
Proposal of n-gram Based Algorithm for Malware Classification

Abdurrahman Pektaş

The Scientific and Technological

Research Council of Turkey

National Research Institute of

 Electronics and Cryptology

Gebze, Turkey

e-mail:apektas@uekae.tubitak.gov.tr

Mehmet Eriş

The Scientific and Technological

Research Council of Turkey

National Research Institute of

Electronics and Cryptology

Gebze, Turkey

e-mail:eris@uekae.tubitak.gov.tr

Tankut Acarman

Computer Engineering Dept.

Galatasaray University

Istanbul, Turkey

e-mail:tacarman@gsu.edu.tr

Abstract— Obfuscation techniques degrade the n-gram

features of binary form of the malware. In this study,

methodology to classify malware instances by using n-gram

features of its disassembled code is presented. The presented

statistical method uses the n-gram features of the malware to

classify its instance with respect to their families. n-gram is a

fixed size sliding window of byte array, where n is the size of

the window. The contribution of the presented method is

capability of using only one vector to represent malware

subfamily which is called subfamily centroid. Using only one

vector for classification simply reduces the dimension of the n-

gram space. Experimental results are performed over a fairly

large data set, which is being collected through Computer

Emergency Response Team (CERT) activities in the National

Research Institute of Electronics and Cryptology, to illustrate

the effectiveness of the proposed malware classification

methodology.

Keywords- malware; n-gram based; classification

I. INTRODUCTION

The basic definition of malware (malicious software)

may be presented as follows: piece of software code that

works for the attacker. Malware has great popularity

amongst cyber criminals since it offers attractive income

opportunities. This popularity makes the malware an

important threat for the computing society.

The presented classification approach uses the centroid of

the subfamily which is constructed from its samples.

Therefore unknown malware classification can be achieved

by using low dimension centroid vector which requires less

computational work. Experimental study is performed to

validate the accuracy of the presented centroid-based

approach. Used data set is constituted by the national

activities of CERT Coordination Center, which is the

national consultation center for computer security incidents

[1].

The representation of malware by using n-gram profiles

has been presented in the open literature, see for example

[2], [3] and [4]. In these studies some promising results

towards malware detection are presented. However malware

domain has been evolving due to survivability requirements.

Malware has to evade anti-virus scanners to perform its

functions. Obfuscation techniques have been developed in

order to avoid detection by anti-virus scanner. And these

techniques disturb n-gram features of binary form of the

malware used by the previous work. Similar methodologies

have been used in source authorship, information retrieval

and natural language processing [5], [6].

The first known use of machine learning in malware

detection is presented by the work of Tesauro et al. in [7].

This detection algorithm was successfully implemented in

IBM’s antivirus scanner. They used 3-grams as a feature set

and neural networks as a classification model. When the 3-

grams parameter is selected, the number of all n-gram

features becomes 256
3
, which leads to some spacing

complexities. Features are eliminated in three steps: first 3-

grams in seen viral boot sectors are sampled, then the

features found in legitimate boot sectors are eliminated, and

finally features are eliminated such that each viral boot

sectors contained at least four features. Size of feature

vectors in n-grams based detection models becomes very

large so feature elimination is very important in these

models. The presented work has been limited by the boot

sector viruses’ detection because boot sectors are only 512

bytes and performance of technique is degraded

significantly for larger size files.

As a historical track, IBM T.J. Watson lab extended boot

virus sector study to win32 viruses in 2000 [8]. At this

stage, 3 and 4 grams were selected and encrypted data

portions within both clean files and viral parts were

excluded due to the fact that encryption may lead to random

byte sequences. At the first instance, n-grams existed in

constant viral parts were selected as features and then, the

ones existed in clean files more than a given threshold value

were removed from the feature list. In this study, along the

use of neural networks boosting was also performed.

Results of this study shown that the developed method

performance was not sufficient. Schultz et al. has used

machine learning methods in [9]. Function calls, strings and

byte sequence were used as the feature sets. Several

machine learning methods such as RIPPER, Naive Bayes

and Multi Naive Bayes were applied, the highest accuracy

of 97.6% with Multi Naive Bayes was achieved.

Abou-Assaleh et al. [3] contributed to the ongoing

research while using common n-gram profiles. k nearest

neighbor algorithm with k=1 instead of the other learners

was used. Feature set was constituted by using the n-grams

and the occurrence frequency, where the occurrence

frequency is denoted by L. Tests have been done with

14Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

different n (ranging from 1 to 10) and L (ranging from 20 to

5000) values. Data set used in these experiments was kept

fairly conservative of 25 malware and 40 benign files. With

this set, test results shown 98% of success. Using the data in

[3], the accuracy slightly dropped to the 94% level.

