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Abstract—A botnet is one of the largest problems against
the Internet society because it is used to mount Distributed
Denial of Service (DDoS), to steal users credentials, to send
spam email, and so on. To cope with the problem, this paper
presents a method of detecting spamming botnets, exploiting
the information in a hash table of spams produced in our spam
filter. To partition the spams based on the similarity of their
messages, we cluster the spams in the hash table in three steps
by 1) removing the collision (due to the hashing) in each bucket
of the table, 2) merging the clusters obtained in step 1), using
the fingerprints of message bodies, and 3) further merging the
second-step clusters based on the spam-specific words in the
Subject headers of spams. We identify a bot using the IP address
in the first internal Received header that is prepended to the list
of Received headers by the first internal server of a receiving
organization. By simulation, we can cluster about 18,000 real-
world spams in about 4,000 seconds with no misclustering on
our commodity workstation. The active IP space for bots to
send spams is almost the same as the one reported in the
literature, except of a slight expansion.
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specific word.

I. INTRODUCTION

A botnet consists of the home and office computers
infected with bot malware and controlled by a botmaster.
Botnets are one of the largest problems against the Internet
society since they are used to mount serious attacks such as
Distributed Denial of Service (DDoS) and users’ credentials
stealing, and to misuse and waste network resources and
recipients’ invaluable time by sending spam email (e.g.,
about 88% to 92% of spams originate from botnets [1]).
The size of a botnet ranges from tens of hosts to more than
ten thousand hosts [2]; surprisingly, a botnet that Symatec
discovered consists of about 400 thousand hosts [3].

Since a large percentage of emails originate from botnets,
an analysis of spam email is effective to identify bots and
botnets that are spamming [2][4], though there are several
approaches to the identification of bots and botnets that
are not necessarily spamming (as described in Section II).
An email message consists of several kinds of headers and
a body. One Received header is prepended to the list of
Received headers every time the email is relayed. Then the
list would provide information about the route from the
origin to the recipient of the email.

The botmaster usually obfuscates the route information
so that it is difficult to identify the origin of spamming bot.
The only exception is the first internal line, i.e., the Received
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header prepended to the list of Received headers by the first
internal server of the organization the recipient belongs to
[5]. The first internal line gives the IP address of the outside
machine that directly delivered the email across the Internet
to the receiving organization. The Received headers before
the first internal line can be falsified by the sender.

This paper presents a method of detecting botnets. For
a continuous detection of spamming bots, we integrate
botnet detection into spam filtering since currently every
organization or user installs a spam filter. Then we can detect
spamming botnets worldwide if the botnets detected in the
individual spam filters are periodically sent to, for instance,
a Botnet Analysis Center to figure out spamming botnets
worldwide. We assume our spam filter [6] in the paper.

The botnet detection integrated in spam filtering has
two problems: First, we can use only restricted kinds of
information for the detection because it is produced in the
filter. Second, to identify the member bots of each botnet,
we partition the spams classified by the filter into clusters
each corresponding to a botnet. Then the clustering has to
be lightweight enough for a home or office computer since
the clustering of a large number of objects generally needs
a very large computing power [7][2].

Our filter detects spam based on the fingerprints of mes-
sage bodies and spam-specific words in the Subject headers
of the received email. We start the clustering with a hash
table of spams produced in the spam filter, since each bucket
of the table is a linked list of spams that have the same hash
value. We cluster spams in a hierarchical way to reduce the
computation power required in the clustering.

After the clustering, we detect the IP addresses in the
first internal lines of the spams in each cluster to identify
the botnets and their members. Experimental results show
that the clustering of about 18,000 real-world spams can be
performed with no misclustering in about 4,000 seconds on
our commodity workstation. The active IP space for bots
to send spams is almost the same as the one reported in
[8], though some new subspaces appear to be emerging.
The size distribution of detected botnet significantly differs,
depending on the size of partial IP addresses (i.e., the upper
8, 16, 24, and 32 bits) used in the botnet detection.

