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Abstract—Dealing with the insider threat in networked en-
vironments poses many challenges. Privileged users have great
power over the systems they own in organizations. To mitigate
the potential threat posed by insiders, we introduced in previous
work a preliminary architecture for the Autonomic Violation
Prevention System (AVPS), which is designed to self-protect
applications from disgruntled privileged users via the network.
This paper extends the architecture of the AVPS so that it
can provide scalable protection in production environments. We
conducted a series of experiments to asses the performance of the
AVPS system on three different application environments: FTP,
database, and Web servers. Our experimental results indicate
that the AVPS introduces a very low overhead despite the fact
that it is deployed in-line. We also developed an analytic queuing
model to analyze the scalability of the AVPS framework as a
function of the workload intensity.
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I. INTRODUCTION

Defeating the insider threat is a very challenging problem
in general. An insider is a trusted person that has escalated
privileges typically assigned to system, network, and database
administrators; these users usually have full access and can
do almost anything to the systems and applications they
own. Users with escalated privileges within an organization
are trusted to deal with and operate applications under their
control. This trust might be misplaced and incorrectly given to
such users. It is extremely difficult to control, track or validate
administrators and privileged user actions once these users
are given full ownership of a system. The recent disclosure
by Wikileaks of U.S. classified embassy foreign policy cable
records provides a perfect example of an insider attack [1].
In this disclosure, an insider with unfettered access to data at
his classification level was able to access data over a secure
network using laptops that had functional DVD writers. Our
approach to mitigate the insider threat allows for users or
groups of users to be treated differently despite having the
same classification level [2]. The approach limits and controls
network access through an in-line component that checks
access to specific applications based on policies that can be
as specific or granular as needed.

In our prior work, we introduced a framework that self-
protects networks in order to mitigate the insider threat [2].
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The framework, called AVPS (Autonomic Violation Preven-
tion System), controls and limits the capabilities provided to
administrators and privileged users in organizations. AVPS
concentrates entirely on detecting and preventing usage policy
violations instead of dealing with viruses, malware, exploits,
and well-known intrusions. In our implementation, the AVPS
monitors events and takes actions for conditions that occur, as
specified by Event-Condition-Action (ECA) commonly used
in security-centric systems and autonomic computing [3]. Our
prior work does not address scalability though.

The design of the AVPS architecture must consider scalabil-
ity, manageability, application integration, ease of use, and the
enforcement of separation of duties. There has been prior work
in this area at the application, host, and network levels [4], [5],
[6], [7], [8]. The previous methods have applied self-protecting
capabilities by either considering single applications on the
host or more towards vulnerabilities, malware, exploits and
traditional threats.

This paper significantly extends our previous work ([2])
in that it presents a scalable AVPS architecture and supports
its design with experimental results and theoretical queuing
modeling. We present here the results of experimental evalu-
ations of the AVPS architectures as well as the analysis of its
performance overhead on three different types of application
servers: FTP server, database server, and web server. We
specifically measured the average throughput, average transfer
time, average CPU utilization, and provided 95% confidence
intervals for all three measurements. We also used a queuing
theoretic analytic model to predict the scalability of AVPS for
different workload intensity values for these three types of
applications

The rest of the paper is organized as follows. Section II
presents some of the major challenges and requirements faced
in the design of AVPS. The next section presents a scalable
architecture for the AVPS framework. Section V presents an
experimental evaluation and a full performance and scalability
analysis of AVPS. Finally, Section VI presents the conclusion,
final remarks, and future work.

II. CHALLENGES AND REQUIREMENTS

The following major challenges play a primary role in the
success of the AVPS framework: scalability in production en-

83



SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

vironments, support for encrypted network traffic, integration
with multiple types of application servers on the network, and
ease of deployment in large production environments. This
paper mainly addresses scalability and performance issues and
sheds some light on all four challenges.

Scalability is an absolute requirement for production en-
vironments. The AVPS solution is an in-line solution that
intercepts every single packet that traverses the local area
network that is destined to an application server. Therefore,
it could become a focal point and a possible bottleneck. The
primary goal of our solution is to scale with growing network
and application demands. The AVPS architecture should allow
for horizontal scaling to cope with high-volume environments.
This requirement is further discussed in more detail in the
following sections.

