International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

158

Multi-Platform Performance Evaluation of the TUAK Mobile A uthentication Algorithm

Keith Mayes Steve Babbage Alexander Maximov
Information Security Group Vodafone Group R&D Ericsson Research
Royal Holloway, University of London Vodafone Group Services Ltd. Ericsson
Egham, UK Newbury, UK Lund, SE

kei t h. mayes@ hul . ac. uk st eve. babbage@odaf one. com al exander. maxi nov@ri csson. com

Abstract—Support for secure mobile authentication in long-term
Machine-to-Machine (M2M) deployments, in which the netwok

operator may change, requires the use of common authenticain

algorithms. The existing 3G MILENAGE algorithm is suitable

for this, however there is need for a back-up/alternative in
case vulnerabilities are discovered. TUAK is a new mutual
authentication and key generation algorithm proposed by tle

Security Algorithm Group of Experts (SAGE) of the European

Telecommunications Standards Institute (ETSI) and publified by

the Third Generation Partnership Project (3GPP). TUAK is based
on the Keccak sponge function, which has very different degh

principles to MILENAGE. However, the practicality of imple -

menting TUAK on currently deployed and/or future Subscriber

Identity Module (SIM) cards was not well known. This paper

extends on work first published in ICONS16/EMBEDDED2016;
describing the implementation and performance of TUAK on
three smart card platforms and a server.

Keywords-3GPP; GSM; Keccak; SAGE; TUAK.

I. INTRODUCTION

time in the life of a technical security solution. Having
two strong algorithms (MILENAGE and TUAK) built into
the hardware, and available for selection, should give good
assurance that effective security can be maintained tiamutg
the SIM lifetime.

TUAK inherits most of its security characteristics from
Keccak, which is the winning SHA-3 design and has of course
been extensively studied. See [9][10] for a closer analysis
of TUAK security. TUAK is fundamentally different from
MILENAGE in its design, so that an advance in cryptanalysis
affecting one algorithm is unlikely to affect the other. Thare
very few academic publications around TUAK as the standards
are quite new, although a comprehensive security assessmer
[11] of the TUAK Algorithm Set was carried out by the
University of Waterloo, Canada. It considered a wide rarfge o
cryptanalysis techniques, and finally concluded that TUAK c
be used with confidence as message authentication function:
and key derivation functions. However, industry acceptanc
nd adoption of TUAK requires not just a secure design, but

This text describes an extended version of an ICONS 201§
conference paper [1] that considered the performance of ne
mobile authentication algorithm on two modern smart car
platforms. In this paper we also consider the implemematio
on a third and older/legacy smart card as well as a server
representing an Authentication Centre (AuC). We start by
considering the history of standards evolution in this area

The European Telecommunications Standards Institute
(ETSI) [2] and later the Third Generation Partnership Rroje
(3GPP) [3] standardised mobile networks so that Mobile

Iso confidence that it can be implemented on limited resurc
d‘glMs with sufficient performance.

Is it possible to load the algorithm onto an existing
deployed or stocked smart card platform?

If so, will the algorithm run with acceptable perfor-
mance?

Will a new SIM require a crypto-coprocessor for
adequate performance?

Will a new SIM need to have a high performance
processor (e.g., 32/64-bit type)?

Will a new SIM require specialist low-level software
for the algorithm?

Will the algorithm benefit from hardware security
protection?

Network Operators (MNO) were able to choose/design their ®
own cryptographic algorithms for subscriber authentaratind
session key generation. In GSM, [4] there is a proliferatbn .
algorithms, however for 3G most MNOs use the well-studied
and openly published MILENAGE algorithm [5]. MILENAGE

(AES [6] based) was designed and published by the ETSI
Security Algorithms Group of Experts (SAGE), and more
recently SAGE designed a second algorithm, called TUAKThere have been previous performance evaluation and com:
[7] based on the Keccak [8] sponge function. This wasparisons [8][12][13], around the Keccak core for the SHA-
done for two main reasons. Firstly, although MILENAGE is 3 competition [14], however these were aimed primarily at
currently considered strong, industry should have a provespecialist hardware, or far more powerful and less memory
alternative in case an advance in cryptanalysis exposes vuimited processors than are typically found in SIMs. Theref
nerability. Secondly, machine-to-machine (M2M) devicab w at the request of SAGE, the evaluation described in this
use “embedded SIMs”, whereby a Subscriber Identity Modulgpaper was undertaken, in which the entire TUAK algorithm
(SIM) chip is fitted into a device, and the assignment (orperformance was determined by experiment with the SAGE
re-assignment) to a MNO and the provisioning of securityspecified settings for Keccak, using their published socock
credentials is done later, over the air. Some devices may b&s a starting point. The latter is important, as SIM vendors
deployed for at least twenty years, which is a considerabléend to base their implementations on the published sgcurit

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

159

_standards examples. In _addressing the performance qunestio TABLE I. GSM and 3G Authentication Comparison
it was necessary to define a method of experimentation that
would give relevant results yet would not be tied to a par- GSM 3G
ticular processor, platform or optimised for particularipch Desc. Bits _ Alg Desc. Bits Alg
features. The work began with the PC example implemen- RND 1 BAND o
tations, before forking to a parallel development suited fo XRES 32 A3 XRES 32128 f2
smart card evaluation. For the latter, simulation was o&ty Ke 64max A8 CK 128 f3
considered, however it is difficult to map results to realdcar Nooows B
performance. The use of a multi-application card platform SQN 48
was included as a positive means of abstraction from any AMF 16
particular chip, and could be representative of loading the MAC o4 1
algorithm onto existing/stock SIMs. However, the perfonoa
of such platforms (e.g., MULTOS [15)/Java Card [16]) is R
usually inferior to a native card implementation and so two OP¢
native mode implementations were initially included (aatbt E.
a third) as the principal benchmarks. To complete the péctur SQNIAME|SQN[AMF -
experimentation was carried out on a server to represent ar
compare the loading demands of MILENAGE and TUAK on OPc% 0P 0P OP > OP o
the network Authentication Centre (AuC). — —— — — —

In Section Il an overview of MILENAGE and TUAK byrl by 12 by 13 by r4 by 13
is provided before describing the experimental setup an

software development in Section Il and Section IV. Results
are presented in Section V and analysed in Section VI. Som
comments on security defences and performance are discuss

0P > 0P,
in Section VII and finally, conclusions and future work are C/\ ‘
presented in Section VIII. = o
II. TUAK AND MILENAGE OVERVIEW Figure 1. MILENAGE

In each of GSM/GPRS (2G), UMTS [17] (3G) and the
Long Term Evolution (LTE 4G), a fundamental part of the
security architecture is a set of authentication and kegeqgr
ment functions [18][19]. The set of functions varies betwee
generations, with 3G providing more security than 2G, andln
4G adding some further refinements. These functions exist igh
the subscriber’'s SIM card (which is provided by their MNO),
and in a network node called the Authentication Centre (AuC
that is run by the MNO. The 3G authentication and key
agreement architecture requires seven cryptographiditunsc
MILENAGE [5] is a complete set of algorithms to fulfil these
functions, built from a common cryptographic core (the AES
block cipher) using a consistent construction.

