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Abstract—The new ARMv8 architecture is targeting the server,
Network Functions Virtualization (NFV), Mobile Edge Comput-
ing (MEC) and In-Vehicle Infotainment (IVI) market segments.
At the same time, it will empower Internet of Things (IoT),
Cyber Physical Systems (CPS), automotive Electronic Control
Units (ECU), avionics and mixed criticality devices. In this
context, virtualization is a key feature to enable the cloud
delivery model, to implement multitenancy, to isolate differ-
ent execution environments and to improve hardware/software
standardization and consolidation. Since guaranteeing a strict
isolation of both the data and the code executed in Virtual
Machines (VMs) counts today more than ever, the security of the
hypervisor and its guests has become dramatically important.
This paper extends Trusted Kernel-based Virtual Machine (T-
KVM) [1], an architecture for the KVM-on-ARM hypervisor
proposed to satisfy the above market trends, in the direction
of an efficient and high performance interrupt management. T-
KVM integrates software/hardware components to isolate guest
Operating Systems (OSes) and enable Trusted Computing along
with mixed criticality in ARM virtual machines. It combines
four isolation layers: ARM Virtualization and Security Extensions
(also known as ARM VE and TrustZone), GlobalPlatform Trusted
Execution Environment (TEE) APIs and SELinux Mandatory
Access Control (MAC) security policy. In this paper, the T-KVM
architecture and its interrupt management features are described
in detail, as well as its key implementation challenges and system
security considerations. Lastly, a performance evaluation of the
proposed solution is presented.

Keywords–Trusted KVM; ARMv8 Trusted Computing; ARM
Virtualization; Mixed Criticality; Real Time.

I. INTRODUCTION

The use of virtualization in ARM platforms is rapidly
increasing due to the deployment of SoCs based on this
architecture in different environments such as: servers, Cloud
and High Performance Computing (HPC), NFV, MEC, IoT,
CPS, smart devices, avionics, automotive, etc.

Virtualization enables multiple OSes to run unmodified on
the same hardware, thus sharing system’s resources such as
memory, CPUs, disks and other devices. These resources are
frequently target of specific virtualized environment attacks
(e.g., CPU cache [2], memory bus [3] and VM’s devices [4]

[5]). For this reason, the security of the virtualized systems
is critical. Historically, isolation has been used to enhance
the security of these systems [6], because it reduces the
propagation risks in compromised environments [7].

T-KVM [1] is a novel security architecture for virtualized
systems, which adds three isolation layers (ARM TrustZone,
GlobalPlatform TEE API and SELinux) on top of the standard
VMs isolation provided by the hypervisor and provides support
for the concurrent execution of a hypervisor and a real time
operating system. The main contribution of this paper is the
analysis and benchmark of T-KVM in respect to the interrupt
management mechanisms during the concurrent execution of
two operating systems into the TrustZone execution worlds. In
fact, T-KVM targets to provide a fast and efficient interrupt
handler, which allows to meet real-time constraints while
providing high performance for the guests applications. For
this reason, the ARMv8 interrupt management basics and the
possible T-KVM implementations have been described and
analyzed in this paper, aiming to compare different interrupt
management approaches in order to select the best solution for
mixed criticality systems.

As mentioned, T-KVM proposes four isolation layers: KVM,
ARM TrustZone, GlobalPlatform TEE and SELinux. The
former is considered the most popular hypervisor deployed
in OpenStack [8], which is a key solution for Cloud, NFV
and HPC computing. KVM for ARM is part of the Linux
kernel starting from the version 3.9; it is the Linux component
that, exploiting the ARM Virtualization Extension, allows to
create a fully-featured virtualization environment providing
hardware isolation for CPU, memory, interrupts and timers [9].
TrustZone is an hardware security extension for ARM proces-
sors and Advanced Microcontroller Bus Architecture (AMBA)
devices [10] designed to drastically improve security inside the
ARM ecosystem. The extension starts from the assumption that
a system, in order to deliver secure services, has to decouple
the resources used for general purpose applications from those
that handle security assets. To this end, TrustZone creates two
hardware isolated partitions in the system: the Secure and
the Non Secure World. While the Non Secure World runs a
standard OS with optionally a hypervisor, the Secure World
contains, handles and protects all the sensitive data (credit card
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information, customers list, passwords, etc.) and code (e.g.,
real time tasks, ciphers functions, etc.) of the system. These
two worlds are linked together through the GlobalPlatform
TEE API [11] [12], a set of specifications for a secure Remote
Procedure Call (RPC) mechanism between the trusted and non-
trusted compartment of the system. At the time of writing,
these specifications do not support virtualization, preventing
the use of Trusted Platform Module (TPM) services inside
virtual machines. This work addresses this limitation proposing
a design of a set of virtualization extensions to enable the guest
operating systems to make use of TPM services provided by
the TrustZone Secure World. The latter T-KVM isolation layer
is Security-Enhanced Linux (SELinux), a Mandatory Access
Control (MAC) solution, which brings type enforcement, role-
based access control and Multi-Level Security (MLS) to the
Linux kernel [13]. By means of these, SELinux confines
processes in security domains, where the interaction with other
processes and files is permitted only if there is a specific
SELinux policy rule that allows it.

In T-KVM, the above technologies are combined and
adapted to work together, providing high security for guest ap-
plications and strong isolation for the Secure World OS/Real-
Time OS (RTOS), without the need of specific hardware or
software. As a matter of fact, the proposed architecture relies
on open source (KVM and SELinux) components, public
specifications (GlobalPlatform TEE Internal and Client APIs)
and available hardware features (ARM TrustZone and VE).
For these reasons, T-KVM can be easily ported to currently
available ARM platforms, such as Cloud Infrastructure systems
based on OpenStack, automotive ECU, avionics platform and
other embedded systems.