Encryption is another important challenge in the design of
our solution. SSH and SSL are widely used in local area
networks for information retrieval and administration of ap-
plications and devices. The AVPS performs packet inspection
on some or all (depending on the application) packets that
pass through it. This poses a challenge that is handled in
our solution through one of the following methods: (1) de-
crypting the traffic that passes through the AVPS and then re-
encrypting it for delivery to its destination using viewSSLd [9]
or netintercept [10] for example, (2) completely off-loading
the encryption/decryption requirements to external hardware-
based devices that sit before and after the AVPS, or (3) decrypt
the traffic by having a legitimate man-in-the-middle host that
decrypts and re-encrypts the traffic and delivers it to the
destination [11]. This paper does not discuss encryption in
any further detail.

Application server integration is also extremely important.
With the wide range of applications deployed in production
environments, the AVPS framework must be capable of in-
terpreting and understanding requests and responses that it
intercepts. The AVPS is based on intercepting, not necessarily
inspecting, every single packet initiated by a host that is
delivered from and to an application. This makes application
integration completely possible and achievable. Policies de-
ployed on the AVPS are customizable to the desired granularity
level and types of attributes (e.g., from very generic, such as IP
or user level, to very specific, such as IP, user, application type,
request, and response). Thus, it is completely up to the AVPS
owner to specify the granularity of what should be inspected
and what should be ignored.

Finally, the successful deployment of AVPS in large en-
vironments is crucial. The AVPS solution should be easy
to deploy and maintain and should be capable of handling
heavy traffic loads. Current environments have hundreds if
not thousands of servers with networks that are capable of
handling and processing 100 to 1000 Mbps of traffic. A
solution that handles thousands of servers through a handful
of clustered AVPS compute nodes is part of the architecture
discussed in the remaining sections of this paper.
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III. SCALABLE AVPS ARCHITECTURE

For the AVPS to achieve its goal of solving the insider
threat problem, it must be placed in-line between clients and
internal application servers. This way, the AVPS is capable
of intercepting every single packet that flows from clients to
applications and back in order to take the correct actions when
a rule in a policy is matched.

Figure 1 depicts the architecture of the AVPS framework.
Performance and high availability are extremely important
since the AVPS is located between the clients and the ap-
plication servers. Traffic coming from a pool of M clients
goes through a load balancer that handles incoming requests.
The load balancer forwards the traffic to one of N AVPS
engines that process and inspect the incoming traffic. The
AVPS engines compare traffic policies that contain rules and
actions on how to handle traffic. The policies are stored
on a database local to the AVPS engine or on an external
database shared by all AVPS engines. Events are stored on a
centralized database. Actions are taken on traffic once a rule
in a policy has been matched. Examples of possible AVPS
actions include dropping, blocking, or replacing traffic as it
traverses the engine on its way to application servers. Let there
be K different types of applications servers (e.g., FTP server,
database server, Web server).

@* Clients
<::_‘77:_f07§| Area Network (@1177}
|

Load
+ Balancer
(LB)

‘aves, |, .[avps,,|

Database for policies and logging

< Local Area Network (LAN) >

Applications with K different types

Fig. 1: Architecture of the AVPS framework.

Figure 2 depicts the steps taken by the AVPS engine.
Traffic is first received by a layer 2 bridge that is responsible
for handling incoming and outgoing traffic. Traffic is then
forwarded to the normalization and processing module where
packets are broken down into pieces that can be matched
against rules. Traffic is then matched against policies and rules
that are pre-loaded into memory. If there is a rule match, an
event or action is generated. Finally, if an event or action
occurred, it is logged into a database.

As an example of the advantage of using the AVPS architec-
ture, consider a scenario with multiple database servers scat-
tered over a large geographically distributed network. Assume
that a top secret table is replicated in every database server and
that we want to have fine access control to this table. Using
conventional access control methods, we would be able to limit
specific users or roles from accessing the table. This would
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Fig. 2: Steps of the AVPS engine.

require manually setting these controls on every database
server. This approach has several drawbacks: (1) Manually
setting access controls into each server is time consuming
and might have a high error rate. (2) This method requires
an administrator to know all of the DB servers that live on
the network; newly installed DB servers or even covert ones
may be missed. (3) The DB owner actually does the changes
with no oversight, which contradicts the separation-of-duties
concepts. (4) Last but not least, it would be almost impossible
with traditional access control methods to limit access for
a specific population of administrators or privileged users,
coming from a specific location on the network, accessing the
information at a specific time and targeting a specific table.

