
A Framework for Protocol Vulnerability Condition De tection

Yuxin Meng
 Computer Science department
City University of Hong Kong

Hong Kong, China
ymeng8@student.cityu.edu.hk

Lam-for Kwok
Computer Science department
City University of Hong Kong

Hong Kong, China
cslfkwok@cityu.edu.hk

Abstract—Intrusion detection system (IDS) detects an intrusion
by comparing with its attack signatures. The generation of IDS
signatures is based on the analysis of attack traffic, which is a
result of exploiting vulnerabilities in a network protocol. Thus,
the protocol analysis becomes an effective method to find out
protocol vulnerabilities with regard to IDS. But the problem of
protocol analysis in IDS is that how to detect all protocol
vulnerability conditions in protocols. In this paper, we propose
a novel framework to identify protocol vulnerability conditions
by utilizing existing protocol analysis techniques. In particular,
there are three major analysis steps in our framework:
protocol semantic analysis, protocol implementation analysis
and protocol state transition sub-condition analysis. In the
final step of our framework, we illustrate the use of deletion,
addition and modification operations with the purpose of
generating all potential protocol vulnerability conditions from
the normal protocol transition conditions. Experimental results
show that this framework is encouraging and feasible.

Keywords-intrusion detection; vulnerability analysis

I. INTRODUCTION

Rule-based intrusion detection and prevention systems
(RIDS/RIPS) [1, 3] are mainly based on attack signatures to
detect an attack. The attack signatures are stored in a rule
database and updated to the latest version periodically. What
is more, the generation of these attack signatures heavily
depends on an exploit of vulnerability in a protocol. Take
Snort [2] as an example, this lightweight RIDS monitors and
analyzes the protocol packets (e.g., UDP, TCP, IP) according
to its rules to alert and prevent intrusions. The common rule
format of Snort is as blow:

Action-type protocol-type Source-ip Source-port ->
Destination-ip Destination-port (content:"|attack signature|";
msg:"attack msg";)

For an ICMP DDoS attack by using tfn2k tool, the attack
rule or signature can be produced in terms of the detected
characteristic as below:

alert icmp $EXTERNAL_NET any -> $HOME_NET any
(msg:"DDOS tfn2k icmp possible communication";
icmp_id:0; itype:0; content:"AAAAAAAAAA"; rev:5;)

The content “AAAAAAAAAA” in this rule is the attack
signature (also called characteristic) for this exploit.

What is more, the vulnerabilities in a protocol can appear
in different forms, e.g., the change of bit values or the
change of packet sequence. In common cases, an attacker

usually utilizes these forms of protocol vulnerabilities to do
harm to the network security.

To identify protocol vulnerabilities, protocol analysis is a
prevalent and effective method used in intrusion detection.
The advantages of protocol analysis are listed below:

• Strong capability of vulnerability detection: protocol
analysis does not only assist IDS to analyze network
traffic in terms of protocol specification, but also has
the ability to identify vulnerabilities during protocol
implementation. For example, the input length and
special characters checking and filtering.

• Target detection space reduction: protocol analysis
lightens the analysis workload by cutting down the
target number of protocol fields, e.g., searching for
specific parts of packet rather than entire payload.

Problems. The coverage of signatures is the key problem

for rule-based IDS in reducing the detection accuracy. The
IDS signatures usually are easy for an attacker to evade by
making some small modifications of the original message in
a packet. For example, changing the size of variable-length
fields or changing the field values in a packet with the
purpose of mismatching the IDS signatures.

We argue that the coverage problem of IDS signatures
stems primarily from the variants of vulnerabilities in a
protocol. In particular, different forms of a vulnerability in a
network protocol usually are caused by some minor changes
of respective protocol vulnerability conditions. As a result,
the ideal solution to this problem is finding out all potential
protocol vulnerability conditions that lead the protocol state
from a normal to an abnormal state.

Related work. The concept of modifying the software
testing paths has been implemented in detecting software
vulnerability conditions [17, 6, 8] and then help identifying
software threats. Saxena et al. [18] introduced loop-extended
symbolic execution that broadens the coverage of symbolic
results with loops to find out the vulnerability conditions in
programs. Our work attempts to make use of this concept of
detecting software vulnerability conditions through creating
various software testing paths into the detection of protocol
vulnerability conditions by analyzing a protocol specification.
We aim to make progress towards systematic detection of
possible vulnerability conditions in network protocols by
applying three operations to normal protocol state conditions.