The T-KVM architecture matches perfectly with server plat-
forms and user devices but also with mixed criticality systems,
where different levels of criticality need to interact and co-
exist on a common hardware platform (e.g., infotainment and
instrument clusters in avionics, or Advanced Driver Assistance
Systems - ADAS - and web browsing in automotive, etc.),
because it makes possible to run in the Secure World a critical
security sensitive application (e.g., encryption algorithms, real
time tasks, etc.) totally isolated from the Normal world.

The remaining part of this paper is organized as follows:
Section II introduces the main security components of the
proposed architecture. Section III contains details about the T-
KVM architecture, its implementation and security considera-
tions. Section IV describes the T-KVM interrupt management
for real time and mixed criticality systems while Section V
presents a performance analysis of the overhead and interrupt
latencies of the proposed solution. The related work is pre-
sented in Section VI and Section VII concludes the paper.

II. THE SECURITY COMPONENTS

In this section, the isolation layers, which characterize the
T-KVM architecture, are described.

A. KVM hypervisor

A hypervisor is a software layer, which is able to cre-
ate virtual instances of hardware resources such as CPUs,
memory, devices, etc. in order to enable the execution of
multiple operating systems on the same hardware. Different
implementation approaches lead to different hypervisor types:
a type 1 hypervisor, is a bare metal hypervisor, which runs
directly on the hardware (XEN or VMWare ESX). A type
2 hypervisor is, on the other hand, a hypervisor, which runs
inside an operating system (Oracle VirtualBox or VMWare
Workstation) at the application layer. Usually, the latter is used
in less critical applications [14] because of its dependency from
the underlying operating system.

KVM is a hypervisor included in the Linux kernel and
available for ARM, x86 and s390 architectures. It is neither
a type 2 hypervisor because it does not run as a normal
program inside Linux, nor is a typical type 1 hypervisor,
because it relies on the Linux kernel infrastructure to run.
KVM exploits the CPU Virtualization Extensions to execute
guest’s instructions directly on the host processor and to
provide VMs with an execution environment almost identical
to the real hardware. Each guest is run in a different instance of
this execution environment, thus isolating the guest operating
system. For this reason, this isolation has been used for security
purposes [15] [16] [17] [18] in many scientific works. In the
ARM architecture, the KVM isolation involves CPU, Memory,
Interrupts and timers [9].

B. TrustZone

ARM TrustZone is a set of hardware security extensions
for ARM processors and AMBA devices. With TrustZone, the
hardware platform is split in two parts, the Secure and the Non
Secure Worlds. In order to isolate these two compartments,
TrustZone requires: CPU with ARM Security Extensions (SE)
along with TrustZone compliant Memory Management Unit
(MMU), AMBA system bus, interrupt and cache controllers.
Hence, the isolation provided by TrustZone includes CPU,
AMBA devices, interrupts, memory and caches.

The Secure World is considered trusted, and is responsible
for the boot and the configuration of the entire system. In fact,
the CPU has banked registers for each World, and security
specific configurations can be performed in Secure World
mode only. This compartment contains the root of trust of
the system and protects sensitive data. The access to AMBA
peripherals such as fingerprint readers, cryptographic engines,
etc. can be restricted only to the Secure World, thus protecting
security devices.

On the other hand, the Non Secure World is intended to be
the user’s World. In this untrusted compartment, a standard
operating system (i.e., Android or Linux) is run. Security
sensitive operations such as the access to a secret or the
interaction with a real time task are provided to the user’s
application running in this compartment by the services run in
the Secure World.
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These two compartments interact with each other through
a specific CPU mode, namely the Monitor Mode. It typically
runs a secure context switch routine and is capable of routing
interrupts, depending on the configuration, either to the Secure
or Non Secure World.

Moreover, the use of the ARM VE Extensions, and conse-
quently of KVM, is possible only in the Non Secure World.

ARM TrustZone is compliant with the GlobalPlatform TEE
System Architecture specification [19], which defines the at-
tributes that the hardware must have to properly execute a
TEE.

C. GlobalPlatform TEE

GlobalPlatform specification defines the TEE as an ex-
ecution environment, which provides security features such
as isolated execution, integrity of Trusted Applications (i.e.,
applications run in the TEE) along with confidentiality of
their assets [19]. This is done by means of specific hardware
capabilities of the system, such as ARM TrustZone. The TEE
protects Trusted Applications (TA) and their data from the
Rich Execution Environment (REE), the environment where a
standard operating system such as Linux or Android is run.
Figure 1 depicts the standard architecture of a GlobalPlatform
TEE compliant system.

Figure 1. Standard TEE architecture

In order to isolate the TEE from the REE, GlobalPlatform
provides a set of specifications, which include the following
software components [11] [12]:

• The Trusted Core Framework is a common abstraction
layer, which provides to the TEE Internal API OS-like
functions, such as memory management, entry points
for TAs, panic and cancellation handling, TA properties
access, etc.

• The TEE Client API is an Inter Process Communication
(IPC) API that deals with the communication between
the REE and the TEE. It allows the applications in
the REE (Client Applications or CAs) to leverage the
services offered by the TEE.

• The (TEE and REE) communication agents provide
support for messaging between the CAs and the TEE.
They interact with the Monitor mode to request a context
switch between the two Worlds.

• The TEE Internal API allows the TAs to leverage the
services offered by the TEE through the following APIs:
Trusted Storage for Data and Keys, TEE Cryptographic
Operations, Time, and TEE Arithmetical.