The AVPS is designed to block detected violations that
match specific rules in a policy. Therefore, the AVPS reduces
or possibly completely eliminates the drawbacks listed above.
The AVPS is also tamper resistant. It enforces a separation-
of-duties policy, i.e., the primary application system owner
has no control over the AVPS policies [2]. The AVPS can be
deployed to carry insider and regular user traffic or to only
carry insider traffic. The proper deployment depends on how
the network is setup and on how the network is segmented.

Emerging technologies, such as new network TAPs (e.g.,
Network Critical V-line TAP [12]), that can handle 1/10 Gpbs
traffic and allow in-line functionality without introducing a
single point of failure, make systems such as AVPS possible
to implement without fault-tolerance concerns.

IV. AVPS vs. OTHER SOLUTIONS

Our prior work [2] distinguishes the AVPS from other
systems such as IPS, Firewalls, Host based IPS and Network
Admission Control/Network Access Control (NAC). We use
Intrusion Prevention Systems (IPS) and Intrusion Detection
Systems (IDS) in this paper interchangeability. The only dif-
ference between the two is that IDS is considered a passive net-
work monitoring system and IPS is considered an activeinline
network monitoring system. Traditional IDS/IPS systems tend
to concentrate on users that do not have access to the system
and try to exploit, hack, or crack into it. Other enhanced
IPS/Firewall systems such as IBM Proventia [13] or Cisco
ASA [14] do have enhanced context-aware security but lack
insider threat defeating capabilities. The AVPS, on the other
hand, is designed with the insider threat in mind. Our current
AVPS implementation relies on well-known methods used in
traditional IDS/IPS for the detection of insider attacks. In our
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in-progress work we are working on enhancing the detection
capabilities of the engine to incorporate self-learning/self-
adaptation rule learning, enhance application integration and
interaction, include user roles and responsibilities and have
better session management and detection capabilities which
current IDS/IPS systems either lack or have weak functional-

ity.
V. PERFORMANCE ASSESSMENT OF AVPS

This section presents an experimental evaluation of the
AVPS in a controlled environment. We describe the experi-
mental testbed, analyze the results, and present a scalability
analytical model based on the M/M/N//M queuing model.

A. Experimental Environment

We based our experiments on three different applications:
FTP, database, and Web server. The specification of the
environment and the experimental testbed is shown in Fig. 3.

In this environment, the client requests services from ap-
plication servers, which respond to the requests. All traffic
between client and server is monitored and inspected by
the AVPS. A controlling host controls the environment and
collects the results of the experiments (see Fig. 3).

Apache JMeter 2.4 [15] was used on the client to conduct
both FTP and Web experiments. We measured the average
throughput and average transfer time in both cases. For the
database experiment, mysqlslap [16] was used to measure the
average response time.

On the AVPS we used Snort-inline 2.8.6.1 [17]. Snort is
highly used in academic IDS/IPS research experiments. Other
tools are also used in academic research (e.g., Bro [18] and
EMERALD [19]). We used Linux iptables [20], a firewall
package installed under RedHat, Fedora, and Ubuntu Linux,
in conjunction with Snort in-line to filter packets as they come
into the AVPS and leave. We used MySQL 5.1 [21] to store
events and event packet captures. We used BASE [22] to query
the DB and display the events in the browser.

We configured three different application servers: (1) vsftpd
2.3.2 FTP server [23], (2) MySQL 5.1 DB [21], and (3)
Apache 2 Web server [24].
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Fig. 3: Experimental environment.
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We customized the Snort configuration file to meet the
AVPS requirements. All default rules that come with Snort
were disabled and our own policies were added inside /o-
cal.rules. We configured Snort to output events into a MySQL
database.