The 3G solution follows a similar pattern, but is a little
ore complex and is best described with respect to Figure
The challenge is now referred to as an authenticatiomtoke
d includes the RAND as well as a sequence number (SQN) &

anagement field (AMF) and a Message Authentication Code

MAC). If the SQN is correct (not a replayed message) and the
suplied MAC value can be recomputed then the SIM considers
the challenge genuine and calculates the requested ouTjats
CK is similar to Kc, but longer, and the IK is a new Integrity
Key. The AK is an anonymity key that can be used to conceal
the true value of the sequence number. OPc in the figure is
a network operator customisation field that is pre-computed
A MILENAGE L (from a common OP field) to be unique for the SIM and pre-

The development and publication of MILENAGE was a stored on the card. How the various outputs are computed
major step forward in mobile security standardisation.rti-p from the input challenge is specific to the chosen algorithm
vided a 3G solution that overcame known security weaknesseshd we can see that in MILENAGE this is implemented as
in GSM, but it was also developed in an open and peemyitiple calls to a block cipher with additional rotatiorisy(
reviewed manner, unlike the many proprietary approachegyjyes r1-5) and XOR with constants (c1-5) and the OPc field.
used for GSM. MILENAGE and indeed any 3G authentica-TyaK [7] is an alternative design approach that also offers a
tion algorithm is required to support, mutual authentmafi complete set of cryptographic functions for 3G authenitcat
replay protection and cipher and integrity key generationgng key agreement. Note that LTE security reuses the same se
in accordance with best practice fo_r |nformatl0h secumlty. of functions, so both MILENAGE and TUAK can also be used
comparison of 3G and GSM authentication security parammetekor | TE. There is also a standardised method for using the 3G
is presented for information in Table I. authentication and key agreement functions in GSM/GPRS. A

In GSM the AuC generates a random challenge (RAND)lot of the strength and credibility for MILENAGE arises from
that gets sent to the SIM card. The SIM uses the RAND, itg¢he block cipher being AES based, whereas we will see that
secret key (Ki) and algorithms A3/8 to compute the expected UAK’s strength arises from the Keccak hash function.
result (XRES) and the cipher key (Kc). If the XRES value is]
the same as the AuC calculation then the SIM is authenticatel: TUAK Algorithm Inputs and Outputs
and thereafter the network and mobile phone use Kc for Whereas MILENAGE was designed with 3G in mind,
ciphering. TUAK was from the outset also designed for LTE and so

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

160
M 7 Details of the TUAK algorithm can be found in [7],
l * with test data in [21][22]. Keccak is a general purpose
d cryptographic hash function, so in use, all the input fields a
pad ! > [simply written sequentially into a buffer, Keccak is run on
— ~ 1~ | " /\: ~ |~ the buffer contents, and then the outputs are read from the
v v v v I buffer, as fields in the hash output. This is equivalent, but
o N . . : . N . very different to running t_he individudil-f5 functions used
f f f folf f in MILENAGE. If all the inputs were the same, we could
I just run Keccak once, but the TUAK standards define three
] ! algorithm functions as illustrated in Figure 3; althoughPtO
cl|0 > > > > : > i is usually pre-calculated. In this diagram:
| N A Y R _ .
o) e The top picture shows how TQIs derived from TOP.
absorbing | squeezing e The middle picture shows how MAC-A or MAC-S is
computed {1 andf1*)

Figure 2. A Cryptographic Sponge Function e The bottom picture shows how RES, CK, IK and AK
are computed (functiont?, f3, f4, f5 and f5*) - note
that these functions all take exactly the same set of

supports a 256 bit subscriber-unique secret key as well as input parameters, so can be computed together

the 128 bit key size used in 3G. Moreover, TUAK also e INSTANCE is an 8-bit value that takes different values
allows for the possibility that certain other input or outpu for different functions, for different input and output
parameters might increase in length in the future. The input parameter sizes, and to distinguish betwé&rand
and outputs of TUAK'’s seven cryptographic functidsf1*, f1* and betweeri5 and f5*, providing cryptographic
2, 13, f4, f5 and f5* are defined in [7] and like MILENAGE, the separation

TUAK algorithm-set expects one additional input parameter o ALGONAME is a 56-bit ASCII representation of the
an “Operator Variant Algorithm Configuration Field”. In the string “TUAK1.0”

case of TUAK, this field is called TOP (rather than OP) and
is 256 bits long; each mobile operator is expected to choose tion, with the shaded part corresponding to the 512-bit
its own value for this, typically the same value for many “cap;acity” input; see Figure 3
SIMs. The 3GPP security architecture did not require thisaex o) ' _) _
parameter, but it was included for two main purposes: Although, TUAK is standardised and its security design
,) . properties have been investigated [11], it was not untiltbek
 SIMs for different MNOs are not interchangeable, ei- i, 1] that the feasibility of implementation on real, seedr
ther through tr|V|aI_mod|f|cat|on of inputs and outputs g\ chips, was considered. This paper extend the work, by
or by reprogramming of a blank SIM. investigation of an additional legacy SIM chip, and also by
e By keeping some algorithm details secret, some atproviding some experimental insight into side-channektaeg
tacks (such as side channel attacks like power analysigind security of implementation.
become dittle harder to carry out.

The block labelled “Keccak” is the 1600-bit permuta-

. . . IIl. THE EXPERIMENTAL SETUP
TUAK includes an algorithm to derive value TORom

TOP and the secret key K, and it is sufficient for the SIM,[h Baseld on ';he argumentsb_prisentefd;g th?‘t introductti_on,
card to be programmed with TQRlike OPc in MILENAGE)) € goal was 1o use a combination o software, native

rather than with TOP itself. This means that an attacker whgMart card chip implementations and a secure platform for

is able to extract TOPfrom one card does not learn TOP or deVelopment and comparative testing. For the initial praise

TOP. for other cards native implementation, we required two chips of comparable
C .