Lastly, it is worth to mention that the deployment of a
GlobalPlatform compliant solution enables the use of existing
TA and CA applications. This a is very important factor,
especially in an environment such as the embedded trusted
computing, where by tradition the security solutions were
developed each time from scratch to address new device
families.

D. SELinux

SELinux is a software implementation of the MAC secu-
rity policy available in the Linux kernel as Linux Security
Module (LSM). The key feature of MAC is that the access
control decisions are not at discretion of individual users, root
included [13]. Thus, once the system security policies have
been defined and loaded at boot time in the kernel, they can
not be modified. In this way, the subject (e.g., a process) access
to objects (e.g., file, socket, etc.) is enforced in the system.

The very same concept can be applied to virtual machines
using sVirt, which is a feature of the libvirt library. sVirt
installs a set of virtualization specific security policies and
automatically tags VMs and their resources in order to isolate
guest systems. This isolation prevent any access to VM’s
resources (disk/kernel files, shared memory, etc.) from external
subjects (other VMs, the root user, etc.).

For this and for performance reasons [20], the use of
SELinux in virtualized systems is encouraged.

III. THE TRUSTED HYPERVISOR: T-KVM

T-KVM is a secure hypervisor architecture based on KVM,
which combines a Trusted Computing solution such as Trust-
Zone with GlobalPlatform TEE and SELinux, to enable both
Trusted Computing and RT support for ARM based platforms.
In Figure 2, all the components described in Section II are
shown together, composing the T-KVM architecture.

In T-KVM, the GlobalPlatform TEE and REE are respec-
tively implemented inside the TrustZone Secure and Non
Secure Worlds. For this reason in the remaining part of this
paper, Secure World/TEE and Non Secure World/REE are used
as synonyms. These two hardware-isolated environments are
linked together with a virtualization-enabled implementation
of the GlobalPlatform TEE specifications. The virtualization
provided by KVM further isolates the user’s applications,
enabling the use of different operating systems. This eases
multitenancy in server and Cloud environments, and enables
BYOD paradigm in smart devices. In addition, SELinux iso-
lates in software the virtual machines, protecting guests and
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their resources from the other virtual machines and the host
itself (e.g., malicious cloud administrators, host privilege esca-
lation exploits, etc.). Lastly libvirt, the main virtualization API
used by OpenStack to interact with KVM, takes automatically
care of the policy configuration and the tag assignment through
its component sVirt.

Figure 2. T-KVM architecture, which includes KVM, TrustZone, SELinux
and virtualized TEE

A. Implementation details

The following part of this manuscript lists the T-KVM
implementation challenges and proposes viable solutions.

1) Trusted boot: The first step of the system’s chain of
trust is performed during the boot procedure. In fact, when
the machine boots, the security configuration of the system is
not yet in place, and as a result the system is vulnerable to
attacks, which target to replace the boot procedure.

In order to minimize this risk, the T-KVM’s first stage
bootloader is a tiny program stored in a on-chip Read Only
Memory (ROM) along with the public key needed for the
attestation of the second stage bootloader. Since the first
stage bootloader is stored in a read-only memory, it can not
be updated and, therefore, it is critical for the security of
the system. Soon after the initialization of the key system
components, it checks the integrity and boots the second
stage bootloader, which is located in an external non-volatile
memory (e.g., flash memory). The second stage bootloader
then loads the real time microkernel binary in the system’s
Secure World memory and boots it.

The third stage bootloader of the T-KVM Trusted boot
mechanism is a Trusted Application inside the TEE. In fact,
when the Secure World OS is up and running, a specific TA
checks the integrity of the Non Secure World OS binary (i.e.,
the Linux kernel) and its bootloader (fourth stage). If this last
security check is successful, the fourth stage bootloader runs
the Non Secure OS and the system can be considered running.

On the other hand, if only one of these checks fails, the boot
process will be stopped and the machine will enter in a secure
and not operational state. Figure 3 shows the T-KVM Trusted
boot chain of Trust.

Figure 3. T-KVM Trusted boot procedure

The Trusted boot process is the key element for the attes-
tation of the user space applications because it ensures the
integrity of the chain of trust. T-KVM runs in the TEE an
attestation service, which is able to check at any moment
the integrity of its key components i.e., QEMU, libvirt, the
VMs and their resources, etc. libvirt in particular, is extended
to attest the VMs identity and integrity in an event-driven
manner (e.g., a new VM is booted/shut down, a new device
is plugged into the guest, etc.), assuring to users and cloud
administrators/providers the authenticity of the workloads run
on the hardware. The security assets (fingerprints, keys, etc.)
of these binaries are stored in the Secure World and by
consequence can be easily updated when necessary.

2) GlobalPlatform TEE support for virtualization: The main
novelty introduced by T-KVM is the support for Trusted
Computing inside the Virtual Machines. The virtualization
of the TEE functions is of utmost importance for the T-
KVM architecture, because it links together the applications
run in the VMs with the secure/RT services available in
the TrustZone Secure World. At the time of writing, the
use of the TEE functions in guest operating systems is not
included in the GlobalPlatform API Specification. To enable
this feature, T-KVM virtualizes the GlobalPlatform TEE APIs,
executing the TEE Client API directly in the Guest Operating
System. In order to be as much as possible compliant with
the GlobalPlatform Specification and to be able to run CAs
also at the host level, T-KVM TEE Client API is the only
virtualization aware component.