In the rest of the paper, Section 2 describes related
work. Section 3 outlines our spam filter and proposes the
scheme for clustering spamming bots. Section 4 describes
experimental results, and Section 5 concludes the paper.
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II. RELATED WORK

To communicate with the bots in a botnet, its botmaster
needs a command and control (C&C) channel. The C&C
channels with the Internet Relay Chat (IRC) are currently
dominant, though the channels with the HTTP or P2P are
appearing to remedy the weak point of centralized struc-
ture of IRC channels. We classify the approaches to bot
detection into four categories; network-based, C&C-based,
DNS-based, and spam-based approaches.

The approach based on network traffic detects bots by
observing 1) the session parameters such as a source ad-
dress/port, a destination address/port, the number of packets
and bytes, the start and end time of the session, and the
transport layer protocol used [9], 2) the network activity
on suspicious IRC and HTTP traffic such as port scanning,
spamming, and binary down loading [10], or 3) Windows
API socket function calls and their arguments [11].

C&C-based approach exploits 1) behavioral characteris-
tics of IRC bots such that bots are idle most of the time
and respond faster than a human upon receiving a command
[12] and 2) regularity or invariant characteristics in botnet
behavior such as one-to-many connection, simultaneous and
immediate responses from bots in a small fixed period,
and synchronized malicious actions by bots [13], or 3)
flow characteristics of IRC C&C traffic such as bandwidth,
duration, and packet size and timing [14].

In a DNS-based approach, the connections to botmasters
are redirected to a local sinkhole that performs the 3-
way TCP handshake with bots to detect their IP addresses
[15]. Another DNS-based technique infers bots by observing
lookup behavior into DNS blackhole lists (DNSBLs) [16],
since botmasters tend to query these lists to inspect if
their bots are blacklisted. Yet another technique detects
botnets by identifying the features of a group activity in
the DNS queries that a large number of bots in a botnet
simultaneously send [17].

The last approach, spam-based one, is most relevant
to our approach. Spam campaigns, i.e., coordinated mass
emailing of spam, are used as the primary indicator to detect
the membership in a single botnet [2]. In identifying the
membership, 1) email messages are clustered into spam
campaigns, using a number of fingerprints, 2) dynamic IP
addresses are inferred into a single one of the same machine,
using a probabilistic method, and 3) spam campaigns are
merged into a single botnet to cope with the cases where a
number of spam campaigns are initiated by the same botnet.
These steps run on a cluster of 120 computers since the steps
poses formidable computing challenge for a single computer.
In [4], URLs embedded in email content are used to detect
botnet-based spam emails and botnet membership. Then
botnet hosts are identified by regular expressions of URL-
based signatures to reduce the false positive rate against
polymorphic URLs.
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III. OUR METHOD OF DETECTING SPAMMING BOTS

This section first outlines our spam filter, next presents
our strategy for clustering and describes our methods for
clustering spams and detecting spamming bots and botnets.

A. Outline of our spam filter

Our spam filter is a cascade of three rule-based filters,
each of which produces or collects information required
for filtering [6]. Since the filter in a stage of the cascade
sends the email it cannot classify to the next stage, the false
(positive and negative) rates gradually decrease while the
email passes through the cascade.

Let a token refer to the hash value of a 50-byte character
string produced with the hash function described in [18], and
the fingerprint (FP) of an email be a set of the all tokens for
overlapping 50-byte character strings (sliding by one byte at
a time) in the email’s message body. Then the first filter in
our cascade characterizes an incoming email by a set of
32 tokens, called partial fingerprint (pFP), that have the
smallest least-significant 8 bits of the tokens in the FP for
the email. The pFPs for earlier spams are stored in the filter
and used to classify an incoming email, comparing its pFP
with those saved in the filter.