Kolter et al. [2] used 4-grams as features and selected top

500 n-grams through information gain measure. They used

instance based learners, TFIDF, naive bayes, support vector

machines, and decision trees and also boosted last three

learners. Boosted decision tree outperformed all others and

gave promising results such as ROC curve of 0.996.

While the battle between malware authors and anti-virus

producers are continuing, our motivation is to find the

statistical method to classify the malware instance by using

n-gram features (profiles) of disassembled malware. In our

methodology, we use n-gram feature of the malware to

classify the malware instance with respect to their family. n-

gram is a fixed size sliding window of byte array, where n is

the size of the window. For example the “81EDD871”

sequence is segmented (represented) into 5-gram as

“81EDD”, “1EDD8”, “EDD87” and “DD871”.

This paper is organized as follows: Section 2 proposes

the methodology. Section 3 elaborates and computes the

accuracy of the proposed methodology. Finally, concluding

remarks and future works are presented in Section 4.

II. SYSTEM DESIGN

As stated in the introduction, current malware samples

cannot be analyzed easily based on their statistical features’

as in the previous decade because of the increasing use of

the obfuscation techniques by the malware authors.

The proposed algorithm consists of preprocessing,

training and testing phase. Malware samples are collected

through TR-CERT [1] activities in The National Research

Institute of Electronics and Cryptology. We classified our

dataset by using Microsoft Security Essential (MSE)

antivirus tool [17]. In other words, naming of the malware

instance is performed by the MSE tool. Malware naming is

not a well standardized area where all vendors, players can

name and classify malware according to their intentions, and

common sense in naming cannot be achieved among the

stakeholders [16]. After that preprocessing step, PEid as a

useful tool to inspect PE files, is used to dissemble malware

instances [18]. We extract a malware instance’s n-gram

profile through opcode sequences obtained from PEid. We

are using opcode sequences instead of byte sequences of the

malware.

In our study, machine codes to extract malwares’ n-gram

profile instead of byte sequences are considered and the n-

gram feature space is considerably reduced. In this manner

calculations are performed faster and efficiently. Each

malware sample is used to determine its subfamily vector

which is named as the centroid of the subfamily.

Family of the malware is a descriptor of the malware

used to classify malware samples according to their features

Label malware intances
with Microsoft Security Essential

Diassemble all instances

Extract n-gram profiles

Generate centroid for each subfamily

Calculate similarity of the
instance for each subfamily

through centroid vector

Most relevant
subfamily in terms

of similarity
function

Instance to
classify

Extract n-gram profiles

Training Phase

Preprocessing Phase

Testing Phase

Figure 1. Architecture of the malware classification system

especially in terms of the tasks performed and the purpose

of the creation. Subfamily is the specialized version of the

family that describes malware samples definitely. For

instance if a malware labeled as Win32-Ramnit.F by an

anti-virus scanner, this means the malware belongs Win32-

Ramnit family and Win32-Ramnit.F subfamily.

15Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Centroid of the subfamily comprises the most frequent

n-gram of the subfamily instances. In other words, n-grams

(words or terms), which occur with higher document

frequency in the subfamily instances, are used to construct

the centroid vector. So the subfamily is represented by its

centroid vector. For instance, centroid of the subfamily is

presented by
⃗⃗ ⃗ as follows:

⃗⃗ ⃗

(

)

where df is the document frequency.

To classify an instance, similarity function is calculated

by counting the number of matching n-gram (term) for each

centroid of the subfamily.

 (
 ⃗⃗) {

 ⃗⃗

 (1)

 ⃗⃗ ⃗⃗ ⃗⃗ ∑
 ⃗⃗

 (2)

 ⃗⃗ ⋃ (⃗⃗ ⃗⃗ ⃗⃗)
 (3)

where m denotes malware whose family is unknown and it

will be determined via presented method. ⃗⃗ is the n-gram

feature vector extracted from unknown malware instance

denoted by m. Subindice is the subfamily indexing for

s=1,2…15. The function, denoted by , returns 1 if

malware n-gram profile (⃗⃗ consists i-th n-gram of the

centroid of taken subfamily(
⃗⃗ ⃗ denoted by

 otherwise

return 0. Equation (2) gives similarity measure between the

unknown instance and the subfamily centroid. Similarity

measure is the sum of the common n-grams. In Equation

(3), after all similarity measures are calculated, the unknown

instance is classified as the closest centroid’s subfamily.

Process flow is illustrated in Figure 1. When an instance

has two or more equal similarity value for two different

subfamilies, an error occurs. However this error will be

named as the small error because these two or more equal

similarity values for subfamily may belong to the same

family. As we know, the subfamilies sustain their common

family feature. Other types of error are named as big error.