This awareness needs support from the hypervisor infras-
tructure, for this reason, as depicted in Figure 4, a specific
QEMU device is used to implement the TEE control plane and



134

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set up its data plane. All the requests (e.g., initialization/close
session, invoke command, etc.) and notification of response
are sent to the TEE Device, which delivers them either to the
TAs or to the CAs running on the guest OS. To provide good
data throughput and latency performance, the data plane is
based on a shared memory mechanism. Thus, when a response
notification arrives from the TrustZone Secure World, the TEE
device notifies with an interrupt its driver, which forwards
the related information to the Guest-Client Application. The
Guest-CA is now able to read the data from the shared memory,
without involving the TEE device in the data transfer.

Figure 4. TEE support for Virtual Machines in T-KVM

3) Shared memory: T-KVM needs a zero copy shared
memory mechanism to share data between the two TrustZone
Worlds and between the virtual machine and the host. The
latter in particular is very important in systems where VMs
need to communicate with each other frequently (e.g., NFV,
HPC, MEC, etc.). Host-guest only shared memory mechanisms
which provide high performance and low latency already exist
for the KVM hypervisor [21] [22]. What these mechanisms
actually lack is the support for TrustZone and, therefore, they
are not able to support communication between the TrustZone
Non Secure and Secure worlds.

By design, the TrustZone Secure World is able to access
the full Non Secure World address space. For this reason, the
Trusted Applications are not able to read/write the content
of the VMs shared memory unless they know the address
where the shared memory area begins. In order to pass this
information, the TEE device control plane extends the T-
KVM shared memory mechanism, enabling it to send the
shared memory address to the Secure World applications. This
mechanism need to be secured, especially in the Non Secure
World, to prevent attacks and information leakage. T-KVM
relies on SELinux to define specific access rules for shared

memory and to enforce the shared memory access only to the
interested parties.

The encryption of the shared memory area is consciously not
considered because, unless hardware accelerators are present
in the platform, there would be a performance loss.

4) Secure World: One of the most important parts of the
T-KVM architecture is the software running in the TrustZone
Secure World. The operating system running in the Secure
World should be fast, secure, real-time and free of program-
ming errors (implementation correctness).

The T-KVM architecture empowers the Secure World envi-
ronment with a real time microkernel. The primary motivation
behind microkernels is the small code footprint, which lead
to a smaller attack surface and an easier process of formal
verification of the code. Moreover, thanks to their real time
capability, they enable the deployment of T-KVM in mixed
criticality environments such as avionics and automotive. In
this context, good candidates are for example seL4, an open-
source third-generation microkernel based on L4 and formally
verified for functional correctness [23], or FreeRTOS [24] one
of the most popular real time operating system for embedded
systems.

The microkernel will run in its user space the implemen-
tation of the GlobalPlatform APIs, the secure device drivers
and the TAs. In order to do this, the Secure World OS does
not use the main platform storage device to store files and the
security assets of the system. An external, non-volatile memory
configured by the Secure World as not accessible by the Non
Secure World, is used to this purpose.

Finally, a possible alternative to microkernels is a secure
library running in the Secure World such as OPTEE [25].
Despite this solution has a code footprint even smaller than
a microkernel, T-KVM uses a microkernel because of its real
time features and a higher flexibility for TA developers.

B. Security considerations

Virtual Machines are widely used because of their flexibility
and capability to run any operating system. Nonetheless, in
order to achieve a higher security level of the system, it is
suggested to run single-application operating systems in the
T-KVM virtual machines. An example of such an operating
system is OSv [26], an open source solution, which is going
to be ported to the ARM v8 architecture. For this reason, this
work does not discuss the security of the applications inside
the virtual machines.

The threat model considered in this paper allows the attacker
to completely control one or more virtual machines, both at
user and kernel space level. In addition, the cloud adminis-
trator, who is permitted to remotely control the virtualized
system, is considered as a potential attacker for the identity
and integrity of the data.

The security of T-KVM is based on two main assumptions:
the attacker does not have physical access to the virtualized
system and the first stage bootloader is flawless (thus, the chain
of trust is not compromised).
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T-KVM has been designed to be compliant with additional
hardware accelerators and security modules. For example,
SecBus [27] can be used to protect the system against physical
attacks on the memory components (e.g., cold boot), Direct
Memory Access (DMA) attacks and on-board probing of
the external memory bus. Solutions like Network-on-Chip
(NoC) Firewall [28], can enhance the compartment isolation
granularity at VM level, protecting the system against logical
attacks (virus, Trojans) or security vulnerabilities, e.g., cor-
rupted DMA engines.

IV. THE T-KVM INTERRUPT MANAGEMENT

This section describes how the proposed architecture aims
to minimize the interrupt latencies in order to meet real time
constraints by providing fast responses.

A. T-KVM interrupt allocation

ARM v7, v8 and earlier architectures have been designed
to support two interrupt types: the Fast Interrupt Request
(FIQ) for low latency interrupt handling, and the more general
Interrupt Request (IRQ), which is commonly available also in
other architectures.

The former has higher priority (IRQs are automatically
masked by the CPU core when an FIQ arrives) and can
directly use some banked registers without the overhead of
saving/restoring them through push/pop instructions.

T-KVM takes advantage of the ARM architecture interrupt
management design [29], by programming the Secure world
to respond only to FIQs and the Normal world to handle IRQs
only. This allows critical applications to benefit from fast and
high priority interrupts, while isolating them from the Non
Secure IRQs.

