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Abstract—Intrusion detection system (IDS) detects an intrusn
by comparing with its attack signatures. The generéon of IDS
signatures is based on the analysis of attack tra€f which is a
result of exploiting vulnerabilities in a network protocol. Thus,
the protocol analysis becomes an effective method find out
protocol vulnerabilities with regard to IDS. But the problem of
protocol analysis in IDS is that how to detect allprotocol
vulnerability conditions in protocols. In this pape, we propose
a novel framework to identify protocol vulnerability conditions
by utilizing existing protocol analysis techniquesln particular,

there are three major analysis steps in our framevwd:

protocol semantic analysis, protocol implementatioranalysis
and protocol state transition sub-condition analys. In the
final step of our framework, we illustrate the useof deletion,
addition and modification operations with the purpcse of
generating all potential protocol vulnerability conditions from
the normal protocol transition conditions. Experimental results
show that this framework is encouraging and feasilal.
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l. INTRODUCTION

Rule-based intrusion detection and prevention syste
(RIDS/RIPS) [1, 3] are mainly based on attack digres to
detect an attack. The attack signatures are siaredrule
database and updated to the latest version peaitdigVvhat
is more, the generation of these attack signatbesssily
depends on an exploit of vulnerability in a protoctake
Snort [2] as an example, this lightweight RIDS ntors and
analyzes the protocol packets (e.g., UDP, TCPatedrding
to its rules to alert and prevent intrusions. Tammon rule
format of Snort is as blow:

Action-type protocol-type Source-ip Source-port ->
Destination-ip Destination-port (content:"|attack signature]”;
msg: "attack msg";)

For an ICMP DDoS attack by using tfn2k tool, thiack
rule or signature can be produced in terms of ttealed
characteristic as below:

alert icmp $EXTERNAL_NET any -> $HOME_NET any
(msg:"DDOS  tfn2k icmp possible  communication”;
icmp_id:0; itype:0; content:" AAAAAAAAAA"; rev:5;)

The content “AAAAAAAAAA” in this rule is the attack
signature (also callecharacteristic) for this exploit.

What is more, the vulnerabilities in a protocol egpear
in different forms, e.g., the change of bit valuas the
change of packet sequence. In common cases, akeatta
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usually utilizes these forms of protocol vulneraigis to do
harm to the network security.

To identify protocol vulnerabilities, protocol agsis is a
prevalent and effective method used in intrusiotect®n.
The advantages of protocol analysis are listedvinelo

»  Strong capability of vulnerability detection: pvool

analysis does not only assist IDS to analyze ndtwor
traffic in terms of protocol specification, but alkas
the ability to identify vulnerabilities during piatol
implementation. For example, the input length and
special characters checking and filtering.

e Target detection space reduction: protocol aiglys

lightens the analysis workload by cutting down the
target number of protocol fields, e.g., searchiog f
specific parts of packet rather than entire payload

Problems. The coverage of signatures is the key problem
for rule-based IDS in reducing the detection accyurdhe
IDS signatures usually are easy for an attackeaveme by
making some small modifications of the original sage in
a packet. For example, changing the size of varildnigth
fields or changing the field values in a packethwihe
purpose of mismatching the IDS signatures.

We argue that the coverage problem of IDS signature
stems primarily from the variants of vulnerabilitiéen a
protocol. In particular, different forms of a vutability in a
network protocol usually are caused by some mihanges
of respective protocol vulnerability conditions. Asresult,
the ideal solution to this problem is finding olit @otential
protocol vulnerability conditions that lead the ool state
from a normal to an abnormal state.

Related work. The concept of modifying the software
testing paths has been implemented in detectintyvaf
vulnerability conditions [17, 6, 8] and then hetfemtifying
software threats. Saxena et al. [18] introducegextended
symbolic execution that broadens the coverage wibsyic
results with loops to find out the vulnerabilitynohbtions in
programs. Our work attempts to make use of thicepnof
detecting software vulnerability conditions througteating
various software testing paths into the detectibprotocol
vulnerability conditions by analyzing a protocoksfication.
We aim to make progress towards systematic detectio
possible vulnerability conditions in network protts by
applying three operations to normal protocol stateditions.

Contribution. In this paper, we propose a framework to

detect protocol vulnerability conditions by utihizj existing
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Figure 1. The framework for identification of protocol vulradaility conditions.

protocol analysis techniques with the goal of idgimy all
vulnerability conditions in network protocols. lraticular,
our framework has the ability to detect protocdheuability
conditions without a real attack by applying thesi@ions
(deletion, addition and modification) onto normersition
conditions of protocol states.