Contribution. In this paper, we propose a framework to
detect protocol vulnerability conditions by utilizing existing

91Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Figure 1. The framework for identification of protocol vulnerability conditions.

protocol analysis techniques with the goal of identifying all
vulnerability conditions in network protocols. In particular,
our framework has the ability to detect protocol vulnerability
conditions without a real attack by applying the operations
(deletion, addition and modification) onto normal transition
conditions of protocol states.

To demonstrate the feasibility of our framework, we
developed and evaluated the framework in an experimental
environment which is constructed by Snort [2], Wireshark [8]
and a packet generator [9]. Furthermore, we verified our
framework by comparing our identified ICMP protocol
vulnerability conditions with a set of ICMP Snort rules.

The rest of this paper is organized as follows: in Section
2, we introduce the steps in our framework that how to detect
potential protocol vulnerability conditions and then give an
in-depth description of operations in protocol state transition
sub-condition analysis; Section 3 presents our experimental
methodology and an experimental result; Section 4 states the
future work; at last, Section 5 gives our conclusion.

II. OUR FRAMEWORK

In this section, we first give the definition of protocol
vulnerability condition in our framework, and then introduce
the representation format of protocol vulnerability condition.

Protocol vulnerability: a point that causes the execution

of a protocol to be out of normal function and make errors.
Protocol vulnerability condition: A specific and certain

condition that leads the protocol state to reach the protocol
vulnerability which results in causing the protocol execution
to an abnormal state.

In addition, the specific forms of protocol vulnerability

conditions could consist of particular triggers (e.g., network
parameters change, packet flag values reset) that cause a
protocol vulnerability exploited, and abnormal points (e.g.,
implementation errors, coding ignorance etc.) that possibly
compromise the function of a protocol.

What is more, we use the IF/THEN format to represent
these protocol vulnerability conditions as the output in our
framework. For example, as for Destination fragmentation
vulnerability in ICMP (this vulnerability in ICMP packet
due to the packet size is larger than 65536 octets, but the
DF/Don’t fragmentation bit is set to 1), the representation of
this protocol vulnerability condition could be (according to
captured attack traffic):

IF {Datagram greater than 65536 octets and DF=1}
THEN {alert msg: ping of death attack}

This representation is compact and at protocol level. The
merits of this representation (IF/THEN) are:

• Easy for understanding, the IF part describes the
details of vulnerability conditions in protocols, the
THEN part gives the description and information of
this exploit.

• In favor of signature generation, it is comfortable for
rule-based intrusion detection/prevention systems to
produce attack rules and signatures according to the
IF/THEN representation. In general, attack signature
can be extracted from the IF part, and alert message
is corresponding to the THEN part.

In the next two subsections, we first give details of the

steps in our framework to account for the general procedure
that how to detect protocol vulnerability conditions with
high coverage by making use of current protocol analysis
techniques. We then give an in-depth description on the use
of operations (deletion, addition and modification) that how
to identify potential protocol vulnerability conditions from
known protocol state transition sub-conditions.

A. Framework Design

In Fig. 1, the framework illustrates that how to identify
potential protocol vulnerability conditions by using protocol
analysis techniques. The framework consists of three major

Protocol Semantic Analysis Protocol Implementation Analysis

 Protocol Information

(step 1) (step 2)

Protocol Vulnerability

Conditions

output

Generic Protocol State

Transition Graph

Specific Protocol State

Transition Graph

step

graph

document

Protocol State Transition

Sub-Condition Analysis

(step 3)

 Protocol Specification Protocol Implementation Note

92Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

steps: protocol semantic analysis, protocol implementation
analysis and protocol state transition sub-condition analysis.
The first step aims to produce a generic protocol state
transition graph in terms of protocol specification (e.g.,
RFC [12], or use other intermediate language [10]); the
second step considers the protocol implementation note to
enrich and extend generic protocol state transition graph to
a specific protocol state transition graph; and the goal of the
last step is to produce potential protocol vulnerability
conditions with operations (such as deletion, addition and
modification) onto normal transition conditions of protocol
states according to specific protocol state transition graph
and then analyze the generated results to identify real
protocol vulnerability conditions.

Protocol Information. According to the Fig. 1, this is the

data source in our framework. The protocol information
contains both essential details of Protocol Specification [4]
and Protocol Implementation note [5].