The client and server are connected directly to the AVPS as
shown in Fig. 3. All three machines are also connected via a
second network card to a switch. The controlling host is also
connected to the switch to control and collect the results from
all three machines.

B. Experimental Results

In this and the following section we show the very little
overhead that the AVPS adds in the worst case when traffic
passes and is processed by it and alerts are generated. An
ideal situation would block the violating traffic without further
processing. This causes very little CPU overhead. In this
section, we provide measurements for average transfer times
and throughputs with 95% confidence intervals, and average
and maximum CPU utilization values.

For each application server type, we conducted two types
of experiments. The first consisted of manually submitting 10
requests to the application server. This was used to measure
the average transfer time, query response time, and throughput.
The second consisted of automatically submitting 30 requests
to the application server, in sequence with no think time. This
process was used to measure the average and maximum CPU
utilization of the AVPS engine.

The manual experiments considered the following four
scenarios: (1) No AVPS, client and application servers are
connected to a 1000-Mbps switch. (2) Client and server are
connected to the AVPS but the engine is disabled, traffic is
only being bridged. (3) The AVPS is enabled and no rules
match the traffic (either because no policies are loaded or
because the loaded policies do not trigger a violation). (4) The
AVPS is enabled, detects a violation on all rules checked, and
generates an alert, which is stored in a database. However, the
AVPS is configured not to block the traffic. It should be noted
that case (4) above is the one that generates the largest possible
overhead because all rules generate a violation, an unlikely
event in practice, and traffic flowing through the AVPS is not
decreased due to matching offending requests. Thus, all results
presented in what follows for scenario (4) represent a worst-
case performance scenario.

The automated experiments were used to measure average
and maximum CPU utilization of the AVPS engine and
consider the following four scenarios: (1) Same as (2) above.
(2) Same as (3) above. (3) Same as (4) above. (4) Same as (4)
above but the AVPS is configured to block the traffic. Case
(3) above is also a worst-case performance scenario for the
reasons outlined above. Case (4), the blocking case, is the
ideal operational situation. In that case, blocked traffic does
not contribute to network and application server load.

The FTP results are discussed in what follows. Table I
shows, the measured results for the average throughput (in
KB/sec) and average transfer time (in msec) for 10 manually
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File Size — [ 100 KB [ 1 MB [ 10MB | 100 MB
Average throughput (KB/Sec) with 95% confidence interval

No AVPS, switching | 327.0 + | 2811.9 9834.2 13395.3

7.01 + 48.00 | &£ 38.48 + 90.12
AVPS, process noton | 331.1 + | 2754.7 9984.4 13539.5

5.30 + 35.57 | £ 56.32 + 94.95
AVPS, process on | 330.0 + | 27549 9756.8 13257.5
but not matching 5.92 + 45.45 + 29.41 + 57.54
AVPS, matching and | 332.6 £ | 27464 9841.2 13300.8
policy applied 4.71 + 3438 | £77.32 + 78.88

Average transfer time (msec) with 95% confidence interval

No AVPS, switching | 307.2 £ | 365.3 £+ | 1043.2 7647.6 £
6.87 7.16 + 4.17 51.59
AVPS, process noton | 302.8 + | 3723 £ | 10259 7566.4 £
5.05 4.81 + 597 52.39
AVPS, process on | 304 =+ | 3727 £+ | 1049.6 77252 £
but not matching 5.77 6.5 + 3.16 333
AVPS, matching and | 301.3 &+ | 3734 £ | 1041.1 7701.2 +
policy applied 4.44 4.74 + 8.10 44.95

Average CPU utilization (%) with 95% confidence interval

AVPS - bridgingonly | 0.02 £ | 004 £ | 005 £ | 0.05+0
0.01 0.03 0.01

AVPS enabled, not | 002 £+ | 03 £+ | 144 £+ | 2.11 &+
matching 0.01 0.06 0.20 0.06
AVPS enabled, | 0.20 £ | 079 £ | 390 + | 6.12 =+
matching, not | 0.06 0.17 0.51 0.17
blocking

AVPS enabled, | 009 £+ | 0.12 £ | 0.10 £ | 0.12 &+
matching, blocking 0.02 0.02 0.02 0.03

TABLE I: FTP results

submitted requests using JMeter for four different file sizes:
100 KB, 1 MB, 10 MB and 100 MB. Results include 95%
confidence intervals for all file sizes.