What is more, we use tH&/THEN format to represent
these protocol vulnerability conditions as the atitim our
framework. For example, as for Destination fragratoh
vulnerability in ICMP (this vulnerability in ICMP gxket
due to the packet size is larger than 65536 ochefsthe
DF/Don’t fragmentation bit is set to 1), the reestion of

To demonstrate the feasibility of our framework, Weis protocol vulnerability condition could be (aeding to

developed and evaluated the framework in an ex@ertiah
environment which is constructed by Snort [2], \Wirerk [8]
and a packet generator [9]. Furthermore, we verifier

framework by comparing our identified ICMP protocol

vulnerability conditions with a set of ICMP Snoules.

The rest of this paper is organized as followsSéttion
2, we introduce the steps in our framework that tmdetect
potential protocol vulnerability conditions and thgive an
in-depth description of operations in protocol est@ansition
sub-condition analysis; Section 3 presents our raxgatal
methodology and an experimental result; Sectiotates the
future work; at last, Section 5 gives our conclasio

II.  OURFRAMEWORK

In this section, we first give the definition ofgpocol
vulnerability condition in our framework, and thetroduce
the representation format of protocol vulnerabitipndition.

Protocol vulnerability: a point that causes the execution

of a protocol to be out of normal function and makeors.

Protocol vulnerability condition: A specific and certain
condition that leads the protocol state to reaehpiotocol
vulnerability which results in causing the protoeskcution
to an abnormal state.

In addition, the specific forms of protocol vulnbeildy
conditions could consist of particular triggergg(enetwork
parameters change, packet flag values reset) thateca
protocol vulnerability exploited, and abnormal psire.g.,
implementation errors, coding ignorance etc.) thadsibly
compromise the function of a protocol.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-010-9

captured attack traffic):

IF {Datagram greater than 65536 octets and DF=1}
THEN {alert msg: ping of death attack}

This representation is compact and at protocoll I&vee

merits of this representatiol{THEN) are:

» Easy for understanding, th& part describes the
details of vulnerability conditions in protocol$et
THEN part gives the description and information of
this exploit.

» In favor of signature generation, it is comfotéafor
rule-based intrusion detection/prevention systems t
produce attack rules and signatures accordingeto th
IF/THEN representation. In general, attack signature
can be extracted from th€ part, and alert message
is corresponding to thEHEN part.

In the next two subsections, we first give detaflghe
steps in our framework to account for the generatg@dure
that how to detect protocol vulnerability conditsomvith
high coverage by making use of current protocollysig
techniques. We then give an in-depth descriptiothenuse
of operations (deletion, addition and modificatidimat how
to identify potential protocol vulnerability coniihs from
known protocol state transition sub-conditions.

A. Framework Design

In Fig. 1, the framework illustrates that how terdify
potential protocol vulnerability conditions by ugiprotocol
analysis techniques. The framework consists ofetimajor
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steps: protocol semantic analysis, protocol impletaton
analysis and protocol state transition sub-corndlitinalysis.
The first step aims to produce generic protocol state
transition graph in terms of protocol specification (e.g.,
RFC [12], or use other intermediate language [1€jg
second step considers the protocol implementataie o
enrich and extendeneric protocol state transition graph to
a specific protocol state transition graph; and the goal of the
last step is to produce potential protocol vulnditsb
conditions with operations (such as deletion, aoldiand
modification) onto normal transition conditions ffotocol
states according tepecific protocol state transition graph
and then analyze the generated results to idemaft
protocol vulnerability conditions.

Protocol Information. According to the Fig. 1, this is the
data source in our framework. The protocol infoliorat
contains both essential details of Protocol Speatifbn [4]
and Protocol Implementation note [5].

e Protocol Specification: All semantic information of

Generic protocol state transition graph (GPSTG). The
term of generic means that this graph only contains
indispensable protocol states and fewer transg@rditions
which shows the generic transition relationship ago
protocol states. This generic protocol state ttawsigraph
is easier to be drawn according to protocol spestifn,
since there is no need to identify all specifidestaansition
conditions in practical scenarios.

Step2: Protocol Implementation Analysis.This step
aims for generating a specific protocol state titeomsgraph
by using protocol implementation note and rele\ganeric
protocol state transition graph. Actually, the gatien of
the specific protocol state transition graph heagiépends
on the information in protocol implementation ndtem
which the specific protocol state transition coiwtis can be
indicated.