• Protocol Specification: All semantic information of
network protocols can be found in RFC (Request for
Comments) [12], in which a series of documents that
collect Internet information, UNIX and Software
documents of Internet community. The extraction of
protocol specification can be referred to previous
work for details [4, 6, 7, 11]. In addition, it is useful
and effective to find out lots of public specification
in Vulnerability Database (e.g., NVD [13], CVE [14],
OSVDB [16]).

• Protocol Implementation Note: This note contains
the implementation details of network protocols (e.g.,
according to RFC documents, how to program the
protocol). Moreover, we need to notice that the real
implementation of a protocol may be changed a bit
from the standard document due to the specific
network environment and demands. We refer the
reader to [5, 15, 17] for details of the extraction of
protocol implementation note.

In practice, the network protocol implementations are

usually distinct from the RFC documents due to practical
environment. In this case, we could retrieve the essential
protocol information with the method of protocol reverse
engineering [6, 11, 19, 20], which is an effective method to
find out the principles of a protocol by analyzing the relative
structure, function, operation etc.

Step1: Protocol Semantic Analysis. The purpose of

this step is to draw a generic protocol state transition graph
by using protocol specification. State transition graph [20]
(also called state transition diagram) is a graph that indicates
the relationship between two states indicating that an object
will take certain actions from the first state to the second
state. Obviously, protocol state transition graph (PSTG) is a
particular instance of the state transition graph in network
protocols.

Generic protocol state transition graph (GPSTG). The
term of generic means that this graph only contains
indispensable protocol states and fewer transition conditions
which shows the generic transition relationship among
protocol states. This generic protocol state transition graph
is easier to be drawn according to protocol specification,
since there is no need to identify all specific state transition
conditions in practical scenarios.

Step2: Protocol Implementation Analysis. This step
aims for generating a specific protocol state transition graph
by using protocol implementation note and relevant generic
protocol state transition graph. Actually, the generation of
the specific protocol state transition graph heavily depends
on the information in protocol implementation note from
which the specific protocol state transition conditions can be
indicated.

Specific protocol state transition graph (SPSTG). The
term of specific means that this graph contains all protocol
states, as well all specific protocol state transition conditions.
From another view, the SPSTG is an extended graph that
emerges from GPSTG by utilizing much more information
provided by the protocol implementation note.

Step3: Protocol State Transition Sub-Condition

Analysis. The main purpose of this step is to analyze sub-
conditions in the specific protocol state transition graph and
generate potential protocol vulnerability conditions.

To facilitate the illustration of this analysis work, we
give definitions of atom condition and compound condition.

Atom Condition: a certain kind of condition that cannot
be decomposed further in semantic level (e.g., {DF=1},
{Datagram greater than 65535 octets}).

Compound condition: a kind of condition that consists
of more than one atom condition (e.g., {Datagram greater
than 65536 octets and DF=1}).

In this step, the analysis work falls into three types. The

first type is to analyze the specific protocol state transition
graph and divide the protocol state transition conditions into
sub-conditions until all atom conditions are identified within
each protocol state transition.

The second type is to pick up overlap atom conditions
since these conditions affects more than one state transition.
As a result, these overlap conditions are more likely to be
utilized to create protocol vulnerability conditions.

The last type of analysis work is to operate (delete, add
and modify) on these atom conditions (not only the overlap
atom conditions but also the other atom conditions) to form
potential protocol vulnerability conditions. To delete, add or
modify an atom condition has the possibility to change the
contents of relevant compound condition and cause a flaw in
the state transition. In this case, these changed conditions
(which may cause a flaw in protocol state transitions) are
protocol vulnerability conditions that an attacker can utilize.

93Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Figure 2. Operations of deletion, addition and modification.

B. Operations in Protocol State Transition Sub-Condition
Analysis

In Fig. 2, we assume a specific protocol state transition
graph and then illustrate the operations (deletion, addition
and modification). In Fig. 2 (a), a specific protocol state
transition graph is assumed that State1 can change to State2
and State3 if Condition1 and Condition2 are satisfied
respectively. State2 converts to State3 as long as Condition3
is fulfilled. In Fig. 2 (b), we assume that Condition1 could
be divided into three atom conditions {AC11, AC12, AC13}.
Similarly, Condition2 and Condition3 have atom conditions
{AC21, AC22, AC23} and {AC31, AC32} respectively.