The second filter classifies email, consulting the lists
respectively of spam and legitimate email addresses in the
From headers; this filter also checks the mail address format
in the headers. The last filter classifies emails, using the
lists respectively of spam-specific and legitimate email-
specific words in the Subject headers. Evaluated with about
20,000 real world emails, our cascaded filters achieve the
false negative rate of 0.025 with no false positive and is
lightweight, i.e., classifies about 93 emails per second.

For a detected spam, our spam filter stores an entry
consisting of the pFP and other items in a bucket of a hash
table, called eMail Hash Table (MHT); an MHT bucket is
a list of entries. The bucket including a specific spam is
indexed by yet another fingerprint, the summary FP (sFP;
also referred to as origin index), that equals Z?io token;,
where token; is the i-th token in the spam’s pFP.

Let the dominant spam for an incoming email stand for a
spam whose pFP saved in the filter most matches the email’s
pFP and the number of matching tokens is not less than a
threshold Ngom. To decrease the false rates, the filter puts
a spam and its origin index into the MHT bucket with the
dominant spam’s origin index (referred to as dominant index)
when the spam has the dominant spam, or stores only the
spam in the bucket with its origin index otherwise.

B. Strategy for clustering

Let S denote the numbers of spams to be clustered,
and T be the average number of tokens per FP. If we
would perform spam clustering by FP, the clustering needs
S?T'logT comparisons, where S? is for comparing each
spam with another one, and T'logT is for comparing each
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token in the FP for a spam with all tokens in the FP for
another spam, assuming the FPs organized into search trees.

The average size of a message body in our collected S ~
2 x 10* emails is equal to about 4 x 10° bytes, so that T’ ~
4 x 103. Then the total size of FPs equals about 800 x 108
bytes. Assuming one file I/O per 1,000 bytes and the I/O
delay (millisecond order per disk seek) of 108 times greater
that the CPU clock cycle time (nanosecond order), then the
clustering of S spams directly by FPs in a single step would
need (S%T'logT)/10% ~ 10° seeks. This is equivalent to
the time for about 101® CPU clocks, and hence, about 10°
seconds on a current home/office computer; note that one
day equals about 8.6 x 10 seconds.

We reduce the computing power above through these
strategy, assuming that in the bots clustering, we can use
only the information collected in the spam filter:

1. Perform clustering in a number of steps.

2. Use different metrics in different clustering steps.

3. Produce clusters based on the similarity only of the
leaders (i.e., the representative spams) of clusters.

4. Verify the clustering correctness in each step by

the similarity of FPs.

Strategy 1 will reduce the computing power because the
clustering is separately applied on each cluster produced
in the previous step. Strategies 2 and 3 will decrease the
computing power, with a penalty of misclustering. Strategy
4 compensates our clustering method for the probable mis-
clustering due to Strategies 2 and 3.

C. Clustering of spam

For spam clustering, we modify our original filter so that
the Subject headers and the first internal lines of the detected
spams are also saved in the MHT entries. Moreover, we
store the spams’ fingerprints FPs in a number of files, call
FP files. In addition, we copy all produced MHT entries
into another hash table, called Spam Cluster Table (SCT),
since the original filter deletes stale MHT entries every 1000
spams to save the memory resource.

We start our spam clustering with SCT since each SCT
bucket is a preliminary cluster of spams since it is a list of
spams with similar message bodies in the sense that they
produce the same origin or dominant index. We define a
pair of spams as being similar if the rate of the number of
identical tokens in their FPs to the number of tokens in one
of the FPs is greater than or equal to a threshold, Rgjp,. Then
our spam clustering proceeds as listed below and shown in
Fig. 1; an SCT bucket is shown in Fig. 1.(a) and the leader
of a cluster is the head spam in the cluster (see Fig. 1.(b)):

1. Cluster the spams in each SCT bucket by (partially)
resolving the collisions (i.e., by further hashing the
spams) due to the indexing by sFP (Fig. 1.(b)).