III. EXPERIMENTAL STUDY

In order to perform our experiments, we collect

significantly large malware database as stated in the system

design section. To obtain more accurate results we count in

the subfamilies that contain maximum number of samples in

our dataset. In this manner, experiments are carried out 1056

samples belonging to ten families, five of them have two

subfamilies, and therefore there exists 15 subfamilies in our

dataset. TABLE I indicates how many samples were taken

from which subfamily in our dataset. This data set consists

only a 2% of the original database. The amount of the

sample is sufficient to demonstrate whether n-gram centroid

of the subfamily may be used to classify malware instance

or may not.

TABLE I. NUMBER OF THE INSTANCES FOR EACH SUBFAMILY

Subfamily Name Instance Number Subfamily Name Instance Number

Win32-Vobfus.Y 13 Win32-Sality.AT 64

Win32-Alureon.H 19 Win32-Small.AHY 69

Win32-Ramnit.F 19 Win32-Renos.NS 95

Win32-Virut.BG 19 Win32-Sality.AM 100

Win32-Alureon.CT 22 Win32-Renos.LT 137

Win32-Agent.ACF 23 Win32-Vobfus.gen!D 183

Win32-Viking.CR 30 Win32-Ramnit.B 200

Win32-Vobfus.AH 42

To evaluate our methodology, five-fold cross-validation

is used: the selected malwares’ subfamilies are randomly

partitioned into five disjoint sets of approximately equal

size, named as “folds”. Training and testing phases are

performed five times. At each iteration step, one fold is

selected as a testing set, and other four folds are combined

to form a training set. Therefore, each sample is used five

times for training and once for testing. And the estimated

error is computed as the total error generated from the five

iterations, divided by the total number of the initial tuples.

There are two main parameters in the experimental setup:

the first parameter is the size of the n-grams and the second

parameter is the number of the list size which is constituted

by ranking the n-grams according to their df values in the

subfamilies. The size of the n-grams, denoted by n, allows

us to decide how long in bytes the n-gram will be. In the

experiments, tests are run with n=3, n=4, n=5 and n=6. The

second parameter, denoted by L, is chosen to express a

subfamily in a simple way. Tests are run with L=40, L=50

and L=60.

16Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

TABLE II shows the obtained training error over the

parameters n and L as well as TABLE III shows the

resulting testing error. As can be seen from the TABLE II

and TABLE III, to increase the size of the n-gram does not

produce accurate results every time. Because if the

parameter n increases, n-grams cannot capture the subfamily

features, in contrary the selected n-grams can only represent

a feature specific of the sample. However, the opposite case,

namely if the n is chosen very small, n-grams can mostly

become the common feature of the all subfamilies as well as

all samples.

We achieved the highest success rate when n=4 as

confirmed by the results in [2] also. Elaborating the

parameter choice effects, if the parameter L is increased, the

error rate decreases. Since the more common n-gram makes

it easy to classify instance appropriately. As maintained in

the previous section, the n-gram profiles are captured from

the disassembled malware, therefore the space of the n-gram

decreases dramatically. For all that, L could not be taken

more than 60, due to having very small sized n-gram space

(i.e., for Win32-Agent.ACF n-gram feature space is 74)

As a result of the experiment, the most appropriate

parameter pair is obtained when n=4 and L=60. The

obtained training and testing errors rate for n and L pairs

from our experiment are listed in the following TABLE II

and TABLE III, respectively.

TABLE II. TRAINING ERROR

N-gram

Length

Top L N-gram in the Subfamily Malwares

L=40 L=50 L=60

Total Error Without

Subfamily Error
Total Error Without

subfamily Error
Total Error Without

subfamily Error

n=3 0.231 0.101 0.150 0.058 0.090 0.024

n=4 0.143 0.056 0.106 0.021 0.053 0.014

n=5 0.124 0.041 0.109 0.024 0.058 0.015

n=6 0.123 0.038 0.115 0.024 0.108 0.019

n=7 0.151 0.031 0.115 0.031 0.098 0.019

n=8 0.125 0.041 0.124 0.037 0.111 0.028

TABLE III. TESTING ERROR

N-gram

Length

Top L N-gram in the Subfamily Malwares

L=40 L=50 L=60

Total Error Without

Subfamily Error
Total Error Without

subfamily Error
Total Error Without

subfamily Error

n=3 0.262 0.109 0.184 0.066 0.131 0.038

n=4 0.169 0.069 0.141 0.037 0.082 0.023

n=5 0.150 0.056 0.128 0.038 0.082 0.026

n=6 0.143 0.043 0.140 0.027 0.134 0.023

n=7 0.170 0.039 0.140 0.036 0.125 0.025

n=8 0.139 0.042 0.148 0.040 0.138 0.034

IV. CONCLUSION

In this paper, a methodology for classifying malware

instances from disassembled code by using n-gram

feature is presented and it is implemented on a fairly large

set. Empirical results demonstrate that the proposed

methodology may show acceptable performance in

practice. Experimental results show that the classification

accuracy for training and testing when n and L are chosen

4 and 60, is achieved at their highest success percentage

of %99 and %98, respectively, which seem to be very

promising versus the other methodologies.