Look for overlap atom conditions. As shown in Fig. 2
(b), AC13 is the same as AC23, and AC31 is equal to AC21.
Thus, AC13/AC23 and AC31/AC21 are the overlap atom
conditions. The advantage of finding out these overlap atom
conditions is that these overlap atom conditions have more
chances to affect the state transitions among State1, State2
and State3. Moreover, the overlap atom conditions are used
in the addition operation in our framework. We then define
the three operations of deletion, addition and modification.

Deletion of atom conditions. According to a specific
protocol state transition graph, deleting or omitting an atom
condition in a relevant compound condition could change
the original contents of this compound condition and result
in a fault or error during the state transition. As shown in
Fig. 2 (c), if an atom condition AC32 is deleted, some errors
may be occurred in the protocol state transition between
State2 and State3.

Addition of atom conditions. Similar to deletion, adding
an atom condition to a state transition condition may cause
the state to an abnormal state as well. In Fig. 2 (c), adding
an atom condition AC33, the State2 could do not know how
to deal with the additional condition and thus produces a
flaw during the protocol state transitions. In our framework,
we use the overlap atom conditions for addition operation.

Empirically, the overlap atom conditions are much more
vulnerable in the protocol state transitions. To ensure the
feasibility and effectiveness of this operation, we thus utilize
the overlap atom conditions to generate potential protocol

vulnerability conditions for the operation of addition in our
framework. For example, the AC13/23 and AC31/21 are
overlap atom conditions according to Fig. 2 (b), we then can
attempt to add AC13/23 to Condition3 instead of the AC33
(which is only a generic atom condition) to guarantee that
our produced conditions are limited. Like this, we can add
AC31/21 to Condition1 in evaluating the effects of these
changes as well.

Modification of atom conditions. To change the original
content of an atom condition is an effective way to cause
some errors in the protocol state transitions. In Fig. 2 (d), if
we modify AC31 to AC31’ in Condition3, the errors may be
caused between the protocol state transition between State2
and State3. The major modification skill is to set the packet
bit values to an opposite value or another different value.
For example, if DF=0 in original ICMP packet, the DF bit
will be set to 1 (DF=1) during the modification.

If deleting, adding or modifying an atom condition can
cause a normal protocol state to an abnormal state, this atom
condition or the relevant compound condition is regarded to
a real protocol vulnerability condition.

The merits of these operations are: 1) the effects and
results of applying these operations onto atom conditions
could be able to cover all possible forms of protocol
vulnerability conditions (which may consist of an atom
condition or more than one atom condition). Namely, these
operations have the ability to generate all potential protocol
vulnerability conditions; 2) it is more likely to identify the
variants of known exploits and has the chance to discover
unknown vulnerability conditions by applying these three
operations and analyzing the produced conditions.

III. EVALUATION

In this section, we evaluated our framework in a
constructed environment by using existing tools such as
Snort [2], Wireshark [8] and a packet generator [9]. The
environment is shown in Fig. 3.

In the following parts, we begin by discussing our
experimental methodology to explain that how to launch our
evaluation and achieve the results. Then we show the results

94Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Figure 3. Experimental environment and deployment.

of our experiment on the protocol of ICMP to demonstrate
the feasibility of our framework.

A. Experimental Methodology

In Fig. 3, we developed a protocol vulnerability condition
generator (the input is protocol atom condition, thus we
should draw SPSTG in advance) in Host 1 that generates a
majority of potential protocol vulnerability conditions with
deletion and addition operations. But as for the modification
operation, it is more laborious to obtain the results. The PUC
database provides a passive storage space for the generated
potential protocol vulnerability conditions. Then, we used a
packet generator to create packets according to the potential
vulnerability conditions in the PUC database (e.g., setting the
bit value in the packet to an opposite or different value,
changing the sequence of bits). At last, the crafted packets
are sent to the Host 2 through routers.

The Host 2 is the target for the experiment. Therefore, we
deployed two open source tools Wireshark and Snort into
this host with the purpose of monitoring network traffic and
detecting abnormal packets that come from Host 1. The
Wireshark is a powerful tool to capture network traffic and
perform packet analysis while the objective of Snort is to
detect abnormal packets according to its rules and signatures.

In this experiment, we used Snort rule database (version
2.8) to verify our identified potential protocol vulnerability
conditions. In practice, we evaluate our framework on ICMP
by comparing our identified protocol vulnerability conditions
with the ICMP Snort rules. Based on these conditions, we
can create specific ICMP packets to challenge the Snort. In
this case, if the number and contents of our detected potential
protocol vulnerability conditions can cover all of the ICMP
Snort rules, we can show that our framework is feasible.