In the case where we check against a rule (case (4) in the
manual experiments), we loaded into memory the following
rule that alerts when user “appserver” tries to log into a specific
FTP server.

alert tcp any any — FTPserver any (classtype:attempted-
user; msg: “Snortinline Autonomic FTP event”;content: *
appserver” :nocase;sid:2;)

From Table I, we see that the differences, respectively, in
average throughput and average transfer time for any of the
various file sizes are either statistically insignificant at the 95%
confidence level (e.g., for 100 KB and 1 MB files) or are very
small (e.g., less than 1.8% different for 10 MB and 100 MB
files). This means that there is little or no difference between
the case when the AVPS process is disabled (case (2)) and the
case where the AVPS engine is enabled and all rules checked
generate a violation, but traffic is not blocked (case (4)). This
is expected behavior since the AVPS does not inspect packets
that contain file data being transferred. It only inspects the
initial administration and request commands. Thus, the AVPS
has no or very little impact on throughput and transfer time.

For the CPU measurements discussed below, we used the
automated submission scenario. We load into memory the
following rule that blocks a user when he/she tries to access

a specific FTP server using “appserver” by replacing it with
Sttt
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alert tcp any any — FTPserver any (classtype:attempted-
user; msg: “Snortinline Autonomic FTP block”; content: “
appserver”; nocase;replace: “***¥¥#F¥%k¥%7 gid 2+ )

Table I shows the measured average CPU utilization of the
AVPS engine for 30 automated requests with zero think time
using JMeter for four different file sizes: 100 KB, 1 MB,
10 MB and 100 MB. The figure also shows 95% confidence
intervals.

Table I shows that the CPU utilization grows linearly with
the file size. For large files (e.g., 100 MB) we see an average
6.12% utilization when the AVPS is matching but not blocking.
This is considered the worst case but is still considered very
small and almost has no effect on the traffic traversing or being
processed. If we consider the blocking situation (the default
action in an ideal AVPS deployment), we see an average
of 0.11% utilization, a negligible overhead. This is expected
because in this case, data packets are blocked and are not
processed any further.

For the database server experiments we built a database
of customers, orders, and order items and developed three
different queries. Query Q1 returns the list of all items of all
orders submitted by all customers for a total of 51,740 records.
Query Q2 returns one record with the number of customers in
a geographical region. This query needs to scan 50 customer
records. Finally, query Q3 returns the dollar amount of all
orders placed by customers in a given geographical region.
While this query returns only a number, it needs to do
significant work on the database to obtain the result.

Table II shows the measured average response time (in sec)
for 10 manually submitted queries using mysqlslap for the
three different queries and for the four scenarios described
above. The table also shows the 95% confidence intervals for
all queries.

For the case in which rules generate a violation alert but no
traffic is blocked, we loaded into memory the following rule
that alerts when a user tries to access “companyxyz” database
located at a specific DB server.

alert tcp any any — DBserver any (classtype:attempted-
user; msg: “Snortinline Autonomic DB event”;content: *“
companyxyz” ;nocase; sid:2;)

We can see from Table II, that the worst case appears
in Q1, which returns 51740 records. For QI the differences
between no AVPS and AVPS matching is almost 5 msec, or
13% additional overhead. We consider the extra time to be
small given the large number of records returned. In fact,
the overhead is approximately 0.08 usec per record returned.
For queries Q2 and Q3 we can see almost no overhead given
that both only return one record. In fact, for Q3, there is no
statistically significant difference at the 95% confidence level
between the no AVPS and AVPS matching cases. For Q2, the
difference in response time is small and equal to 1.2 msec.