To improve the accuracy of detection, experiments by

using large dataset while using variable length n-gram

feature vector of the malware is underway.

17Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

REFERENCES

[1] Turkey Computer Emergency Response Team, available at site:
http://www.bilgiguvenligi.gov.tr/certen/index.php, last access on-
line May 31, 2011.

[2] J. Z. Kolter and M. A. Maloof, “Learning to Detect Malicious
Executable in the Wild”, The Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, New York, NY, USA, pp. 470-478, 2004.

[3] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “n-gram-
based Detection of New Malicious Code”, The Proceedings of the
28th Annual International Computer Software and Applications
Conference, IEEE Computer Society Washington, DC, USA, pp.
41-42, 2004.

[4] I. Santos, Y. K. Penya, J. Devesa, and P.G. Bringas “n-Grams-
Based File Signatures For Malware Detection” The Proceedings of
the 11th International Conference on Enterprise Information
Systems, Volume AIDSS, pp. 317-320, 2009.

[5] S. Burrows and S. M. M Tahaghoghi, “Source code authorship
attribution using n-grams”, In Proceedings of the Twelfth
Australasian Document Computing Symposium, A. Spink, A.
Turpin, and M. Wu, Eds. RMIT University, Melbourne, Australia,
pp. 32–39, 2007.

[6] G. Frantzeskou, E. Stamatatos, S. Gritzalis and S. Katsikas,
“Effective identification of source code authors using byte-level
information”, In Proceedings of the Twenty-Eighth International
Conference on Software Engineering, L. J. Osterweil, D.
Rombach, and M. L. Soffa, Eds. ACM Special Interest Group on
Software Engineering, ACM Press, Shanghai, China, pp. 893–896,
2006.

[7] G. J. Tesauro, O. J. Kephart, and B. G. Sorkin,“Neural networks for
computer virus recognition” , IEEE EXPERT Magazine, pp. 5-6,
1996.

[8] W. Arnold and G. Tesauro, “Automatically Generated Win32
Heuristic Virus Detection”, Virus Bulletin Conference, pp. 51-60,
September 2000.

[9] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data Mining
Methods for Detection of New Malicious Executables”,
Proceedings of the 2001 IEEE Symposium on Security and
Privacy, pp. 38-49, 2001.

[10] Z. Liu, N. Nakaya, and Y. Koui, “The Unknown Computer Viruses
Detection Based on Similarity” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences vol.E92-A no.1 pp.190-196, 2009.

[11] A. Walenstein and A. Lakhotia, “The Software Similarity Problem
in Malware Analysis”, Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy and Similarity in Software, pp.1-10, 2007.

[12] S. B. Mehdi, A. K. Tanwani, and M. Farroq, “IMAD: In-Execution
Malware Analysis and Detection”, the Proceedings of the 11th
Annual conference on Genetic and Evolutionary Computation, pp.
1553-1560, 2009.

[13] S.S Anju, P. Harmya, N. Jagadeesh, and R. Darsana, “Malware
Detection using Assembly Code and Control Flow Graph
Optimization”, Proceedings of the 1st Amrita ACM-W Celebration
on Women in Computing in India, article no: 65, 2010.

[14] J.H. Wang, P. S.Deng, Y.S. Fan, L.J Jaw, and Y.C Liu, “Virus
Detection Using Data Mining Techniques”, In Proceedings of the
IEEE 37th Annual International Conference on Security
Technology, pp.71-76, 2003.

[15] M. Siddiqui, M. C. Wang, and J. Lee, “A survey of Data Mining
Techniques for Malware Detection using File Features”, In
proceedings of the 46th Annual Southeast Regional Conference, pp.
509-510, 2008.

[16] M. Bailey, J. Oberheide , J. Andersen ,Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated Classification and Analysis of Internet
Malware”, Proceedings of the 10th international conference on
Recent advances in intrusion detection, pp. 178-197, 2007.

[17] Microsoft Security Essential, available at site:
http://www.microsoft.com/security_essentials/, last access on-line
May 31, 2011.

[18] PEiD tool, available at site: http://www.peid.info/, last access
on-line May 31, 2011.

18Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

http://www.microsoft.com/security_essentials/
http://www.peid.info/