B. Analysis with an Example on the detection of protocol
vulnerability conditions

Based on our experimental methodology, we give an
example to illustrate the experiment on ICMP. According to
the description part of page 5 in RFC 792 [12], we produce

normal transition conditions (a compound condition)
manually that trigger State1 (send packet) to State2 (wait for
response). The conditions have then been divided into three
sub-conditions: SubC1 {the distance to the network is finite},
SubC2 {indicated protocol module or process port is active}
and SubC3 {datagram need fragmented and DF=0}.

Furthermore, we identify atom conditions as follows:
{distance finite}, {protocol module is active}, {process port
is active}, {datagram must be fragmented} and {DF=0}. To
better understanding, all these atom conditions are presented
at semantic level. There are no overlap atom conditions in
this example since there are only two protocol states.

 Subsequently, we apply operations (deletion, addition
and modification) into these atom conditions to affect related
transition conditions.

 Deletion: delete any one or more above atom conditions.
For instance, deleting {distance finite}, the remaining
conditions will be {SubC2 and SubC3}. If deleting two atom
conditions such as {distance finite} and {process port is
active}, the result is {protocol module is active and SubC3}.

 Addition: this operation is based on expert knowledge to
some degrees. In our method, the atom condition for addition
comes from the overlap atom conditions. Since there is no
overlap condition in this example, we can skip this operation.

 Modification: this action aims to change the contents of
atom conditions. For example, atom condition {distance
finite}, {DF=0} could be modified to {distance infinite},
{DF=1}. The purpose of these changes is to reverse the
meaning of atom conditions or to set condition values to
another different value.

We use the IF/THEN to represent the generated potential
protocol vulnerability conditions. For instance, during the
experiment, we can detect a protocol vulnerability condition
through modifying the atom condition {DF=0} to {DF=1} in
affecting Sub3. Thus, the representation of this protocol
vulnerability condition in our framework is:

IF {datagram must be fragmented and DF=1},
THEN {alert msg: host crack down}.

95Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

In the experiment, these oversized packets can cause the
host to be crashed or rebooted since the host does not know
how to deal with these oversized packets. What is more, we
find out the relevant rule in Snort rule database to verify this
is a real protocol vulnerability condition. The snort rule is:

alert icmp $EXTERNAL_NET any -> $HOME_NET

any (msg:"ICMP Destination Unreachable Fragmentation
Needed and DF bit was set"; icode:4; itype:3;
reference:cve,2004-0790;reference:cve,2005-0068;
classtype:misc-activity; sid:396; rev:7;)

The meaning of this rule is to alert that ICMP message

needs fragmentation but the Don't Fragment flag is on, which
is the same to our detected protocol vulnerability condition.

Performance Analysis. In the experiment, we evaluated
our framework by the use of 115 ICMP Snort rules (in the
icmp.rules and icmp-info.rules folders). In particular, we
classified the ICMP Snort rules into 7 types such as ICMP
fragmentation, ICMP ping, ICMP redirect, ICMP parameter
problem, ICMP unreachable problem, ICMP TTL and ICMP
conversion error.

The experimental results on the protocol of ICMP show
that our detected ICMP vulnerability conditions cover 100%
of the ICMP Snort rules except for those software oriented
ICMP rules. We discovered that one protocol vulnerability
condition at protocol level could cover more than one Snort
rule since the Snort rules are very specific at byte-level. That
is, our approach can generate some new exploits based on
the variations of the protocol vulnerability conditions at byte
level. By analyzing attack patterns of these new exploits, we
might be able to discover more new attack signatures, and
thus the Snort rules, before the new attacks actually arrive.

IV. FUTURE WORK

While the evaluation demonstrates the analysis steps in
our framework, it does reflect some limitations which we
could work in the future. First of all, the number of protocol
vulnerability conditions increases exponentially by using the
three operations. The benefits are high vulnerability coverage
and unknown protocol vulnerability condition detection, but
it does need much more storage space and is hard to avoid
redundant conditions that have the same effects as well. To
overcome this issue, we plan to develop a reference engine to
correlate these potential protocol vulnerability conditions
with the goal of reducing the unreasonable conditions. A
second area for future work is the design of a system to
generate byte-level IDS rules from the detected protocol
vulnerability conditions automatically. In addition, we plan
on applying our framework into other network protocols to
further evaluate its feasibility.

