saveKeys(keypairs);

Security services are implemented in the security applets,

functioning on the chips. Therefore, during the execution of
the codes listed above, the application needs to communicate
with a specific applet that implements the invoked security
service through the middleware. The user is required to enter
a correct Personal Identification Number (PIN) in order for
the middleware to access the applet. The PIN-based
authentication mechanism is one of the security properties of
the applets. Each applet has a default PIN and the user is able
to set his/her own PIN. If the user authentication is
successful, a secure connection is established between the
middleware and the applet. Meanwhile, the middleware
translates the service request into corresponding APDU
commands, according to the rules and formats defined by the
applet. The middleware sends the APDU commands to the
applet via the established secure connection. The applet
executes the required function and returns the execution
result in the form of APDU response code to the middleware,
which then translates the code to an application-layer service
response.

By this approach, the SecurityProvider can provide
as many security services as the chip supports. In addition,
the application-level security mechanisms can always be
added in order to provide higher security. For example, the
data exchanged between the mobile application and the
applet is encrypted using AES with the hash value of the
applet authentication PIN as the symmetric key. In this way,

the data is stored/fetched in/from the chips in encrypted
form, which prevents disclosure to the middleware so that
the data is not revealed if the middleware is compromised.

D. Business Logic Modules

Business logic modules are the core of each mobile
application. They process application data, messages, etc.,
coordinate various other modules and functions, and provide
specific application services to mobile users. The design and
implementation of business logic modules depends on the
functions that need to be provided by a mobile application. A
good approach is to structure them in a modular form, so that
they are individually as simple as possible. In other words,
these business logic modules should utilize modules from
other three groups as much as possible. The process of
implementing business logic modules includes also
integration with all the other three groups of modules.

E. Example application: SAFE Mobile Wallet

This section describes an example of the design and
implementation of one secure mobile application using our
GSM approach. The mobile application is called SAFE
Mobile Wallet, which is one of the components of our
Secure Applications for Financial Environments (SAFE)
System [17], [18]. It was implemented by using Java
Platform Micro Edition (Java ME) and supports various
financial transactions, such as mobile banking, mobile
payment Over-the-Counter (OTC) / Over-the-Air (OTA),
mobile ticketing, mobile parking, etc. SAFE Mobile Wallet
is continuously expanding with new functionalities.

The UI of SAFE Mobile Wallet comprises two levels of
menus and several data handling forms. The hierarchy of UI
panels is shown in Figure 3. Each panel is designed and
developed using MenuItemsSelection template and then
all UI objects are linked with each other by buttons or
actions. One generic object, UIProvider, was implemented,
which provides UI related functions, such as
createFormImage, addTextBox, addStringItem, etc.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

SAFE Mobile Wallet Application

UICC Middleware

APDU

 KVM

 MIDP

 CLDC

 SATSA

UICC

Figure 4. Communication between SAFE Mobile Wallet and UICC

setSAFESystem_ID(String)

setSAFESystem_

UserMobileNumber(String)

UICC Middleware

UICC with Wallet

Applet

Phone with Wallet

Application

… ...

setSAFESystem_Balance(String)

setSAFESystem_Account(String

)

Figure 5. Example of the process for storing data on the UICC

The SAFE Mobile Wallet uses three types of protocols to
communicate with back-end servers: GPRS, Bluetooth, and
SMS. Therefore, there are three corresponding generic
communications objects: BluetoothConnection,

GPRSConnection, and SMSConnection. Each of them
handles one of the corresponding protocols. In addition, we
implemented a generic CommunicationProvider object to
manage these three communication objects. Each
communication object returns its corresponding connection
as an object to the CommunicationProvider. So, the
business logic modules just need to invoke the
CommunicationProvider to send out or receive messages
through a specific communication protocol.

For communications with the UICC, SAFE Mobile
Wallet uses UICC middleware in order to securely store and
retrieve data from the UICC. This means that SAFE Mobile
Wallet is able to invoke methods provided by the
middleware internally without any separate communication
method, as shown in Figure 4. In order to read and save data
on the UICC, the Security and Trust Services API (SATSA)
[19] was used.