Lastly, is to be said that the ARM v8 architecture adds
the possibility to assign interrupts exclusively to the Monitor
(ARM v8 Exception Layer 3). This is an interesting feature
for solutions like T-KVM, because it enables the system to
isolate interrupts addressed to the Secure World from interrupts
addressed to the TrustZone monitor. However, currently avail-
able platforms equipped with the Generic Interrupt Controller
version 2 (GICv2) such as the ARM JUNO board do not
support this feature. T-KVM has been designed to run on
existing platforms, and will be adapted and extended when
platforms equipped with GICv3 [30] will be available.

The following subsections describe the basic interrupt han-
dling mechanisms for each type of the world execution.

B. Secure World interrupt handling

During the execution of the Secure World, IRQs and FIQs
are enabled. FIQs interrupts are handled by the RTOS (red
arrow in Figure 5), while IRQs are redirected to the Monitor
(green arrow in Figure 5). This minimizes the FIQ interrupts
latency during the Secure World execution, because these
are directly caught in the handler of the critical application,

avoiding any context switch overhead. On the other hand, if
an IRQ occurs during the Secure World execution, the Secure
OS is preempted and the IRQ is caught in the monitor. At
this point, in order to handle the IRQ to the Normal World,
the monitor will provoke a context switch by saving the
Secure World context and restoring the Normal World, before
executing its IRQ handler.

Figure 5. Exception interaction during the Secure world execution

This interrupt management allows IRQs to preempt the
Secure world execution when the critical application does not
execute a sensitive part (e.g., when it is executing a FIQ
handler routine). However, in some specific cases, IRQs can
be disabled to prevent the Normal World from interrupting
the execution of the Secure World. In that case, the Normal
world executes only when there is an explicit request from the
Secure world. This is achieved through the Secure Monitor
Call instruction.

C. Normal World interrupt handling

Similarly to what happens in the Secure World, both FIQs
and IRQs are enabled during the execution of the Normal
World: IRQs are directly handled in the Normal World (green
arrow in Figure 6) while FIQs are redirected to the TrustZone
monitor (red arrow in Figure 6). When a FIQ occurs, the Non
Secure OS is immediately preempted in order to propagate
the FIQ to the Secure World as soon as possible. This lowers
latencies and helps the critical application to meet real time
constraints. At this point, the FIQ is caught in the monitor,
which executes a world context switch, by saving the Normal
World context and restoring the Secure World one, in order to
handle the FIQ.

During the FIQ handling into the monitor layer the FIQ
mask is enabled and prevents any preemption by another FIQs
having higher priority. Then, once the execution control is
given to the Secure world, the FIQ management is handled
by the trusted application. Therefore, the Secure world could
decide to disable the FIQ mask when the critical part is over.

So, once the control is given to the Secure world, the
FIQ management is overseen by the FIQ handler of the
secure application. Therefore, the Secure world could decide to
disable the FIQ mask when the critical part of its FIQ handler
is over.
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Figure 6. Exception interaction during the Normal world execution

V. EXPERIMENTAL RESULTS

In this section, the result of experimental tests performed
on a T-KVM prototype are shown and analyzed. These per-
formance measurements have been performed on an ARMv8
Juno board, which is equipped with two Cortex-A57 and four
Cortex-A53 in big.LITTLE configuration. All the workloads
for the performance analysis have been executed on the Cortex-
A53, which is the default CPU that the platform uses to execute
the Secure World OS.

A. SMC propagation

The different isolation layers, which compose T-KVM pro-
vide high security, but at a cost of additional overhead. As a
matter of fact, a request for a security service from a virtual
machine has to pass through the TEE, the host system and
SELinux to arrive in the TrustZone Secure World.

For the T-KVM performance analysis of this paper, we fo-
cused on the hardware isolation provided by the hypervisor and
TrustZone, as the SELinux performance has been measured
by the authors in the past [20], and the TEE overhead will be
detailed in future works.

For this reason, following the path of a Secure Monitor Call
(SMC) from the guest to the Secure World (and then back in
the guest) we measured the overhead introduced by T-KVM.

SMC has been added to the ARM instruction set by the
ARM Security Extension and it is used to request the execution
of a software routine in the TrustZone Secure World passing
through the TrustZone Monitor. In the standard KVM imple-
mentation, when the SMC instruction is run by a guest OS,
its execution is trapped by KVM, which injects an undefined
instruction in the guest, forcing it to handle this accordingly. In
T-KVM instead, when such instruction is run, the hypervisor
traps the guest SMC execution, modifies its arguments and
forwards them to the TrustZone Secure World.

In this scenario, two SMC context switches are involved:
firstly from Guest to Host, then from Non Secure to Secure
World Mode. The overhead assessment of these two context
switch operations is the target of the following analysis.

For the first measurement, we implement a bare metal binary
blob for KVM, which initializes the Performance Monitoring
Unit (PMU) and executes the SMC instruction in the guest.

The SMC is then trapped by KVM, which has been modified
to immediately return the control to the VM. As soon as the
program flow returns back to the guest, it checks the PMU
cycle counter status and calculates the overhead. In this way,
we are able to measure the overhead of a round-trip context
switch between the Guest and the Host when an SMC call is
executed.

On the other hand, for the measurements of the context
switch overhead between the Non Secure and the Secure
Worlds, the PMU cycle counter is set by a Linux kernel
module in the host, which executes soon after the world switch
request (i.e., the SMC instruction). This provokes an additional
switch to the TrustZone Monitor, which saves the Normal
World registers, loads the Secure World status and finally
jumps to the Secure World. In order to measure the T-KVM
context switch cost and not add further overhead, the Secure
World immediately runs the SMC call, without executing any
meaningful operation. When this instruction is executed in the
Secure World, it provokes again a switch to the Monitor Mode,
which will now save the secure world context, restore the non
secure context, and jump back to the Non Secure World. As
soon as the context switch is completed, the Linux kernel reads
the PMU cycle counter state and computes the overhead.