2. If a cluster Cy produced in step 1 is located in the
bucket with the leader’s dominant index d, merge
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cluster Cy with a cluster Cy in the bucket with the
leader’s origin index £ if the leader is similar to
some spam in cluster Cy (see Fig. 1.(c)).

3. Merge the clusters generated in step 2 if their
leaders have a number of common spam-specific
words greater than or equal to a threshold, Ngyq.

e

(a) One bucket of SCT

bucket ¢

leaders

(b) Clusters produced from (c) Merging of clusters;
one bucket; step 1 steps 2 and 3

Fig. 1. Clustering by removing aliases and merging
based on dominant spams and spam-specific words.

To resolve the collisions in step 1, we put the spams with
the same XOR3?! token; into one cluster (XOR: eXclusive-
OR). Then the spams in a obtained cluster have the same
Z?io token; (= sFP) and the same XOR?! token;.

A cluster Cy in bucket SCT[d] obtained in step 1 may
consist only of the spams that have the same dominant index
d but have the individual origin indices different from d (see
Section A). Let £ be the original index of the leader of cluster
Cg. Then we merge, in step 2, the cluster Cy with a cluster
Cy in bucket SCT[/] if cluster C; includes at least one spam
similar to the leader of cluster Cy (see Fig. 1.(c)).

In step 3, we merge two clusters generated in step 2 when
their leaders’ Subject headers have a number of common
spam-specific words not less than a threshold Ng,q and
their leaders are similar to each other. Note that after each
clustering in steps 1 to 3, we verify (see Strategy S4) using
the FP files whether each spam in a cluster is similar to the
cluster’s leader. Thus the searching space for the clustering
is greatly reduced, preserving the correctness of clustering
if the threshold Rgn, for similarity is appropriate.

D. Detection of spamming botnets

Major techniques for concealing botmaster’s identity are
to use a member bot of his (or her) botnet as an open
proxy or an open mail relay [19]. Although restricting the
usage of open email relay (since it is a misconfigured relay
that exchanges information with any other computer on the
Internet) is recommended in RFC2505 [20], the botmaster
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can instruct his bot to start a new open proxy or relay
server so that he can send email via the open server. Then
the Received headers in the received email contain the
open server’s network address, revealing nothing about the
botmaster’s identity. Moreover, the email received from the
server (i.e., bot) then appears to come from a legitimate
home or office user infected by the bot malware.

The first internal line gives the IP address of the outside
machine that directly delivered the email across the Internet
to the recipient’s organization. Assuming that an incoming
email originates from a botnet, then the first internal line
includes the IP address of a member bot of the botnet, from
the discussion above. Thus we identify the IP addresses of
bots, using the first internal lines in SCT.

If two sets of IP addresses of the spamming bots in
separate clusters have a common IP address, it is probable
that the all bots in the clusters belong to the same botnet but
the clusters are sending different spams, assuming a single
bot malware infection per host. Then we can merge the
clusters to obtain a larger size of botnet. As described above,
it is not so easy to identify the botmasters’ IP addresses due
to the proxy and relay servers.

IV. EXPERIMENTS

We experiment using the message sources of real-world
emails received by the Mozilla mailer on the Linux system
from Oct. 3, 2008 to Dec. 27, 2008 and from May 25,
2009 to Oct 16, 2009; the total number of collected emails
reaches about 20k (6k and 14k, respectively). The emails
are from U.S.A., E.U., Japan, and other countries and are
written in English (about 90%), Japanese (about 5%), or
other languages. Of the collected 20k emails, the legitimate
email and spam are about 9% and 91%. We experiment on
our workstation with dual-processor Xeon (2.66 GHz).