Soecific protocol state transition graph (SPSTG). The
term of specific means that this graph contains all protocol
states, as well all specific protocol state tramsitonditions.

network protocols can be found in RFC (Request folFrom another view, the SPSTG is an extended grahph t
Comments) [12], in which a series of documents thagmerges from GPSTG by utilizing much more informati

collect Internet information, UNIX and Software

provided by the protocol implementation note.

documents of Internet community. The extraction of

protocol specification can be referred to previous

work for details [4, 6, 7, 11]. In addition, it isseful
and effective to find out lots of public specifiicat
in Vulnerability Database (e.g., NVD [13], CVE [14]
OSVDB [16]).

e Protocol Implementation Note: This note contains
the implementation details of network protocolg(e.

according to RFC documents, how to program the

Step3: Protocol State Transition Sub-Condition

Analysis. The main purpose of this step is to analyze sub-

conditions in the specific protocol state transitgraph and
generate potential protocol vulnerability condigon

To facilitate the illustration of this analysis worwe
give definitions of atom condition and compounddition.

Atom Condition: a certain kind of condition that cannot
e decomposed further in semantic level (e.g., {DF=
Datagram greater than 65535 octets}).

protocol). Moreover, we need to notice that the rea
implementation of a protocol may be changed a bi
from the standard document due to the specifi

network environment and demands. We refer the

reader to [5, 15, 17] for details of the extractiun
protocol implementation note.

In practice, the network protocol implementations a
usually distinct from the RFC documents due to ficat
environment. In this case, we could retrieve theeesal
protocol information with the method of protocolveese
engineering [6, 11, 19, 20], which is an effectimethod to
find out the principles of a protocol by analyzithg relative
structure, function, operation etc.

Stepl: Protocol Semantic Analysis.The purpose of
this step is to draw a generic protocol state ttimmsgraph
by using protocol specification. State transiticagh [20]
(also called state transition diagram) is a gréaygh indicates
the relationship between two states indicating #mbbject
will take certain actions from the first state teetsecond
state. Obviously, protocol state transition grapBTG) is a
particular instance of the state transition grapmeétwork
protocols.
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Compound condition: a kind of condition that consists
of more than one atom condition (e.g., {Datagrareatgr
than 65536 octets and DF=1}).

In this step, the analysis work falls into threpey. The
first type is to analyze the specific protocol stafansition
graph and divide the protocol state transition @ into
sub-conditions until all atom conditions are id&atl within
each protocol state transition.

The second type is to pick up overlap atom conaftio
since these conditions affects more than one siatsition.
As a result, these overlap conditions are mordylike be
utilized to create protocol vulnerability conditgn

The last type of analysis work is to operate (dgladd
and modify) on these atom conditions (not only ekerlap
atom conditions but also the other atom conditidgasprm
potential protocol vulnerability conditions. To dtd, add or
modify an atom condition has the possibility to mhpa the
contents of relevant compound condition and cautanain
the state transition. In this case, these changeditions
(which may cause a flaw in protocol state trans&)oare
protocol vulnerability conditions that an attackan utilize.
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Figure 2. Operations of deletion, addition and modification.

B. Operationsin Protocol Sate Transition Sub-Condition

Analysis

In Fig. 2, we assume a specific protocol statesitam
graph and then illustrate the operations (deletamdition
and modification). In Fig. 2 (a), a specific pratbctate
transition graph is assumed that Statel can chan§eate2
and State3 if Conditionl and Condition2 are saibfi
respectively. State2 converts to State3 as longaaslition3
is fulfilled. In Fig. 2 (b), we assume that Conalitl could
be divided into three atom conditions {AC11, ACEZ;13}.
Similarly, Condition2 and Condition3 have atom citiods
{AC21, AC22, AC23} and {AC31, AC32} respectively.

Look for overlap atom conditions. As shown in Fig. 2
(b), AC13 is the same as AC23, and AC31 is equaldal.

vulnerability conditions for the operation of adalit in our
framework. For example, the AC13/23 and AC31/21 are
overlap atom conditions according to Fig. 2 (b),then can
attempt to add AC13/23 to Condition3 instead of A33
(which is only a generic atom condition) to guaesnthat
our produced conditions are limited. Like this, wan add
AC31/21 to Conditionl in evaluating the effectsthése
changes as well.

Madification of atom conditions. To change the original
content of an atom condition is an effective wayctuse
some errors in the protocol state transitions.itn E (d), if
we modify AC31 to AC31’ in Condition3, the errorsaaynbe
caused between the protocol state transition betv@&tate2
and State3. The major modification skill is to get packet
bit values to an opposite value or another diffenaaiue.