CPU power, yet different security protection to determine
C. TUAK Algorithm Building Blocks if the inherent protective measures impacteq performance.
_ o . Furthermore, to make useful comparisons with the secure
The main building block from which all Of‘ the TUAK yatform implementations, we prefered platforms based on
algorithms are constructed is Keccak [8], the “cryptogiaph similar chips. A solution presented itself based aroundveat
sponge function”, which was selected by NIST as thejmplementations on the Infineon SLE77 [23] and SLE78 [24].
winner of the SHA-3 hash function competition [14]. SpongeThe MULTOS platform was selected as the secure platform
functions work by repeated application of a fixed lengthpimarily because test cards (types M3 and M4) were availabl
transformation or permutatiol) as shown in Figure 2, which h5seq on the same Infineon chips. The initial smart card
is copied from [20]. First the input bits are “absorbed”, andeyperiments were preceded by measurements on a PC platforr
then the output bits are “squeezed out”. that used similar example C code. The code could in future
also be ported to Java Card platforms, although the Javagodi
TUAK uses the Keccak algorithm with permutation size language would make comparisons less clear.
= 1600, capacityc = 512 and rateg = 1088. This rate value The extended phase of implementation and experimentation
is big enough that each of the algorithms in the TUAK setadded the code to an additional and older style smart capd chi
needs only a single instance of the permutafionrepeated (S3CC9E4/8) and also to a server representative of an AuC to
iteration of the permutation is not necessary. compare the comparative network loading of MILENAGE and
TUAK.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

INSTANCE

TOP | ALGONAME J

ZEROES

PADDING

512 ZEROES

Keccak ‘

|

TOP.

INSTANCE

TOP. | ALGONAME | AMF

=l

RAND SQN

PADDING

512 ZEROES

Keccak ‘

|

MAC

INSTANCE RAND

PADDING

|

512 ZEROES

|

161

For the extended phase work that simulated an AuC, the
execution platform was an Intel Core i5-4300 CPU @ 1.9GHz,
running Windows 7 x64-bit OS. The evaluation used a single
core, so speeds would be scaled up for multiple cores and/ot
CPUs.

B. The Smart Card Chips

The smart card chips for all experimentation had 16-
bit CPUs, which is a size representative of the majority of
deployed SIMs (although there are still 8-bit CPUs aroursd, a
well as newer 32-bit CPUs). Whilst they are of similar family
horsepower and vintage they are quite different in security
aspects.

1) SLE77: The SLE77 is a traditional style security con-
troller intended for mid-range payment applications, aval-e
uated to Common Criteria [25] EAL5+. Its crypto-coprocesso
does not support TUAK/Keccak so was not used in our tests.

Keccak ‘ J

|

|

RES CK 1K AK

Figure 3. The TUAK Algorithm Functions

Details of the chip protection measures against physiag;: s
l channel leakage and faults are not publicised, however in a
traditional security chip one might expect protective kfde
plus power smoothing and noise insertion to counter power

analysis, and sensors/detectors to counter fault att&kse
protection may arise from the application and OS softwage e.

TABLE Il. PC EXAMPLE CODE IMPLEMENTATION VERSIONS

Version SupportedBits ~ ShortDescription

0 8/16/32/64 Size optimized, generic, use of % and more sable
1 8/16/32/64 Speed optimized, generic

2 64 Use of CPU 64-bit rotate instruction

3 8/32/64 Original from the specification

4 64 Similar to v2 but trying to combine more operations
5 32 Totally unrolled version, only C code

6 8/16/32 With bit-interleaving, generic, not optimized

7 32 Optimized bit-interleaving, part unrolled, 32-bit

randomised/repeated operation and dummy cycles, althougt
this may be optimised for the included algorithms. For a
new algorithm running on this chip, we should expect some
protection from the hardware, although the final algorittodes

will need to improve this, which would likely degrade the
performance measured in our experiments.

2) SLE78: The SLE78 is an innovative security controller
intended for high security applications. Instead of redyin
mainly on shields and sensors it uses “Integrity Guard” [26]

which exploits dual CPUs working in tandem. The claimed
features include:

A. The PC Test Platforms

The initial PC tests used an Intel Core i5-2540M CPU @
2.60GHz, max turbo frequency 3.30GHz, 2 cores, 4 threads,
Intel Smart Cache 3Mb, Instruction set 64-bit + AVX, 4Gb
RAM, with a Windows 7 32-bit OS. The Keccak example
implementations were written in 'C’ and compiled to optimis
speed. Although the processor and the compiler supported 64
bit integers, the resulting assembly code was limited byaBe
to 32-hit. Execution time was measured in CPU clock cycles,
although multiple runs were necessary due to the multittask

Dual CPU implementation for fault detection
Full CPU, memory, Bus and Cache encryption
Error detection codes on all memories

Error codes for cache protection

Address and data scrambling of memaories
Side-channel leakage suppression

Active Shield

OS interrupting execution. Various versions of the exampleRunning the algorithm on the SLE78 offers a good deal
code became available during development as shown in Tabtsf hardware protection with less reliance on added software
Il. The smart card source code was originally modelled orcountermeasures; so we would anticipate less performance

version 1 and then developed in parallel.
In Keccak, f is a permutation. Keccak is a family of

setting three security parameters:

e The permutation sizen, which can be 25, 50, 100,
200, 400, 800 or 1600 bits.

degradation when compared with the SLE77.

_ Note that during the course of the initial experiments
algorithms, from which a particular algorithm is selected b it was thought beneficial to extend the investigation to an

older, but still relevant security controller, as not altwerks

are deploying modern or higher-end smart card chips. The
S3CC9E4/8 was selected for this purpose, in part due to its
age and capabilities, but also because a hardware emulasor w

e The “capacity”c, which is a security parameter (es- available.

sentially, for a given capacity; Keccak is claimed to
stand any attack up to complexity’3.

3) SBCCOEA4/8: The target processors supported by the em-

ulation equipment are the Samsung S3CC9E4 and S3CC9ES

e The “rate”"r = n - ¢, which determines how many The only differ in that the former has 4k + 256 bytes of
input and output bits can be handled by each iteratiolEEPROM whereas the latter has 8kbytes. The general feature:

of the permutation.

are summarised in the Table Ill.

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

162
TABLE Ill. S3CC9ES8 Characteristics TABLE IV. PC VERSION PERFORMANCE COMPARISON
Feature S3CC9E8 Versions Minimum Cycles (average cycles)
Harvard Y 8-bit 16-bit 32-bit
RISC Y 0 (size opY) 168652(380066) 85988(215250)
16-bit CPU \4 1 (speed opt) 49688(116200) 22496(55343) 7152(9024)
Frequency (external clock) 1MHz-5MHz 2 (N/A)
ROM 96k 3 (original) 202140(221564) 87350(193371)
EEPROM 8k 4 (N/A)
RAM 2k 5 (unrolled) 6368(10391)
Internal RC Oscillator Y 6 (bit-interl) 73120(185217) 59307(131112)
DES/T-DES Y 7 (bit-interl opt) 10216(25570)
16 -bit RNG seed generator Y
Serial port T=0 and 1 Y
Hardware EEPROM write inhibit Y])
Cblrgorma' \oltage/frequency sensor 27Y55 simply to handle resets, memory management/access, serie
Oltage range -0,V H H
16 bit timer with 8bit pre-scaler and 20bitwatchdog timer Y I/O and the APDU Command mterface,_so parts of this were
4 interrupt sources and vectors including FIQ, IRQ, SWI Y ported from another legacy/dummy project. The S3CC9E4/8
General purpose 16-bit registers 16 required additional functionality to manually control tire
6-bit extension registers 6 d .
Program counter 22 bits ternal CPU clock speed as this appears to be automatically
Status register 16 bit handled in the Infineon devices. The default starting pogti
Program Address Space M for all operation on the new card was the standard (medium)
ata Address Space aM

clock speed, which is safe for all memory accesses, whereas
the fast speed could not be used with the EEPROM.