The results of both of the above measurements are defined
minimal because they are not considering any additional work
performed at the destination where they are trapping to.
Moreover, in both cases the system frequency is fixed at boot
time. However, it is to be considered that, in a real scenario,
a trap is followed by the execution of emulation code for a
Guest-Host trap, or some secure service for a Non Secure-
Secure trap.

Figure 7. T-KVM overhead measurements

Each test has been repeated five hundred times, running
Linux version 3.17 in both the host and the guest environments.
ARM Trusted Firmware [31] has been used as firmware
infrastructure.

Figure 7 shows that for a Secure request, which is the sum
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of the two measurements described before in this section, the
cost is in average 5200 clock cycles. This value represents
the minimum overhead that a guest system has to pay to
request a secure service to the T-KVM Secure World (the
Guest-Host minimum overhead is about 1400, while the Non
Secure-Secure is about 3700). This has been compared with
the minimum overhead that KVM spends to trap the SMC
instruction and perform a context switch between the guest and
the host, which is what has been described above in the Guest-
Host context switch measurement description. This result (in
average about 1400 clock cycles) has been measured with the
SMC instruction, but it is valid for all the instructions trapped
in KVM, as we did not add any specific code to trap the SMC
instruction to the standard KVM implementation.

Finally, it is important to notice that the Non Secure-Secure
context switch is 2.5 times slower than the Guest-Host. The
main reason for this behaviour is in the number of instructions
needed to complete the two operations. In particular, the
number of registers that the system has to save and restore
for the Guest-Host context switch is significantly lower.

B. FIQ latency

As described in the Section III, the T-KVM architecture
isolates the time critical applications in the TrustZone Secure
World. For this reason, the following performance analysis is
focused mainly on the interrupt latencies at the Secure World
side, where a RTOS is running.

The proposed architecture, uses FIQ interrupts only for the
RTOS, for the reason explained in Section IV. However, the
allocation of Fast Interrupts to the RTOS can be implemented
in different ways. Hence, following the FIQ path from the
vector table to the end of FIQ handler in the Secure world,
the overhead introduced by the T-KVM interrupt management
has been compared with the performance of different possible
implementations:

• RTOS only This case represents the T-KVM inter-
rupt management described in Section IV, where FIQs
interrupts are handled by the RTOS, while IRQs are
redirected to the Monitor.

• Monitor/RTOS As above, FIQs are caught in the
Monitor. However, in this case, the monitor does not
acknowledge the interrupt if the FIQ is not dedicated
to the monitor. It forwards FIQs directly to the Secure
world, before disabling FIQ trap in the monitor layer
(EL3). Therefore, if the FIQ is redirected to the Secure
world, the FreeRTOS FIQ handler has to generate an
additional SMC at the end of FIQ process in order to
return in the monitor to re-enable FIQ trap.

• Monitor only The TrustZone monitor (EL3) has full
control of the FIQs. FIQs are always trapped in the
monitor vector, which can read/write GIC registers to
manage the FIQ (activation, acknowledgement, etc.). If
the FIQs is not for the Monitor itself, it propagates the
FIQ to the Secure world (FreeRTOS).

For all the different FIQ paths described above, a system
timer has been programmed to generate periodic interrupts
used by the FreeRTOS Tick management to schedule different
real-time tasks. Moreover, the FIQ handler installed on the
FreeRTOS side, is the same for all tests.

Two different test cases will be taken in consideration for
each possible implementation. The first is the measurement of
the FIQ latency when the interrupt occurs during the execution
of the Normal World (and thus requires a world context
switch), and the second is the measurement of the FIQ process
time when it occurs during the execution of the Secure world.
Moreover, to avoid any cache impact on the results, instruction
and data cache memories have been disabled for all the tests.

Moreover, the measurements are split in three parts, each
one representing the state of the time at a specific phase:

• ”FIQ trigger” is the time to trig the FIQ in the vector
table when the timer reached a specified value.

• ”FIQ propagation in the monitor” is the time for the
monitor to execute some operations to manage the FIQ
before to redirect it to the Secure world.

• ”FreeRTOS FIQ processing” is the time execution of
FIQ handler in FreeRTOS to process the Tick manage-
ment.

The Timer is set in free-running mode with a frequency of 50
MHz.

Figure 8. FIQ latency measurements during the Normal world execution
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Figure 9. FIQ latency measurements during the Secure world execution

Each test has been repeated one hundred times, running
Linux/KVM version 4.0 in the Normal World and a FreeRTOS
v8.2.1 in the Secure World. The code needed to run FreeRTOS
on the ARM Juno board has been shared by Virtual Open
Systems with the FreeRTOS community [32]. Moreover, a
modified version of ARM Trusted Firmware [31] developed by
Virtual Open Systems, also publicly available as open source
software [33], has been used as firmware infrastructure for the
monitor layer.

Figure 8 and Figure 9 show that all ”FIQ trigger” parts have
approximately the same value for all different tests. This is
expected because it corresponds to the hardware time needed
to generate the FIQ, and as a consequence it not influenced by
the chosen software implementation. Moreover, it is important
to notice that the timer value measured to determine the
”FIQ trigger” time has been taken after the execution of few
instructions in the vector table handler. So, the value is slightly
larger that expected.