It is important to note that the largest component of the
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Query — [ Q1 [ Q2 [ Q3

Average response time (msec) with 95% confidence interval
No AVPS, switching 31.6+0.24 | 10 £ 0.31 10.6 £ 0.39
AVPS, process not on 324+£024 | 102 +0.2 10.8 + 0.57
AVPS, process on but | 36.44+0.24 | 11 £+ 0.31 10.6 +0.24
not matching
AVPS, matching and | 362057 | 11.2 £ 0.2 11.2£0.37
policy applied

Average/Maximum CPU utilization (%)

AVPS - bridging only 0.024/0.15 0.045/0.23 0.007/0.04
AVPS  enabled, not | 0.43/1.51 0.01/0.05 0.058/0.3
matching
AVPS enabled, match- | 1.57/4.75 0.152/0.43 0.23/0.71
ing, not blocking
AVPS enabled, match- | 0.220/1.49 0.262/1.14 0.221/1.05
ing, blocking

TABLE II: DB results

response time is the transfer time over the network and not
processing time at the DB server. We measured Q1, Q2, and
Q3 directly at the server and we found that Q1 takes14 msec to
execute, and Q2 and Q3 take virtually zero seconds to execute.
The difference in execution time between Q1 and the other two
queries lies on the fact Q1 has to output a very large number of
records. Thus, the average transfer time for case (4) for query
QI is 22 msec obtained by subtracting the average response
time at the client (i.e., 36 msec) from the server execution
time of 14 msec.

As before, the CPU utilization experiments use the au-
tomated submission process. In the cases where we block
against a rule, we load into memory the following rule that
blocks a user when he/she tries to access the “companyxyz”

database located at a specific database server by replacing it
With skt

alert tcp any any — DBserver any (classtype:attempted-
user; msg: “Snortinline Autonomic DB block”; content:*
companyxyz’; nocase;eplace: “**¥¥F¥AF*EX" giff D)

Table II shows the measured average and maximum (after
the “/’) CPU utilization of the AVPS engine for 30 automated
requests with zero think time using JMeter for queries Q1, Q2,
and Q3. The minimum CPU utilization was zero in all cases.

In Table II, we notice that the average CPU utilization does
not fully reflect the actual CPU utilization due to the very
low amount of time that it takes to process a request over
the network. The maximum CPU utilization provides a better
view of the actual utilization encountered. We can see again
that the worst case occurs with a maximum CPU utilization of
4.75% for Q1 when the AVPS is matching but not blocking.
This overhead is considered very small and almost negligible
given the number of records returned. The other queries have
a maximum of 1.14% utilization, which is extremely low and
can almost be completely ignored. In the case of blocking (last
row), we see extremely low overhead for the worst case (Q1)
that has a maximum of 1.49% utilization. Again, in an ideal
environment a blocking policy would be in place.

The results of the experiments in a Web server environment
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File Size — | 518 KB
Average throughput (KB/sec) with 95% confidence interval
No AVPS, switching 43038 + 1675.01
AVPS, process not on 33861 + 902.16
AVPS, process on but not matching 23385 + 372.36
AVPS, matching and policy applied 17938 £ 676.78
Average transfer time (msec) with 95% confidence interval

No AVPS, switching 6.1 +£0.23
AVPS, process not on 7.7 £ 0.21
AVPS, process on but not matching 11.1 £ 0.18
AVPS, matching and policy applied 14.6 = 0.47

Average CPU utilization (%) with 95% confidence interval

AVPS - bridging only 0.03 £+ 0.04
AVPS enabled, not matching 0.24 £+ 0.45
AVPS enabled, matching, not blocking 0.54 + 1.04
AVPS enabled, matching, blocking 0.15 + 0.11

TABLE III: Web results

are shown in Table III, which presents the average throughput
(in KB/sec) and the average transfer time (in msec), with 95%
confidence intervals, for 10 manually submitted requests using
JMeter for a Web page of 518 KB. In the cases where we check
against a rule but do not block, we loaded into memory the
following rule that alerts when a user tries to access the page
“notallow.html]” located at a specific webserver.

alert tcp any any — Webserver any (classtype:attempted-user;
msg: “Snortinline Autonomic web event”;
content: “notallow.html” ;nocase;sid:2;)

Table III indicates that the average throughput is reduced by
56% when the AVPS is running, matching, and not blocking
as compared with the case of no AVPS. The response time
difference in that case (see Table III) increases 2.28 times.
However, the increase in time units is only 8.2 msec for a
large web page (i.e., 518 KB). This increase in response time
is hardly noticeable by a human being. It should be noted that
in the Web case, the AVPS has to inspect every single packet
of a Web page.