The S3CC9E4/8 chips have what might be described as
"traditional” hardware security defences. To defend aglain A. Software Functional Testing
tampering and side-channel attack, the chip has the typical
range of environmental security detectors and a randogqisin
clock option that makes leakage trace averaging more difficu

There are also bus scrambling options and ways to disgugse tH/ere designed to vary all inputs and internal values, andrass

core crypto operations within dummy operations. The clockCCfECtness of an implementation; they thus also servefarell
frequency can also be manually controlled, but this is idésh performance tests. To simplify testing the test data sete we

. . included within the card application. This added an extaticst
for performance and power efficiency rather than security. data requirement, but meant that tests could be run by simply

specifying the test set within the card test command, or by
IV. SOFTWARE DEVELOPMENT supplementing the test set with command data. Each commanc
The starting point for the smart card software developmenhad an execution count so the targeted function could be run
was the example code published in 3GPP TS 35.231 [7]. Thiffom 0 to 255 times (on the same input data). Typically the
went through several versions during the project, based ooount would be '1’, although '0’ was useful for estimating
results/feedback and on-going optimisation work. The finakound trip delays and higher counts improved measurement
versions should be regarded as optimised to the extent @t wprecision.
possible with a generic implementation avoiding chip sipeci
enhancements. Referring to Table Il the primary template fo V. RESULTS
the smart card experiments was the generic speed optimised ’
version 1 that could be built for 8, 16, 32 and 64 bits, and In this section, we present the experimental results, based
made use of generic loops and macros. The 64 bit option wasn the 3GPP test data. The smart card results were obtainet
discounted as being unrepresentative of current smartscardia a scripting tool that would send a command message to
and because legacy C compilers cannot easily cope withantegthe card in the form of an Application Protocol Data Unit
variables beyond 32 bits. Some minor modifications were madéAPDU) and then time the response. Although card processing
to the initial smart card code, but largely it remained truetime should be consistent and repeatable, scripting tamle h
to the original generic code. Later, in order to understandolerances. To compensate, the test commands instrucattie c
performance issues relating to the algorithm running on théo execute a function multiple times before returning a ltesu
MULTOS platform, a 32-bit version of the code was part- A calibration was also carried out using a protocol analyser
optimised, which involved expanding the Macros and urmglli
the inner loops within the main Keccak functions. The final .
MULTOS version also used fixed pointers for buffer manipu—A' Initial PC Results
lation. Note that in all versions of the code, the calculatid The initial performance experiments used to refine the
TOP, was removed from each function. Within a smart card,public example code were PC based, with results (in clock
this value would be pre-calculated and loaded into protectecycles) from the various versions (see Table Il) summaiised
memory and so there is no need to recalculate it; and doingable 1V. Note that the cycle number includes pre, post data
so could halve a TUAK function’s speed. processing and overheads for a single run of Keccak-1600 (24

For the S3CC9E4/8 implementation the same non_rounds).
optimised version was used, as in the Infineon test-cards; so Variation between minimum and average results arises from
a fair comparison could be made. For this native mode dethe OS. The minimum values are representative of the CPU
velopment a notable amount of code/development was neededpability. Generally, speed increased with the targdtisige.

To test TUAK functionality, we used the six test data sets
published in 3GPP TS 35.232 V12.0.1 [21]. The data sets

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

TABLE V. NATIVE MODE PERFORMANCE (ms)

163

TABLE VII. S3CC9E4/8 NATIVE MODE PERFORMANCE (ms)

Test Mode/Chip SLE77 SLE78 Test Mode/Chip Standard Clock (5MHz) Fast Clock (10MHz)
Data flfls f2345 f5s fifls f2345 f5s Data flfls f2345 fbs flfls f2345 f5s
8-bit 1811 18.17 18.11 8-bit 172.76 173.01 172.70 86.44 86.69 86.44
1 16-bit 1517 1523 15.17 1 16-bit 155,51 156.00 155.39 77.88 78.18 77.82
32-bit 1958 19.64 1951 19.58 19.70 19.51 32-bit 189.04 189.95 188.79 94.58 95.13 94.45
8-bit 18.17 18.17 18.17 8-bit 172.89 173.07 172.76 86.56 86.69 86.50
2 16-bit 1523 1523 15.17 2 16-bit 155.88 156.24 155.57 78.06 78.31 77.88
32-bit 1964 19.76 1958 19.64 19.82 19.58 32-bit 189.77 190.51 189.22 95.01 95.44 94.70
8-bit 1823 18.17 18.17 8-bit 173.01 173.19 172.76 86.63 86.81 86.50
3 16-hit 1523 1529 15.17 3 16-hit 156.06 156.49 15557 78.24 78.49 77.94
32-bit 1970 19.82 1958 19.70 19.88 19.58 32-bit 190.32 191.05 189.22 95.31 95.74 94.70
8-bit 1817 18.23 18.17 8-bit 172.82 173.07 172.70 86.50 86.69 86.44
4 16-bit 1517 1523 15.17 4 16-bit 155.69 156.18 155.39 78.00 78.31 77.82
32-bit 1958 19.76 1945 1958 19.76 19.51 32-bit 189.34 190.32 188.73 94.82 95.38 94.45
8-bit 1817 18.23 18.17 8-bit 172.82 173.38 172.76 86.56 86.93 86.51
5 16-bit 1517 15.36 15.17 5 16-bit 155.76 156.86 155.63 78.00 78.67 77.94
32-bit 1958 20.01 19.58 19.58 20.00 19.58 32-bit 189.59 19179 189.22 94.89 96.23 94.70
8-bit 36.22 36.27 36.19 8-bit 34491 34546 34473 172.70 173.13 172.58
6 16-hit 30.16 30.28 30.10 6 16-hit 310.11 311.02 309.62 155.33 155.88 154.96
32-bit 38.85 39.15 3867 3879 39.15 38.60 32-bit 376.24 37832 37525 188.36 189.53 187.81
TABLE VI. MULTOS PERFORMANCE (ms) TABLE VIII. AuC PERFORMANCE COMPARISON
Test Mode/Chip ML4 = SLE77 ML3 = SLE/8 Version Computation Time (ns)
Data fifls 2345 5s fifls 2345 5s 8-bit 16-bit 32-bit 64 bit
8-bit 19882 19952 19796 23837 239047 23062 flfls f2345 flfls 2345 fifls f2345 flfls 2345
16-bit 10749 10826 10702 12824 12917 12838 0 71093 71944 39190 40633 20172 20203 19254 18841
1 32-bit 6396 6505 6350 7239 7348 7192 1 35663 35924 15650 15257 12101 11245 7469 7540
32x 3104 3214 3073 3432 3557 3400 2 7463 7400
32p 1529 1575 1529 1623 1654 1622 3 171042 176158 21699 21827 16055 15941
32-bit 6474 6568 6396 7332 7441 7254 4 6979 7289
2 32x 3198 3276 3120 3526 3619 3463 5 8012 8090
32p 1544 1576 1529 1638 1669 1623 6 58631 57406 37963 37396 8158 8513
32-bit 6537 6615 6396 7379 7504 7254 7 7672 7867
3 32x 3245 3339 3120 3603 3681 3463 MILENAGE 1928 4840
32p 1560 1592 1529 1654 1670 1623
32-bit 6427 6552 6349 7269 7410 7191
4 32x 3151 3261 3089 3478 3603 3401 .
32p 1544 1591 1529 1623 1669 1622 extended experiments.
32-bit 6443 6708 6412 7301 7597 7254
5 32x 3166 3432 3120 3494 3791 3463
32p 1544 1622 1529 1638 1700 1622 C. Extended Smart Card Performance
. gg—bit 1;333 12232 152;1g62 1(;16211: 1(;15%2 164407741 In this section we present the results from the S3CC9E4/8
» . . ;
32 2080 3057 2949 3135 3198 3108 experiments. The native card performance of the Samsupg chi