V. CONCLUSION

In this paper, we proposed a framework aiming to detect
all protocol vulnerability conditions in a network protocol.
There are three steps in our framework: protocol semantic
analysis, protocol implementation analysis and protocol state
transition sub-condition analysis. In particular, we describe

the relationship among these steps of the framework and
define three operations of deletion, addition and modification
in the final step that are used to generate potential protocol
vulnerability conditions from normal transition conditions of
protocol states. In the experiment, we develop and evaluate
our framework on the protocol of ICMP in a constructed
network environment by using Snort, Wirewark and packet
generator. The experimental results show that our framework
is feasible and encouraging.

REFERENCES
[1] Paxson, V.: Bro: A System for Detecting Network Intruders in Real-

Time. Computer Networks 31(23-24), pp. 2435–2463 (1999).

[2] Snort, http://www.snort.org/. (access on 1 Apr. 2011)

[3] Scarfone, K. and Mell, P.: Guide to Intrusion Detection and
Prevention Systems (IDPS), NIST Special Publication 800-94, pp. 1-
127, (Feb 2007).

[4] Comparetti, P.M., Wondracek, G., Kruegel, C., and Kirda, E.:
Prospex: Protocol Specification Extraction. In: IEEE Symposium on
Security and Privacy, pp. 110-125, Oakland, CA (2009).

[5] Yating H., Guoqiang S., and Lee, D.: A model-based approach to
security flaw detection of network protocol implementations. In:
IEEE International Conference on Network Protocols, pp. 114-123,
Orlando, Florida, USA (2008).

[6] Cui, W., Peinado, M., Chen, K., Wang, H.J., and Irun-Briz, L.: Tupni:
Automatic reverse engineering of input formats. In: ACM Conference
on Computer and Communications Security, pp. 1-12, VA (2008).

[7] Wondracek, G., Comparetti, P.M., Kruegel, C., and Kirda, E.:
Automatic network protocol analysis. In: Network and Distributed
System Security Symposium, pp. 1-14, San Diego, CA (2008).

[8] Wireshark, http://www.wireshark.org. (access on 21 Mar. 2011)

[9] Colasoft Packet Builder, http://www.colasoft.com/packet_builder/.
(access on 21 Mar. 2011)

[10] Borisov, N., Brumley, D., Wang, H.J., Dunagan, J., Joshi, P., and
Guo, C.: Generic application-level protocol analyzer and its language.
In: Network and Distributed System Security Symposium, pp. 1-15,
San Diego, CA (2007).

[11] Lin, Z., Jiang, X., Xu, D., and Zhang, X.: Automatic protocol format
reverse engineering through context-aware monitored execution. In:
Network and Distributed System Security Symposium, San Diego,
CA (2008).

[12] Request for Comments (RFC), http://www.ietf.org/rfc.html. (access
on 1 Apr. 2011)

[13] National Vulnerability Database (nvd): http://nvd.nist.gov. (access on
1 Apr. 2011)

[14] Common vulnerabilities and exposures (cve): http://cve.mitre.org.
(access on 1 Apr. 2011)

[15] Shu, G. and Lee, D.: Testing Security Properties of protocol
implementations: a machine learning based approach. In: Proceedings
of IEEE ICDCS, pp. 25-32, Toronto, Canada (2007).

[16] Open Source Vulnerability Database (osvdb), http://osvdb.org/.
(access on 1 Apr. 2011)

[17] Peled, D., Vardi, M. Y., and Yannakakis, M.: Black-box checking. In:
Proceedings of IFIP FORTE/PSTV, pp. 225-240 (1999).

[18] Saxena, P., Poosankam, P., McCamant, S., and Song, D.: Loop-
extended symbolic execution on binary programs. In: International
Symposium on Software Testing and Analysis, pp. 225-236, Chicago,
IL (2009)

[19] Cui, W., Kannan, J., and Wang, H.: Discoverer: Automatic Protocol
Reverse Engineering from Network Traces. In: 16th Usenix Security
Symposium, pp. 199-212, Boston, MA (2007).

[20] Guha, B. and Mukherjee, B.: Network security via reverse
engineering of TCP code: vulnerability analysis and proposed
solutions. IEEE Network, pp. 40-48 (Jul/Aug 1997).

96Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