Thus, AC13/AC23 and AC31/AC21 are the overlap atonfFor example, if DF=0 in original ICMP packet, thé Dit

conditions. The advantage of finding out these lapeatom
conditions is that these overlap atom conditiongeh@aore
chances to affect the state transitions among Gt&te2
and State3. Moreover, the overlap atom conditioasuaed
in the addition operation in our framework. We thdsfine
the three operations of deletion, addition and rincation.

Deletion of atom conditions. According to a specific
protocol state transition graph, deleting or omgtan atom
condition in a relevant compound condition couldruhe
the original contents of this compound conditionl aesult
in a fault or error during the state transition. gsown in
Fig. 2 (c), if an atom condition AC32 is deletediree errors
may be occurred in the protocol state transitiotwben
State2 and State3.

Addition of atom conditions. Similar to deletion, adding
an atom condition to a state transition conditiomymause
the state to an abnormal state as well. In Fige)28dding
an atom condition AC33, the State2 could do nowkhow
to deal with the additional condition and thus progs a
flaw during the protocol state transitions. In damework,
we use the overlap atom conditions for additionrapen.

Empirically, the overlap atom conditions are muobren
vulnerable in the protocol state transitions. Teua the
feasibility and effectiveness of this operation, tives utilize
the overlap atom conditions to generate potentiatggol
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will be set to 1 (DF=1) during the modification.

If deleting, adding or modifying an atom conditioan
cause a normal protocol state to an abnormal gtaseatom
condition or the relevant compound condition isareigd to
a real protocol vulnerability condition.

The merits of these operations are: 1) the effacis$
results of applying these operations onto atom itiomnd
could be able to cover all possible forms of protoc
vulnerability conditions (which may consist of atoma
condition or more than one atom condition). Nam#étgse
operations have the ability to generate all postmtiotocol
vulnerability conditions; 2) it is more likely taéntify the
variants of known exploits and has the chance soodier
unknown vulnerability conditions by applying thegeee
operations and analyzing the produced conditions.

Ill.  EVALUATION

In this section, we evaluated our framework in a
constructed environment by using existing toolshsas
Snort [2], Wireshark [8] and a packet generator. [Bhe
environment is shown in Fig. 3.

In the following parts, we begin by discussing our
experimental methodology to explain that how taniduour
evaluation and achieve the results. Then we shewasults
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Figure 3. Experimental environment and deployment.

of our experiment on the protocol of ICMP to denioate
the feasibility of our framework.

A.  Experimental Methodology

In Fig. 3, we developed a protocol vulnerabilityhddion
generator (the input is protocol atom conditionysthwe
should draw SPSTG in advance) in Host 1 that géeera
majority of potential protocol vulnerability conidibhs with
deletion and addition operations. But as for thalification
operation, it is more laborious to obtain the ressulhe PUC
database provides a passive storage space foetteraged
potential protocol vulnerability conditions. Theme used a
packet generator to create packets according tpdtential
vulnerability conditions in the PUC database (esgtting the
bit value in the packet to an opposite or differeatue,
changing the sequence of bits). At last, the odaftackets
are sent to the Host 2 through routers.

The Host 2 is the target for the experiment. Teefwe
deployed two open source tools Wireshark and Simbot
this host with the purpose of monitoring networkffic and
detecting abnormal packets that come from Host He T
Wireshark is a powerful tool to capture networkficaand
perform packet analysis while the objective of $rsrto
detect abnormal packets according to its rulessagrthtures.

In this experiment, we used Snort rule databasesifre
2.8) to verify our identified potential protocol merability
conditions. In practice, we evaluate our framewamdCMP
by comparing our identified protocol vulnerabili@gnditions
with the ICMP Snort rules. Based on these conditione
can create specific ICMP packets to challenge th@tS In
this case, if the number and contents of our detiegbtential
protocol vulnerability conditions can cover all thie ICMP
Snort rules, we can show that our framework isildas

B. Analysiswith an Example on the detection of protocol
vulnerability conditions

normal transition conditions (a compound condition)
manually that trigger Statel (send packet) to 3taiait for
response). The conditions have then been dividedtimee
sub-conditions: SubC1 {the distance to the netwsffnite},
SubC2 {indicated protocol module or process poedtve}
and SubC3 {datagram need fragmented and DF=0}.