The UICC middleware is a transparent, lightweight,
secure and autonomous software module used by the SAFE
Mobile Wallet. It was designed and implemented in such a
way that the process of communicating with the UICC is
transparent to the SAFE Mobile Wallet, which does not
distinguish any difference between fetching and storing data
from/to the smart card and manipulating data as files on its
own system. Figure 5 shows an example of storing data on
the UICC.

The SAFE Mobile Wallet provides several security
services for its financial transactions, including user
authentication, message confidentiality and integrity, non-
repudiation, authorization, etc. [17]. For those services,
MobileSecurityProvider module was designed and
implemented. It provides various security functions, such as
generateRSAKeys, AESEncrypt/AESDecrypt,

generateMessageDigest, etc. All security services,

provided by the Wallet, are based on these functions.
Therefore, whenever an application requires new security
features, a developer just needs to extend the
MobileSecurityProvider module for new functions and
cryptographic algorithms. Implementation of the
MobileSecurityProvider object can be different,
depending on the platform, programming language, APIs,
etc. MobileSecurityProvider was implemented using
Java ME, so it can be used on any mobile phone that
supports Java.

The UICC middleware was also designed to function in a
secure way. The middleware has no semantic knowledge of
any data that it parses and passes in both directions. This
gives mobile applications an option to store encrypted data in
the UICC. Also, the middleware has no knowledge of
passwords or keys used for authentication or cryptography.
Another security feature is that the middleware keeps no data
in its internal memory. All changes and modifications of data
are saved directly in the UICC, which provides strong
protection of data and also prevents synchronization issues
(mostly when dealing with online, real-time transactions).
Finally, the middleware follows the authentication
mechanism required by the UICC: strong authentication
protocol and secure channel between an application and
UICC [20]. As a result, mobile users must authenticate
themselves to the Wallet applet before being able to read and
write data. If a user fails to provide the correct password
after a predefined number of attempts, the UICC locks and
can only be unlocked by the administrator.

As one of the components of our SAFE System, the
SAFE Mobile Wallet is used to perform several types of
mobile applications, such as mobile banking, mobile
payment, mobile ticketing, etc. Therefore, business logic
modules for those applications are designed as follows:

1. When a user starts SAFE Mobile Wallet, the Wallet
asks the user to specify his/her PIN, if it is initial activation
of the Secure Mobile Wallet. The PIN is then encrypted
using AES algorithm, with hash value of the PIN as an
encryption key, and is stored locally. Later, when a user
starts the Wallet, the correct PIN is required in order to
authenticate the user. After that, the Wallet initiates detection
of available communication protocols. If a SAFE PoS
Station supporting Bluetooth protocol is detected, the Wallet

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

will use Bluetooth to communicate with the Station and pass
it through with other SAFE Servers. Otherwise, the Wallet
tries to activate GPRS protocol. If GPRS is not supported,
Wallet will use SMS as the communication channel. The
described detection procedure is performed automatically
and in the background;

2. After successful authentication, the user can
perform all Wallet transactions [17]. All SAFE transactions
are executed in a request-response way. The user enters the
required data for a transaction. The Wallet creates a
transaction request message and sends it to the SAFE Servers
through an available communication protocol. SAFE Servers
process the transaction and send the transaction result back
as a response.

IV. CONCLUSION AND FUTURE WORK

This paper achieves several goals. First, it describes our
proposed GSM methodology for the design and development
of mobile applications. This methodology structures mobile
application into four groups of modules and each of these
modules is independently developed and reused, which
makes the design and development of secure mobile
applications more efficient, flexible and expandable. Second,
it describes our proposed trusted layer model. This model
provides a framework for designing secure mobile
applications and more importantly, it represents a way of
integrating the security mechanisms, provided by chips, with
mobile applications. Finally, it introduces the approach of
using a middleware for the communication between mobile
applications and chips. This approach effectively protects the
data, since the data is stored in the chips instead of mobile
devices. It is much more difficult to compromise the chips
than mobile applications.

Future research activities can be conducted in the
following aspects: a. make the middleware more generic so
that it is not dependent on upper layer application and lower
layer chips; b. improve the trusty and security of
middleware; c. extend the security modules to use biometric
information, such as finger prints.