Table III indicates that the CPU utilization results for the
web case are equally low as in the previous cases.

C. Scalability Analysis

The experiments reported in previous sections allow us
to determine the execution time and overhead of running
applications protected by the AVPS system. This section uses
a queuing-theoretic model to explore the scalability of our
proposed approach. We assume that there are M clients that
submit requests that are initially processed by one of N AVPS
engines, which then send the requests to an application server
(AS) (e.g., FTP server, database server, Web server). Each
client pauses for an exponentially distributed time interval,
called think time, before submitting a new request after a reply
to the previous request has been received. The average think
time is denoted by Z. See Fig. 4 for a depiction of the model.

We also assume that the average time to process a request,
not counting time waiting to use resources at the AVPS and the
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Fig. 4: AVPS analytic model.

application server, is exponentially distributed with an average
equal to 7.

We can use the results of the M/M/N//M queue (see [25])
to obtain the probabilities pj, of having k requests being pro-
cessed or waiting by either the AVPS or the application server.
The M/M/N//M queue models a variable service rate finite-
population of M request generators that alternate between
two states: (1) waiting for a reply to a submitted request and
(2) thinking before submitting a new request after receiving a
reply to the previous request.

The probabilities p; are then given by

bl P (#/2) arierm o 0Sk=N "
po [#/(N 2)F ey N <k<M
where
ZN:E + Z Tk M N
prd 7" ar- k'k' NZ (M — k)IN!

2
We can now compute the average number, NN, of requests
being processed or waiting to be processed by the AVPS +
application server system as

B M
= ko (3)
k=1

and the average throughput X as

%—Z W+Z )

k= N+1

The average response time, R, can be computed using Little’s
Law [26] as R = N/X().

The workload intensity of such a system is given by the
pair (M, Z). An increase in the number of clients M or a
decrease in the think time Z imply in an increase in the rate
at which new requests are generated from the set of clients. As
the processing time Z increases, contention within the system
increases and requests tend to spend more time in the system
instead of at the client. In the extreme case, pp; ~ 1 and
pr ~ 0 for k =0,--- , M — 1. When that happens, N > M,
Xo— N/z,and R= N/Xy — M z/N. In other words, the
response time grows linearly with M at very high workload
intensities.

We now use the & values obtained in our measurements
from Section V-B to analyze the scalability of the AVPS for
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an FTP server, database server and web server under the same
conditions shown in the previous sections and for a single
AVPS engine (i.e., N = 1). Note that the values of z used
here correspond to the worst-case scenario in the automated
tests, i.e., case (3) in which all rules generate a violation and
an alert but traffic is not blocked.

Server type T
FTP Server 100 KB 0.360 sec
1 MB 0.513 sec
10 MB 1.050 sec
100 MB 8.100 sec
DB Server Q1 41.6 msec
Q2 14.8 msec
Q3 15.6 msec
‘Web Server 518 KB 12.1 msec

TABLE IV: Average Service Time Z for the FTP Server, DB
Server and Web Server Applications.

Figure 5 shows the average file transfer time R when the
number of clients varies from 5 to 30 for an average think
time equal to 10 sec. The AVPS is enabled, matching packets
against the policy, but not blocking bad transfers. If blocking
were enabled the transfer time would be reduced since some
files would not be transferred. As expected, for each file size,
the average transfer time increases with the file size. For large
files (e.g., 100 MB) and for this value of the think time,
the system is close to saturation and the average transfer
time increases almost linearly with the number of clients, as
discussed above. For example, R = 233 sec for M = 30. This
value is very close to 30 x £ = 30 x 8.1 = 243 sec. For half
the number of clients, R is 111.5 sec, which is almost half
the value for M = 30. But, even in this worst case, the FTP
server with the AVPS system scales linearly with the number
of clients.

Before saturation is reached, the increase in average transfer
time is more than linear, as can be seen for example in the 10
MB file size case. For example, the value of R for M = 30
is about 3.4 times higher than for M = 15. However, as M
increases way past M = 30 for 10-MB files, the system will
saturate and the transfer time will increase linearly with M.