About the result of different tests during the execution of
the Normal world, Figure 8 shows that the software solution
implemented in the Monitor only case has no impact on the
total FIQ handling time compared to the basic implementation
in the RTOS only. However, the ”FIQ propagation in the mon-
itor” time is more important in the Monitor only case because
the monitor executes some instructions, which are normally
executed in the FreeRTOS FIQ handler. For the Monitor/RTOS
test, there is no overhead during the ”FIQ propagation in the
monitor” part because, as the FIQ is dedicated to the Secure
world, it forwards directly the FIQ to the FreeRTOS. In this
case, an additional communication is implemented to re-enable
FIQ trap in EL3 at the end of FreeRTOS FIQ handler and
Figure 8 shows that this solution adds an important overhead
in the ”FreeRTOS FIQ processing” part.

Additionally, in the case where the FIQ occurs during the
execution of the Secure world, Figure 9 shows that the ”FIQ
propagation in the monitor” time is lower than the same
test realized during the Normal execution. This is expected
because, as the world interrupted is the Secure and the monitor
redirects the FIQ to the Secure world, the monitor does not
execute the context switching operation in this case. Moreover,
in the basic interrupt management of the RTOS only test, there

is no monitor execution overhead because the FIQ is directly
caught in the FreeRTOS FIQ handler.

VI. RELATED WORK

T-KVM is a hypervisor architecture, which mainly targets
security and isolation to run virtual machines and real time
tasks together on the same hardware platform. Hypervisors’
security is a controversial topic in literature. As a matter of
fact, solutions like NoHype [34] [35] propose to secure the
virtual machines removing the hypervisor, while others use
the hypervisor isolation for security applications [16] [18].
In other scientific works, when compared with TrustZone as
a security solution, the hypervisor proves a better flexibility,
e.g., the Secure World is not able to interpose on and monitor
all the important events in the Non-Secure World [17]. The
proposed architecture considers the hypervisor as an additional
isolation layer, while protecting the security assets through the
ARM Security Extensions (TrustZone). T-KVM, combining
both solutions and relying on the attestation enabled by the
secure boot’s chain of trust, is able to provide monitoring
features and high security.

In fact, attestation and integrity checks are of paramount
importance for the security systems because they allow sys-
tem designers and administrators to consider a software
component as trusted. SecVisor [36], HyperSentry [37] and
SPROBES [38] propose different solutions designed for this
purpose: the first checks the integrity of commodity OS
kernels running the attestation code in hypervisor mode, thus
not addressing virtualization. The second enables integrity
measurement of a running hypervisor (i.e., XEN) through
Intel TxT, hence targeting the x86 architecture. The latter
uses TrustZone to enforce kernel code integrity, but without
mentioning the attestation challenges in virtualized systems.

These systems are explicitly addressed by solutions such
as vTPM [39] or sHype [40], both focusing their efforts
on Intel architectures. vTPM proposes a mechanism for the
virtualization of TPM functions, which dedicates a VM to
route and manage the TPM requests, while sHype integrates
the MAC security policy directly inside a typical type 1
hypervisor (i.e., XEN).

On the other hand, the solutions proposed by Narari [41]
and Lengyel [42] are designed for ARM devices with virtu-
alization extensions. The first proposes a security architecture
with TrustZone, SELinux and virtualization, targeting resource
constrained devices. The second combines a hypervisor (XEN)
and MAC Security policies (XEN Security Modules), targeting
high isolation between VMs but without mentioning TPM
access for guest OSes. Both proposals lack of a solution to
standardize the access to TPM functions such as the TEE.

VII. CONCLUSION AND OUTLOOK

This paper proposes T-KVM, a new security architecture for
ARM v7 and v8 virtualized systems, providing architecture de-
tails and a performance analysis. T-KVM’s architecture offers
strong isolation for guest applications by means of the KVM
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hypervisor, ARM TrustZone, SELinux and a virtualization
enabled implementation of the GlobalPlatform TEE API. The
main contribution of this work is an analysis of the inter-
rupt mechanisms of the ARMv8 architecture with TrustZone,
along with a comparison of different possible implementations,
which have been described, developed and benchmarked.

The benefits of the T-KVM are its flexibility (programma-
bility of the guests and of the Secure World) and compatibility
with the existing Cloud and smart devices architectures (Glob-
alPlatform and KVM/libvirt support). In fact, since T-KVM
adapts and combines existing open source components which
are already part of virtualized systems and OpenStack Cloud
Computing infrastructure (i.e., KVM, libvirt, qemu, etc.), the
support of T-KVM in these environments is straightforward
to implement. Lastly, monitoring and (remote) attestation are
eased by the combination of a standard hypervisor with Trust-
Zone.

On the other hand, the lack of the ARM VE support in the
Secure World does not allow the hardware assisted virtual-
ization of the TEE. Nonetheless, it is possible to functionally
implement multiple TEE (or vTPMs) using paravirtualization
or virtualization at the application layer.

As for the analysis of the overhead introduced by the
proposed solution, it is possible to claim that the performance
cost of T-KVM is acceptable. In fact, even if the secure
request overhead is significantly higher than a trap in the KVM
hypervisor, the execution frequency of the former is expected
to be lower than the latter: a service request is issued by a
T-KVM guest only to control the communication between the
guest and the Secure World, as all the data exchanges will
be performed through shared memory. In regard to the FIQ
latency tests, the results show that all software solutions to
manage the FIQ exclusively handled at EL3 (i.e., Monitor only
and Monitor/RTOS cases) introduce overhead which impacts
on the FIQ latency. For this reason, in order to privilege
the RTOS latency response time, the interrupt management
implementation chosen by T-KVM is RTOS only.