We have the three threshold values, Ngom, Ngwq, and
Rgim, for the clustering and its verification (see Section
III). From the results of preliminary experiments, we set
the thresholds thereafter so that Ngom = 6, Ngwa = 1,
and Rgm = 0.4, since these values have produced largest
clusters with no misclustering. To reduce the delay of disk
I/0, the FPs of spams are stored in 63 files, in ascending
order of email number (attached by person) and are accessed
by selecting one of the files by the email number and
sequentially searching in the selected file.

A. Spam clustering

To figure out the effects of clustering in each step, we
evaluate three clustering methods respectively with only step
1 (denoted by S1), with steps 1 and 2 (S2), and with steps
1 to 3 (S3). The results are shown in Table 1. A smaller
number of clusters mean a greater average cluster size. The
average cluster size with method S1 is increased with S2,
and is further increased with S3. The maximum cluster size
is almost the same with the three methods. The execution
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time required for clustering increases in the order of S1 to
S3, but S3 needs much larger time, 170,908 seconds (i.e.,
about 47 hours) than the other methods do.

To investigate the reason of the large execution time
of S3, we experiment S3 with Ngyq of 3; the results are
listed in the parentheses of Table 1. When Ng,q = 3, the
number of clusters slightly increases, and hence, the average
size decreases, as compared with those when Ngywq = 1.
However, the execution time greatly decreases to 12,659
seconds (about 3.5 hours). This is because the candidate
clusters for merging with a cluster have to be verified before
really merged, using the FPs in the files, and a smaller Ngyq
produces a larger number of candidates and hence need a
greater verification time.

Table 1. Clustering characteristics and performance;

results in the parentheses are obtained when Ngyq = 3.
S1 S2 S3

Number of clusters 11,240 | 8,967 8,530
(8,814)
Average cluster size 1.3 1.6 1.7
(1.6)
Maximum cluster size 225 228 228
(228)
Execution time [sec] 2,251 | 4,095 170,908
(12,659)

Next, we measure the size distribution of the largest 30
(denoted by top-30) clusters; the results are shown in Fig. 2.
The difference of size distributions with S3 and S2 is small,
though the execution time with S3 is much greater than the
time with S2 (see Table 1). Moreover, in the top-30 clusters
produced with S2 and S3, no false positive and negative
is found by inspection. Thus we can conclude that S2 is
better than S3 in terms of performance/cost; we evaluate
with method S2 in the rest of this section.

Number of spams

& X: g%
A A
200 e:S3
150
[
A
100
2a
50 Xxxé’%’iié&g&& "
XXXXXXMAMAXXXXXXAMAMM
XXXXXXXX
5 10 15 20 25 30

Cluster index

Fig. 2. The distribution of the number of spams
in the top-30 clusters.
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B. IP space of spamming bots

Next we plot the upper 8 bits of IP addresses (denoted by
IPs/8) of spamming bots in the top-20 clusters; the result is
shown in Fig. 3, where the dot symbol (-) means that at least
one spam in the cluster has the IP/8. The most active IPs/8
space consists of 57.%¥-97.% 113.%-126.*%, and 188.%-222.%;
this result almost completely matches a previous result [8].
Surprisingly, 91% of the spams detected by our spam filter
are from the active space. Unfortunately, subspaces 188.*—
222.*% and 113.*-126.* are expanding downward, and new
active subspaces may be emerging around 160.* and below
40.*, as you can see in the figure.

IP addresses/8

240

d00 1T e it 18852225 (32%)
133 § 33 ll';llll 333

160--.

201 .:gi.i' L 113%-126% (25%)
HIEAR I
RS DEERSS FEREREREN

SoTinfiz, i..!l-;: iy, 57%-97* (36%)
T ft. .3
i:i‘;l 1 ° '| ]

404- -

5 10 15 20
Cluster index

Fig. 3. The upper 8 bit of IP addresses of
spamming bots in the top-20 clusters.