was measured on the emulator (for the various bit-size dempi

targets in the source code) and the results are shown in Table

. VII. The Fast Clock column is the most realistic in terms of

B. Initial Smart Card Performance performance, with the Standard Clock column representing a
The initial native card performance tests were mainlynaive implementation.

carried out on on the SLE77; only the 32-bit algorithm was

run on the SEL78. The MULTOS results used both chip type®. AuC Comparative Performance

Normally, when the MULTOS organisation specifies a©n the resource limited smart card devices, however, itlshou
new function for the Virtual Machine (VM) it would be not be forgotten that the same algorithm is run in the network
coded in low-level software and invoked from an Application operator's AuC. Although much more processing power will
Programming Interface (API). The API performance Shou|dbe. avallable_from_tlhe AuC §erver, I.t will have to deal with
be closer to that of Table V; however as this is currently(directly or via Visiting Location Registers) large numberf
not the case, the Table VI figures apply. All versions of theduthentication requests. Absolute performance will bey ver
application benefit from a typical memory optimisation ,i.e. much dependent on the chosen server, but a comparative
the Keccak main buffer (INOUT) was forced into a reservedmeasurement is of interest, comparing the performance of
section of RAM. Using non-volatile memory (NVM) instead TUAK to the currently used MILENAGE algorithm. This was
made the 8-bit and 16-bit versions three times slower and th@etermined experimentally, with the results presentedlih V
32-bit version five times slower. The “32x” rows represer th
“unrolled” version of Keccak, which is a removal of inner VI ANALYSIS OF RESULTS
loops and macros in the C code, and the “32p” version also To consider the experimental results, it is necessary to be
uses fixed pointers rather than array index calculationes&h aware of the parameter sizes (bits) inherent in the starsatd
initial smart card test results are further described amdyaed test-sets, which are summarised in Table IX. The test data
in Section VI, but as there was interest in results from aemld parameters are designed to exercise TUAK in representative
style smart card, additional results were obtained fromesommodes of use. Note that for the first five test sets (single

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

164
TABLE IX. TEST DATA PARAMETER SIZES Native Mode Execution Times
Test Dat K MAC RES CK IK K k N
1 128 64 32 128 128 1
2 256 128 64 128 128 1 @
3 256 256 64 128 256 1 P~
5 256 64 256 256 128 1 o
6 256 256 256 256 256 2 E
£
iteration) the Keccak core has very similar execution time, =2
with TUAK variations arising from the differing amounts of a
data to absorb or squeeze out of the sponge (working buffer). §
Note that the common/fixed parameters sizes (bits) for the SLE77 8-bit _
TUAK algorithm are: RAND = 128, SQN = 48, AK = 48,
AMF = 16. 0 5 10 15 20 25
A. Performance Target Time Inms
We need to define an appropriate performance target, so Figure 4. Comparison of Native Mode Execution Times
we can start by recalling the target used for the MILENAGE
design [5].
...“The functionsf1-f5 andf1* shall be designed so performance satisfies our target by a very comfortable margi
that they can be implemented on an IC card equipped Itis therefore reasonable to suggest that provided theittgo
with an 8-bit microprocessor running at 3.25 MHz is custom-coded on a typical SIM chip there is no need for a
with 8 kbyte ROM and 300byte RAM and produce crypto-coprocessor. Extended experiments on the S3CB9E4/
AK, XMAC-A, RES, CK and IK in less than 500 (see later) were carried out to confirm this conclusion.
ms execution time."... This study focussed more on performance than code-size

Technology has advanced since this target was created afgnimisation, however, all native implementations fitteithin

it might be difficult to find a SIM chip with these minimal Our memory targets.

capabilities, and indeed many do not have ROM. Furthermore

the target is ambiguous and could be interpreted that if yo@- Platform Mode

ran the functions in sequence each could take 500ms. Itas als Within the study we only considered the MULTOS plat-

unclear how much of the ROM and RAM can be used. A mordorm; although a Java Card would make an interesting compar-

appropriate and modern target was defined during the studyison. The results here were disappointing, although a fsigni

“ :) * : cant overhead had been expected due to the operation of thi
so thzt f;Jhnec;oCr;snf 1bfe5 i?r?;)jl glm estf;aéll Obne aden?ilg-nr:?]g o Secure Virtual Machine and the ML_JLTOS Execution Language
microprocessor IC card (typically 16-bit CPU), oc- (MEL) [27] abstraction. In practice, the best_re;ults were
cupying no more than 8kbytes non-volatile-memory around two orders of magnitude slower than native; see Eigur
(NVM), reserving no more than 300bytes of RAM 5. Fu_rthermorg, the performance improved with increasing
and prbducing AK. XMAC-A. RES. CK and IK in compllled b|t—S|z_e, which suggests that the compilation and
less than 500 ms 'Eotal execdtion ti,me” MEL interpretation does not map closely to the underlying
n CPU size for the processing in TUAK.

This revised target definition has been proposed to 3GPP for inspection of the generic Keccak function one saw

inclusion in future versions of the standard documents. extensive use of macros and loops. To determine if they were

. . causing problems for MULTOS, an “unrolled” 32-bit version

B. Initial Native Mode Results S.E77/78 of Kecgaﬁ was created, removing macros and inner loops. The
If we consider the results from the native implementationresylts are in the Table VI rows marked “32x” and in Figure 5,

on the SLE77, the function execution times for the variousshowing a doubling of speed. A further improvement was to

test data sets are quite similar with the exception of test sexdapt the algorithm to use fixed location buffer pointerbeat

6. The latter uses a double iteration of Keccak, which royighl than indexed arrays; and the corresponding “32p” version

doubles the execution time. As can be seen from Figure 4hows a further speed doubling. However, a single function
compiling the generic code for the different target bit Wit sti|| takes around 1.5s.

affects the execution time, but not by an enormous margin.