REFERENCES

[1] The App Store, There’s an app for that. Over 500000,
actually, Apple. In: http://www.apple.com/iphone/built-in-
apps/app-store.html [Accessed March 16, 2012].

[2] P. Hornshaw: Mobile Apps Can Create Security Issues, Oct. 5
2010. In: http://www.appolicious.com/tech/articles/3388-
mobile-apps-can-create-security-issues [Accessed March 16,
2012].

[3] iPhone Applications that transmit credentials using ‘unsafe’
protocols, Oxolab Blog, Apr. 26, 2010. In:
http://blog.0x0lab.org/2010/04/unsafe-iphone-applications/
[Accessed March 16, 2012].

[4] J. Ueyama, V. Pinto and E. Madeira, “Exploiting a Generic
Approcah for Constructing Mobile Device Applications”,
Proceedings of the Fourth International ICST Conference on

COMmunication System software and middleware, Verona,
Italy, July, 2011.

[5] F. Andre and M. Segarra, “A Generic Approach to Satisfy
Adaptability Needs in Mobile Environments”, Proceedings of
the 33rd Annual Hawaii International Conference on System
Sciences, Maui, Hawaii, Januare, 2000.

[6] M.A. Serhani, A. Benharref, R. Dssouli, and R. Mizouni:
Toward an Efficient Framework for Designing, Developing,
and Using Secure Mobile applications, International Journal
of Human and Social Sciences (IJHSS), World Academy of
Science Engineering and Technology, Volume 5 Number 4,
pp. 271-278, 2010.

[7] Tips for Designing Mobile Applications, Clickbrand, January
12, 2009. In: http://www.clickbrand.com/blog/web-
design/tips-for-designing-mobile-applications/ [Accessed
March 16, 2012].

[8] C. Wysopal: The Challenges of Developing Secure Mobile
Applications, Veracode, July 22, 2009. In:
http://www.veracode.com/blog/2009/07/the-challenges-of-
developing-secure-mobile-applications/ [Accessed March 16,
2012].

[9] G. Nudelman: Designing Mobile Search: Turning Limitations
into Opportunities, UXmatters, March 8, 2010. In:
http://www.uxmatters.com/mt/archives/2010/03/designing-
mobile-search-turning-limitations-into-opportunities.php
[Accessed March 16, 2012].

[10] “Bluetooth”, Wikipedia [website], Available:
http://en.wikipedia.org/wiki/Bluetooth [Accessed March 16,
2012].

[11] “Wi-Fi”, Wikipedia [website], Available:
http://en.wikipedia.org/wiki/Wi-fi [Accessed March 16,
2012].

[12] “3G”, Wikipedia [website], Available:
http://en.wikipedia.org/wiki/3G [Accessed March 16, 2012].

[13] “GPRS”, Wikipedia [website], Available:
http://en.wikipedia.org/wiki/Gprs [Accessed March 16, 2012].

[14] The Federal Information Processing Standards Publication
Series of National Institute of Standards and Technology
(NIST): Personal Identity Verification of Federated
Employees and Contractors (FIPS 201), March 2006

[15] I. Kounelis, H. Zhao, S. Muftic, Secure Middleware for
Mobile Phones and UICC Applications, Mobile Wireless
Middleware, Operating Systems, and Applications, Springer,
2012, pp. 143-152

[16] M. Bishop, Computer Security: Art and Science. Boston, MA:
Addison-Wesley, 2003, pp. 348-349

[17] F. Zhang, “Secure Applications for Financial Environments
(SAFE) System”, Licentiate Thesis, Royal Institute of
Technology, Stockholm, Sweden, June 2010

[18] S. Muftic, F. Zhang, and K. DeZoysa, “SAFE System: Secure
Applications for Financial Environments Using Mobile
Phones”, Proceedings of IADIS International Conference
IADIS e-Society, February 2009.

[19] “SATSA Developer’s Guide”, Oracle [website], Available:
http://download.oracle.com/javame/config/cldc/opt-
pkgs/api/security/satsa-dg/index.html [Accessed March 16,
2012].

[20] CardContact, “OpenCard Framework”, December 28, 2010,
Available: http://www.openscdp.org/ocf/ [Accessed March
16, 2012].

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