Furthermore, we identify atom conditions as follows
{distance finite}, {protocol module is active}, {pcess port
is active}, {datagram must be fragmented} and {DF=0o
better understanding, all these atom conditiongpegeented
at semantic level. There are no overlap atom cimmgitin
this example since there are only two protocokstat

Subsequently, we apply operations (deletion, tamfdi
and modification) into these atom conditions teeeffrelated
transition conditions.

Deetion: delete any one or more above atom conditions.
For instance, deleting {distance finite}, the reniag
conditions will be {SubC2 and SubC3}. If deletingd atom
conditions such as {distance finite} and {proceswtpis
active}, the result is {protocol module is activedsSubC3}.

Addition: this operation is based on expert knowledge to
some degrees. In our method, the atom conditioaddition
comes from the overlap atom conditions. Since tliengo
overlap condition in this example, we can skip tperation.

Modification: this action aims to change the contents of
atom conditions. For example, atom condition {dis&
finite}, {DF=0} could be modified to {distance infite},
{DF=1}. The purpose of these changes is to revehse
meaning of atom conditions or to set condition galuo
another different value.

We use theF/THEN to represent the generated potential
protocol vulnerability conditions. For instance,ridg the
experiment, we can detect a protocol vulnerabdapdition
through modifying the atom condition {DF=0} to {DEFin
affecting Sub3. Thus, the representation of thistqmol
vulnerability condition in our framework is:

Based on our experimental methodology, we give an

example to illustrate the experiment on ICMP. Acdiog to

the description part of page 5 in RFC 792 [12], we produce
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IF {datagram must be fragmented and DF=1},
THEN {alert msg: host crack down}.
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In the experiment, these oversized packets caredhes
host to be crashed or rebooted since the host riuidenow
how to deal with these oversized packets. Whataeemwe
find out the relevant rule in Snort rule databaseetrify this
is a real protocol vulnerability condition. The snale is:

alert icmp $EXTERNAL_NET any -> $HOME_NET

the relationship among these steps of the framevemidk
define three operations of deletion, addition arudlification
in the final step that are used to generate paieptotocol
vulnerability conditions from normal transition abtions of
protocol states. In the experiment, we develop eraluate
our framework on the protocol of ICMP in a consteac
network environment by using Snort, Wirewark andkea

any (msg:"ICMP Destination Unreachable Fragmematio generator. The experimental results show that ramndéwork

Needed and DF bit was set"; icode:4;
reference:cve,2004-0790;reference:cve,2005-0068;
classtype:misc-activity; sid:396; rev:7;)

The meaning of this rule is to alert that ICMP naggs
needs fragmentation but the Don't Fragment flamjswhich
is the same to our detected protocol vulnerakiiitydition.

Performance Analysis.In the experiment, we evaluated

our framework by the use of 115 ICMP Snort rulestfie
icmp.rules and icmp-info.rules folders). In particular, we
classified the ICMP Snort rules into 7 types sushGMVP
fragmentation, ICMP ping, ICMP redirect, ICMP pakgter
problem, ICMP unreachable problem, ICMP TTL and IEM
conversion error.

The experimental results on the protocol of ICMBvgh
that our detected ICMP vulnerability conditions ep00%
of the ICMP Snort rules except for those softwarierded
ICMP rules. We discovered that one protocol vulbiits
condition at protocol level could cover more thare &Gnort
rule since the Snort rules are very specific agigvel. That
is, our approach can generate some new exploiedbas
the variations of the protocol vulnerability conalits at byte
level. By analyzing attack patterns of these neplaits, we
might be able to discover more new attack signafuaed
thus the Snort rules, before the new attacks dgtaaive.

IV. FUTURE WORK

While the evaluation demonstrates the analysisssiep
our framework, it does reflect some limitations efhiwe
could work in the future. First of all, the numlagrprotocol
vulnerability conditions increases exponentiallyusing the
three operations. The benefits are high vulnetglbbverage
and unknown protocol vulnerability condition detent but
it does need much more storage space and is hardotd
redundant conditions that have the same effectsedls To
overcome this issue, we plan to develop a referengae to
correlate these potential protocol vulnerabilityndibions
with the goal of reducing the unreasonable conufiticA
second area for future work is the design of aesysto
generate byte-level IDS rules from the detectedog
vulnerability conditions automatically. In additiowe plan
on applying our framework into other network pratiscto
further evaluate its feasibility.

V. CONCLUSION

In this paper, we proposed a framework aiming tecte
all protocol vulnerability conditions in a netwogtotocol.
There are three steps in our framework: protocolasgic
analysis, protocol implementation analysis andquait state
transition sub-condition analysis. In particular wescribe
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itype:3;is feasible and encouraging.
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