Figure 6 shows the average response time, R, for the result
of queries QI, Q2, and Q3 defined in Section V-B for an
average think time equal to 0.1 sec. As before, the number of
clients varies from 5 to 30. The number of records returned by
queries Q1-Q3 are 51740, 1, and 1, respectively. Q3 is a much
more complex query and requires more database processing
time. Thus, its average response time is slightly higher than
that for Q2, even though both queries return the same amount
of data. The graph indicates that for 30 clients and for QI,
the system is very close to saturation and the average transfer
time is very close to be proportional to M. In fact, R = 1.148
sec &~ 30 x T = 30 x 0.0416 = 1.248 sec. Queries Q2 and Q3
do not return enough records to push the system to saturation
and therefore we see a more than linear increase in transfer
time as a function of M for the values shown in the graph.

Figure 7 shows the average transfer time R for a 518-
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Fig. 5: Average file transfer time vs. number of clients for
various file sizes. The average think time is 10 sec.
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Fig. 6: Average database query result transfer time vs. number
of clients for three different queries. The average think time
is 0.1 sec.

KB Web page and for an average think time equal to 1 sec.
As before, the number of clients varies from 5 to 30. The
graph indicates that the increase in transfer time is negligible
between 5 and 30 clients. While R increases linearly with
the number of clients, the rate of increase is mainly due
to increased congestion at the Web server and not to AVPS
overhead, which is small (8.2 msec) and hardly noticeable by
a human being.

The clustered architecture for AVPS allows for horizontal
scaling. Using the model presented above and the FTP server
example, we can see the effect of increasing the number of
AVPS engines from 1 to 5. This is illustrated in Table V shows
the average file transfer time for 100 MB files, 20 clients, and
an average think time of 10 sec. As it can be seen, increasing
the number of AVPS engines from 1 to n reduces the average
transfer time by a factor larger than n.

VI. CONCLUDING REMARKS

This paper presented a scalable AVPS framework to defeat
the insider threat. It also presented a performance evalua-
tion assessment for three different application servers. In the
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Fig. 7: Average web transfer time vs. number of clients for a
518-KB Web page. The average think time is 1 sec.

N 1 2 3 4 5
R 152 71 44 31 22

TABLE V: Average file transfer time, R, (in sec) for various
values of the number of AVPS engines, N. Other parameters:
M =20 and Z = 10 sec.

performance assessment we measured average transfer times,
average throughput, and CPU utilization. We also provided
95% confidence intervals for all three measurements.

The experiments showed that: (1) The impact on the aver-
age transfer time and throughput for FTP transfers is either
negligible at the 95% confidence level or very small (i.e.,
less than 1.8%). (2) The response time impact on database
queries is heavily dependent on the number of records returned
by the queries. For queries that return a very large number
of records (e.g., over 51,000), the response time increase is
13% on average. However, this amounts to only 0.08 usec
on average per record returned. (3) When a Web server is
accessed through the AVPS system, the response time for a
large Web page (e.g., 518 Kbytes) increases by 8.2 msec, an
amount hardly noticeable by a human being. (4) The average
and maximum CPU utilization of the AVPS engine are very
small in all cases tested, not exceeding 7%.

We also presented an M/M/N//M queuing analytical scal-
ability model and generated expected response times for all
three application servers. The goal of our scalability and
performance evaluation was to show that there is very low
overhead incurred when the AVPS is in-line between the
clients and the application servers. We used worst-case sce-
narios in our analysis by considering situations in which all
rules checked trigger a violation and generate an alert, but
do not block incoming traffic. Blocking traffic in violation
situations, which is the normal operational situation, reduces
the load on the network and on the AVPS engine and improves
performance.

The AVPS is based on Event-Condition-Action (ECA) au-
tonomic policies. If a condition occurs, an event/action is
triggered. Rules are entered into policies manually. The use of
ECA might be difficult to maintain and manage if the number
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of rules is very large. For this reason, we are currently looking
into self-learning and self-adapting approaches to lower human
involvement in rule writing. We are also looking at model
based architectures, typically used in self-optimizing systems,
and the effects of rule complexity on the overall performance
of the system.
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