;I;}heebn;gtsgifg??hn; \lﬁ]t;jSéOrln ilr? th(ioi(zggﬁarget, which presid on array contents, however MEL does not have a core shift
) y g P i instruction, but uses shift primitives. The unrolled Kdcés
Due to practical constraints we only have SLE78 meatyice as fast as the generic version, partly due to the waly tha
surements for the 32-bit target, which show similar speed tQ4ULTOS handles shifts. The amount of shift on a buffer m

the SLE77 (native). The extra security features of the SLE7&an be known at compile time or run time, as shown below.
seem not to penalise performance although there may be added

financial cost. The striking observation is that native mode m=m<< 3 or m=m<<n

If we consider the unrolled Keccak there are many shifts

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

165

MULTOS Execution Times . .
Execution Time (ms)
ste7za2p

ster7azp [l
I
sLe77 22 [N
sLe7z 22 oit [N
sLE77 32 kit [
sLe7z 16 bit [N »

ste77 18 oit |G
ste7s 2 it [
1
ster7 2 ot [N SLET7 Native $3CCEB Native SLE77 MULTOS

0 10 15 20

10000

SLET3 32x

1000

z8

100

hip and Compile Eit-Si

c

[
1

30 Figure 6. MULTOS f1() Comparative Execution Times
Execution Time (seconds)

Figure 5. MULTOS f1() Execution Times
f2345() takes significantly longer than f1(). This is beeaus
the performance is dominated by calls to the block cipher
.)) ~and more are used in f2345() than f1(). In TUAK the two
The first example is handled as a single use of the shiffynctions take about the same time as they both include
primitive, whereas the second will loop n times shifting ldti gne Keccak call. The second observation is that TUAK is
atime. This still leaves a big question mark over the efficyen gjower than MILENAGE. Keeping to the 32-bit target the best
of the primitive itself (and other bitwise operations). authentication time for TUAK (time to execute both functn
If we consider the x2 speed-up from pre-computing TOP is 15539ns compared to 6768ns for MILENAGE; so about 2.3x
the x2 from removing loops/macros and the x2 from usingslower. The performance difference is not huge, but shoald b
pointers, the application is x8 faster than the genericierrs considered when planning load capacity.
However the conclusion is still that the algorithm cannoeine
the target performance if loaded as an application on a card V!l SECURITY DEFENCES ANDPERFORMANCE
platform (MULTOS at least). This suggets it is not practical Modern SIM cards are normally based on tamper-resistant
to add the algorithm to deployed or existing stock cards. Teecure microcontrollers, which inherently have a rangeesf d
use a card platform, an APl would need to be added so thdences against physical, side-channel and fault attadksteF

an efficient native implementation could be called. fore, a TUAK implementation on a SIM platform should be
much better protected than an implementation on a general
D. Extended Native Mode Results S3CC9E4/8 purpose microcontroller, with the latter incurring sigcdfint

If we consider the results from the native implementationP€formance overhead to achieve modest attack resisténce.
on the S3CCOE4/8, shown in Table VIl we can see tha e consider the chips u_sec_j_ln our tests t_hen the_SLE78 vv_ould
performance is (as expected) optimised for 16-bit builds2€ €xpected to offer significant protection against physica
matching the CPU size. The use of the fast clock option is'd® channel and fault attacks [25] due to the innovative
essential for algorithm execution, as it is twice as fasthas t Underlying hardware; requiring less software countermmess

standard mode. For the single iterations of Keccak (tesi daf@nd performance degradation) than a conventional secure
1-5) the functions complete in less than 80ms. Referring tc;mcrocontroller. The SLE77 would also offer hardware based

Figure 6 we can see that TUAK is roughly 20x faster thanProtection, particularly against physical and fault atgdut

MULTOS and 5x slower than the native SLE77/78. adequately preventing side-channel leakage will requidi-a |
tional measures in software. Fortunately, the SLE77 isequit

_Ignoring the 's” versions of functions, which are usedagt and even if the performance was degraded by an order of
in resynchronisation, an authentication requires exenudif magnitude, we could still rufi, 2345 and f5s and meet the
f1() and f2345(), so less than 160ms in total. This is still 5 erq|l performance target. MULTOS platforms are known and
comfortably within the 3GPP specification, however, whenm,arketed for their high security and had they been fast emoug
compared to the SLE77/78 there is a smaller margin fofhey would have been expected to offer added OS security
performance degradation due to added defensive coding. ¢4 compliment the underlying chip hardware. However, the
current view is that a new MULTOS primitive will be needed
E. Extended AuC Results for the algorithm and so the issues are similar to the SLEX7/7
The results in Table VIII show function execution (ns)
for the various TUAK PC software versions and build-sizesA. Fault Attack Defences and Performance Impact
(8/16/32/64-bits), plus a reference result representingBvi The faults used in attacks are normally achieved by volt-
NAGE execution. A first observation is that for MILENAGE, age glitches, radiation pulses and operating the targdtelev

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

166

beyond tolerance. The hardware sensors in tamper-resistan 5.z

smart cards are intended to detect the likely means of fault : 1 I-
Bzl ¥ T

insertion and prevent a response useful to the attacker; so
there is no significant added overhead for the software. A
very sophisticated and skillful attack might bypass thesees)
however by adopting TUAK as an openly published algo-
rithm, with diversified card keys, we are avoiding propnigta
secret algorithms that might motivate such effort. An added m
countermeasure could be to run the algorithm twice and only T
output a response if the results agree; this would counter Rl
attacks that analyse correct and faulty results from aligios. ====50 sups
The added countermeasure is perhaps unnecessary for the

chips considered in this work, although halving the speed of

operation would still keep it well within specification. Nathat

an attacker will seek to insert a fault at the most opportune ., . ..t
moment, which may be determined from side-channel leakage.
For example, disrupting the round counter could mean that
TUAK runs a single round instead of 24.

oc
OC § 50 M5/s

- IR —

=R=RL]
=

=T

==

0C 3 1oczz2y SLOW TRIGGER
0c & 0 HORMAL

B. Sde-Channel Attack Defences and Performance Impact

Timing leakage attacks [28] can be possible when there Figure 7. SLE77 8-bit Build Power Traces
are observable data dependent delays in the application; in
which case added redundancy is needed in the implementation
Timing variations can be sufficiently large that they can be
detected despite low level measures to disguise side-ehan
leakage that might be subject to power analysis. The leaka
generation principle is quite simple, e.g., if a variabldrise

ave equal contribution to the leakage and so Hamming-weigh
ualisation may not deliver a sufficient reduction. Theaotp
on execution speed is also significant, as it is necessatgao c

do something time-consuming else do something quick. ThEEgisters before and after use, and so a ten-fold rathefatslo-
variable could represent a value that is tested at the apjpiie ' eduction in performance should be anticipated.