C. Botnets and their members

To investigate if the spamming bots in multiple clusters
are controlled by the same botmaster, we inspect the IPs/16,
IPs/24, and IPs/32 (respectively denoting the upper 16, 24,
and 32 bits of IP addresses) that are common to the bots
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in the top-20 clusters. The result is shown in Fig. 4, where
the symbols o, A, and x respectively mean that at least one
bot in a cluster has the same IP/16, the same IP/24, and the
same IP/32 as those at least one bot in another cluster has.
For instance, at least one bot in cluster 10 (denoted by C10)
has the same IP/16 as that at least one bot in C1 has, and
has the same IP/32 as that at least one bot in cluster C2 has.
Note that we can consider Fig. 4 as an adjacency matrix for
a graph, supposing that each cluster is a node of the graph
and symbols o, A, and x represent 1’s in the matrix.

Cluster index
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Fig. 4. Partial IP addresses (IPs/n) shared by
the top-20 clusters; a symbol at (x,y) means that
clusters x and y have at least one common IP/n.

When the bots in some clusters share at least one common
1P/16, 1P/24, or 1P/32 (denoted by cIP/16, cIP/24, or cIP/32),
we assume here that the bots in the clusters belong to the
same botnet. Then inspecting based on cIP/16, the all bots
in the top-20 clusters belong to a single botnet, because
a transitive closure of nodes (i.e., clusters) labeled by the
o (i.e., IP/16) shown in Fig. 4 means that they belong to
a single botnet. Likewise, based on cIP/24 (A), the bots
in clusters {C1,C7,C13}, the bots in {C2,C10,C15,C20},
and the bots in {C4,C8,C11,C17} belong to three different
individual botnets. Moreover, based on cIP/32 (x), the bots
in {C2,C10,C15} and the bots in {C4,C8,C11,C17} are
under the control of two botmasters, respectively.

The decision on botnet membership also depends on the
dynamics of IP address. It is reported that more that 102
million dynamic IP addresses are identified in a month-long
Hotmail user-login trace, and 97% of mail servers setup on
dynamic IP addresses send out solely spam emails [21].
Under this situation, we may be able to figure out much
larger sizes of botnets than described above. The detection
of dynamic IP addresses is, however, out of scope of the
paper, and we are reporting a method of botnets detection
taking dynamic IP addresses into account in a future paper.
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V. CONCLUSIONS

We have presented a lightweight method of detecting
spamming bots and botnets, exploiting the information used
in our spam filter, which provides us with a hash table of
preliminary clusters each of a bucket of detected spams.
Beginning with the hash table, we have clustered the spams
through three steps, first by partially removing the hash
collision in each bucket of the hash table, second by merging
the obtained clusters based on the similarity of message
bodies of the leaders (i.e., the representative spams in
the clusters), and last by further merging the second-step
clusters, using spam-specific words in the Subject headers
of their leaders. A bot was identified by the IP address in
the first internal line of the spams’ Received headers, and
a botnet was detected by merging the clusters based on the
common (partial or total) IP addresses of their member bots.

By simulation with about 20,000 real-world emails, the
clustering without step 3 is desirable in terms of computation
cost and clustering potential. Then about 18,000 spams are
clustered in about 4,000 seconds. The cluster sizes of the
largest 30 clusters distribute from 27 to 228 spams, and the
active IPs/8 (i.e., the upper 8 bits of the IP addresses) of
the largest 20 clusters consists of 57*-97*, 113*-126*, and
188*%-222*; some new subspaces appear to be emerging.
The distribution of detected botnet sizes significantly differs,
depending on the size (i.e., the upper 8, 16, 24, and 32 bits)
of common IP addresses; we have to investigate the effect
of dynamic IP address for more accurate sizes of botnets.

Our next work is a botnet detection system distributed
worldwide and based on the lightweight detection of spam-
ming bots presented in the paper: Suppose that we can iden-
tify spamming bots by spam filters running on home/office
computers, and assume that the identifiers and related infor-
mation for detected bots are sent to a server for bot/botnet
analysis. Then we will be able to promptly and accurately
figure out botnet structures.
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