layer, or just a low-level bit test. A brief inspection of Kk As a final extension to the work, practical leakage exper-
does not show obvious high-level timing leakage, as theze ariments were carried out using power analysis to see if an
no conditional branches in the code. However, there coul@ttacker might learn anything useful from our implemewoiati

be lower level leakage if bit rotates are used. For example .

a processor may effect a rotate by shifting the contents of &- Sde-Channel Leakage Experiments

register up one place and then testing the value that fatlsfou The main goal of the analysis was to try and accurately
the register. If the value is "1’ then this has to be added backletermine the keccak rounds from the leakage traces, as
in as the LSB, so unless the designer adds dummy operatiorigowing this is often a prerequisite for attackers i.e.,ythe
processing a '1’ is going to take longer than a '0'. may wish to target particular rounds for analysis and/oitfau

The Keccak example code has macro names that imp[%nsertion. The first step to try and find the round structure wa
rotate, but on inspection they are buffer shift operatiaiser o crudely capture the entire run of the command/algor_|thm;
than register rotates. However, there could be a timingceffe from command to response. We know that keccak dominates
when the compiled target size (8/16/32 bit) does not mateh ththe response time and that it has 24 rounds. We could have
underlying register size. For example if we compile for 16-Chosen any pf the functions, however f5s() is convenient as i
bits, but the CPU registers are 8-bits then our shift may neeflepends on just RAND and K; and has a constant output size
to modify the least significant bit of the upper byte based orfegardless of the test data set selected. We initially feds
the bit value shifted out of the lower byte. In the case ofueati ©On the 8-bit build as this was expected to show most leakage.
code implementation, developers would be expected to teket Figure 7 shows the screen shot from SLE77 execution.
CPU size/shift/rotate into account. In the platform apptoa The upper waveform is the I/O line used for triggering. The
the mapping between application variables and underlyingaw leakage information is the middle waveform and the
registers is unclear. lower trace is an average waveform computed over 50 traces.

We have assumed that the chips have hardware countdrxamining the lower trace one can see a repeating pattern of
measures to prevent bit-level side-channel leakage, fsavef pulse shap.es. There are 24_1 in total, Wh.ICh matches _the; numbe
measures are inferior and significantly impact performancé)f rounds in KECCAK. This characteristic pattern is in fact
For example, Hamming-weight equalisation is a techniqae th Present for all the datasets - as would be expected. To check
seeks to reduce leakage by ensuring that for each bit tiamsit this in a !|ttle more d(_ata_ll we can refer to the start sectién o
there is a complementary transition; so as a ‘I’changes t§'€ algorithm shown in in Figure 8.

‘0’ there is also a ‘0’ changing to ‘1. In a practical im- The repetitive structure is clearer in this waveform and
plementation this could for example be a 16-bit processothere is a pattern that repeats twice every three time marker
where the lower 8-bits of a register handle the normal dat&l.5ms span). This gives an individual period of roughly 7&0
and the upper 8-bits handle the complementary data. Howevdf this is a KECCAK round then the algorithm would complete
at the physical/electrical level, the register bits arakaty to in 24x750us = 18ms. If we then refer back to Table 4 we

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

167

153-0ct-14 15-0ct-14
{ et et 20:42:41

So 'JMW || |t So 'JMM - L

{3:Average(2) [TTFT™ ﬁ:ﬁverage(f)jh;l\ b (VA '
5 omg 5 omg |
25 @ 25 @
====50 sups ‘ ====50 sups
Smeoal Smeoal
165 v IC 165 v IC
g } mg BE 4 200 15/s g } mg BE 4 200 15/s
| jocz2v SLOW TRIGGER | jocz2v SLOW TRIGGER
4V 0 HORMAL 4V 0 HORMAL
Figure 8. SLE77 8-bit Build Start of Power Trace Figure 10. SLE77 32-bit Build Start of Power Trace
15-0ct-14 15-0ct-14
19:33:35 22:54:30

=i

| | : | i Ly o

§:Average(?) J; Befveragat2) [AT
5 ome 5 oms |
250/ 250/ LI
====50 sups ====50 sups
B
sme oot smeoaf
165 ¥ 0O 165 ¥ 0O
E } m& Bg 1§" 200 M5/5 E 1| my OC 3 2008 M55
il 1omz2y SLOW TRIGGER [| foczzy SLOW TRIGGER
41y IC§ 0 NORMAL 410 v IC§ 0 NoRMAL
Figure 9. SLE77 16-bit Build Start of Power Trace Figure 11. SLE78 32-bit Build Start of Power Trace

see that the command response time (which is dominated by Figure 10. Furthermore, whilst there is some detectable
the algorithm) takes 18.11ms, suggesting that we are indeesiructure within the averaged trace of the SLE78 it is fas les
looking at the round cycle. The waveforms presented so fapbvious than for the SLE77, suggesting that the former iebet
have been for the 8-bit build so the next step is to comparat impeding statistical averaging of power leakage trades.
with the 16 and 32-bit builds. important point to note is that in all cases when using the
Regarding Figures 8-10 , we see that although the timin LE77, wavefor_m averaging makes S|gn|f|cant improvement
of the waveforms differs a little due to performance aspectst© the SNR. This suggests that the chip is not automatically
the repetitive round structure is still clearly visible aedless ~2dding any randomisation (at least at the scale observed) tc
of whether the build target is 8, 16 or 32 bits. As a final the processor timing.
comparison we can use traces captured from the SLE78
chip, which might be expected to have more inherent leakage VIIl. CONCLUSIONS ANDFUTURE WORK

protection within the chip hardware. The main conclusion is that it is feasible to implement
Considering the SLE78 waveforms in Figure 11 we noteTUAK in software on typical smart card/SIM chips and meet
that a single trace is noisier than the SLE77 equivalent showthe performance target for 3G/4G authentication algorithm

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

168

without the need for a cryptocoprocessor. Native mode imple[g]
mentation is required and so for a card platform (such as MUL-
TOS) this should be supported via API calls. Processor and
memory requirements are very modest suggesting that TUAK%
could meet performance targets even when implemented di’!
simpler legacy CPUs. Although there is no high-level data functions f1, f1*, 2, 3, f4, f5 and f5*; Document 6: Secuyriassessment
dependent timing in TUAK, there is some potential for data (2015)
dependent side-channel leakage due to shift operatiorishwh [11] G. Gong, K. Mandal, Y. Tan, and T.Wu, “Security
will require countermeasures. Whilst high-end smart card Assessment of TUAK Algorithm Set” [Online]. Available:
chips (like the SLE78) may offer significant hardware-based gté’zzl’s";‘g;”m:”gnptpz-g%’z'fg’l’i)pewa’c“"’eﬁﬁermy%-935’SAG—Eep°”’
resistance to side-channel analysis, other chips will irequ ' _ _ _
h_elp_ _from s_oftware countermeasures. Such measures mélyzl té;%%ibﬁﬁﬁé)].eggﬁfmg%ﬁ;%eiiﬂ?Qﬁ;g%ﬂg&é@'ﬂfﬁ apSys
significantly impact perfo_rma_nce; however the SLE77 rasult [13] Y. Jararweh, L. Tawalbeh, H. Tawalbeh, and A. Mohd, “taare
show that function execution time could be reduced by anrorde ~ performance Evaluation of SHA-3 Candidate Algorithms,urial of
of magnitude and still satisfy the performance target. €hier Information Security, Vol. 3, No. 2, pp. 69-76, 2012
less of a margin to add defensive measures to the S3CCOE4ff}] NIST, Announcing Draft Federal Information Processistandard
implementation, however the basic implementation is 3tefas gzli’s)t |2:02, tSHA-3 Séagd?trcg Petmutéiftit%n-BAaS?d E'f'lst_f; gsrm?ﬁlsé
ifi 1 id- utput Functions, an ra €evision o e Applicabil e o
ér;ﬁ,]ng rlﬁgelsr{:}gra)éttc())?teheet chéiiizﬁgcglﬁafg)g oagfr(]x%og)s id 180-4, Secure Hash Standard, and Request for CgmmentSl;)(ZQO
however this is not a large margin; and server performancg® (2016, Dec) MULTOS — website, [Online]. Available:

tends to ad follow M s | h t de h http://www.multos.com/
endsto a .Vance oflow oo_re S law, whereas smart carce aV[lG] Oracle, Java Card Platform Specifications V3.04, (2011
been restricted due to cost issues.

[17] F. Hillebrand, GSM and UMTS - The Creation of Global Miebi
The primary impact of the work is that by showing TUAK Communication, Wiley, (2002)

3GPP TR 35.934: Specification of the TUAK algorithm set:sécond
example algorithm set for the 3GPP authentication and kexerg¢ion
functions f1, fi1*, f2, {3, f4, f5 and f5* Document 4: Reporinahe
design and evaluation (2014)

3GPP TR 35.936: Specification of the TUAK algorithm sktsecond
example algorithm set for the 3GPP authentication and kexerg¢ion

to be a practical back-up or alterative to MILENAGE for [18] 3GPP, TS 33.102: 3G Security; Security Architectur89@)

typical SIM platforms, it will be adopted as a preferred pabl
algorithm (initially in M2M systems); displacing propraay
solutions that are often the target and motivation for &ttac

On-going work is considering side-channel leakage, and

[19] 3GPP, TS 33.401: Telecommunications Specificationufdr8ervices
and System Aspects; 3GPP System Architecture EvolutiorEjS&e-

curity architecture (2012)

G. Bertoni, J. Daemen, M. Peeters, and G. van Aaschegpt6graphic
Sponge Functions,” version 0.1, (2011)

(20]

also whether TUAK could be re-used in other applications[21] 3GPP, TS 35.232: 3G Security; Specification of the TUAKosithm

Preliminary results indicate that TUAK is sufficiently fdsir

use on more limited chip platforms, and this suggests it migh
also be a candidate for Internet of Things protocols. In fa
re-using a 3G algorithm is not a new idea as MILENAGE ha

already been reused outside of mobile communications.

ACKNOWLEDGMENT

The authors would like to thank members of ETSI SAGE

for their expert advice.

REFERENCES

[1] K. Mayes, S. Babbage, and A. Maximov, “Performance Ezalu
tion of the new TUAK Mobile Authentication Algorithm,” in .
ICONS/EMBEDDED, pp. 38-44, 2016

[2] (2016, Dec.) The European Telecommunications Starsddnstitute
website, [Online]. Available: http://www.etsi.org/

[3] (2016, Dec.) The Third Generation Partnership Projeebsite, [Online].
Available: http://www.3gpp.org/

[4] M. Mouly and M. Pautet, The GSM System for Mobile Commuations,
Cell and Sys (1992)

[5] 3GPP TS 35.206: 3G Security; Specification of the MILENA@Igo-
rithm set: An example algorithm set for the 3GPP authentinatind
key generation functions f1, f1*, f2, {3, f4, f5 and f5*; Dament 2:
Algorithm specification (2014)

[6] Federal Information processing Standards, Advancednftion Stan-
dard (AES), FIPS publication 197 (2001)

[71 3GPP, TS 35.231: 3G Security; Specification of the TUAKaaithm
set: A second example algorithm set for the 3GPP autheioticand
key generation functions f1, f1*, f2, {3, f4, f5 and f5*, Doment 1:
Algorithm specification (2014)

[8] G. Bertoni, J. Daemen, M. Peeters, and G. van Aasche, ‘Rdueak
Reference,” version 3.0, 14 (2011)

5}22]

set: A second example algorithm set for the 3GPP autheioticand
key generation functions f1, f1*, f2, {3, f4, f5 and f5*; Dament 2:
Implementers’ Test Data (2014)

3GPP TS 35.233: 3G Security; Specification of the TUAI§agithm
set: A second example algorithm set for the 3GPP autheioticand key
generation functions f1, f1*, {2, f3, f4, f5 and f5*, Docunte8: Design
Conformance Test Data (2014)

(2018, Dec.) Infineon, SLE77CLFX2400P(M) Short
Product Overview v11.11, (2012) [Online]. Available:
http:/mww.infineon.com/dgdl/SPCBLE+77CLFX2400P(M)2012-
10.pdf?fileld=db3a30433fcce646013fe1b813c07ff1

(2016, Dec.) Infineon, SLE78CAFX4000P(M) Description
[Online]. Available: http://www.infineon.com/cms/endatuct/security-
and-smart-card-solutions/security-controllers/sle78
SLE+78CAFX4000PM/productType.html?productType
=db3a30433fa9412f013fbdeb221b7b6f#ispnTabl

K. Mayes, and K. Markantonakis, Smart Cards, TokenguBgy and
Applications, Springer (2008)

(2016, Dec.) Infineon, Integrity Guard White Paper,
[Online]. Available via: http://www.infineon.com/dgdhiineon-
Integrity_Guard The_newestgenerationof_digital_security technology-
WP-v04 _12-EN.pdf?fileld=5546d46255dd933d0155e31c46fa03fb

MULTQOS, Developer's Reference Manual MAO-DOC-TECE0@L.49,
(2013)

P. Kocher, “Timing Attacks on Implemenetationsof DéffHellman,
RSA, DSS, and other Systems,” Advances in Cryptology (CRYRT
Vol. 1109 LNCS, pp. 104-113, 1996

(23]

[24]

(25]

(26]

(27]

(28]

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