Finally, the future work includes the implementation of
a complete T-KVM ARMv8 prototype in the direction of
automotive and avionics use cases such as infotainment or
ADAS. With this in mind a full fledged version of the shared
memory mechanism (Section III-A3), GlobalPlatform TEE
(Section III-A2) and Trusted Boot (Section III-A1) will be
developed, tested and benchmarked. Related to the interrupt
management mechanisms, this work has given us the possi-
bility to evaluate different approaches, of which the ”RTOS
only” has been selected as final solution. Unfortunately, it
still lacks of a way to assign interrupts to the Monitor mode.
This problem will be investigated in future works, exploring
software methods to overcome this limitation of the TrustZone
hardware implementation.

Of interest is also the support and integration of T-KVM in
OpenStack, which would enable a complete new set of Cloud
features based on real time and Trusted Computing services
such as real time tasks allocated to the VMs, location aware
scheduling of new instances, trusted multitenancy, etc.
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[4] G. Pék, A. Lanzi, A. Srivastava, D. Balzarotti, A. Francillon,
and C. Neumann, “On the feasibility of software attacks on
commodity virtual machine monitors via direct device assignment,”
in Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ser. ASIA CCS ’14. New
York, NY, USA: ACM, 2014, pp. 305–316. [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590299

[5] N. Elhage, “Virtunoid: A KVM Guest - Host privilege escalation
exploit,” 2011.

[6] S. E. Madnick and J. J. Donovan, “Application and Analysis of
the Virtual Machine Approach to Information System Security and
Isolation,” in Proceedings of the Workshop on Virtual Computer
Systems. New York, NY, USA: ACM, 1973, pp. 210–224. [Online].
Available: http://doi.acm.org/10.1145/800122.803961

[7] M. Paolino, “Isolating ARM platforms: towards secure
virtualized embedded systems,” February 2015. [Online]. Avail-
able: http://www.cspforum.eu/uploads/Csp2014Presentations/Track
8/Strong%20Isolation%20in%20ARM%20Platforms.pdf

[8] G. Chen, “KVM - Open Source Virtualization for the Enterprise and
OpenStack Clouds,” IDC, 2014.

[9] C. Dall and J. Nieh, “KVM/ARM: Experiences Building the Linux
ARM Hypervisor,” 2013.

[10] T. Alves and D. Felton, “TrustZone: Integrated hardware and software
security,” ARM white paper, vol. 3, no. 4, 2004, pp. 18–24.

[11] GlobalPlatform, “TEE Client API Specification, Public Release v1.0,”
2010.

[12] Global-Platform, “TEE internal API Specification, Public Release v1.0,”
2011.

[13] X. Xu, C. Xiao, C. Gao, and G. Tian, “A study on confidentiality
and integrity protection of SELinux,” in Networking and Information
Technology (ICNIT), 2010 International Conference on, June 2010, pp.
269–273.

[14] A. Jasti, P. Shah, R. Nagaraj, and R. Pendse, “Security in multi-tenancy
cloud,” in Security Technology (ICCST), 2010 IEEE International
Carnahan Conference on, Oct 2010, pp. 35–41.

[15] A. Vahidi and C. Jämthagen, “Secure RPC in Embedded Systems:
Evaluation of Some GlobalPlatform Implementation Alternatives,” in
Proceedings of the Workshop on Embedded Systems Security, ser.
WESS ’13. New York, NY, USA: ACM, 2013, pp. 4:1–4:7. [Online].
Available: http://doi.acm.org/10.1145/2527317.2527321



140

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The Untapped Potential of
Trusted Execution Environments on Mobile Devices,” Security Privacy,
IEEE, vol. 12, no. 4, July 2014, pp. 29–37.

[17] C. Gehrmann, H. Douglas, and D. Nilsson, “Are there good reasons
for protecting mobile phones with hypervisors?” in Consumer Commu-
nications and Networking Conference (CCNC), 2011 IEEE, Jan 2011,
pp. 906–911.

[18] F. Liu, L. Ren, and H. Bai, “Secure-Turtles: Building a Secure Execution
Environment for Guest VMs on Turtles System,” Journal of Computers,
vol. 9, no. 3, 2014, pp. 741–749.

[19] GlobalPlatform, “TEE System Architecture v1.0,” 2011.

[20] M. Paolino, M. M. Hamayun, and D. Raho, “A Performance
Analysis of ARM Virtual Machines Secured Using SELinux,” in
Cyber Security and Privacy, ser. Communications in Computer
and Information Science, F. Cleary and M. Felici, Eds. Springer
International Publishing, 2014, vol. 470, pp. 28–36. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-12574-9 3

[21] C. Macdonell, X. Ke, A. W. Gordon, and P. Lu, “Low-Latency, High-
Bandwidth Use Cases for Nahanni/ivshmem,” 2011.

[22] M. Paolino, “A Shared Memory zero-copy mechanism for ARM
VMs:vosyshmem,” February 2015. [Online]. Available: http://www.
virtualopensystems.com/en/products/vosyshmem-zerocopy/

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: Formal Verification
of an OS Kernel,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, ser. SOSP ’09. New
York, NY, USA: ACM, 2009, pp. 207–220. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629596

[24] R. Barry, “Real time application design using freertos in small embed-
ded systems,” 2003.

[25] “OPTEE,” February 2015. [Online]. Available: https://github.com/
OP-TEE

[26] “OSv,” February 2015. [Online]. Available: http://osv.io

[27] J. Brunel, R. Pacalet, S. Ouaarab, and G. Duc, “SecBus, a Soft-
ware/Hardware Architecture for Securing External Memories,” in Mo-
bile Cloud Computing, Services, and Engineering (MobileCloud), 2014
2nd IEEE International Conference on, April 2014, pp. 277–282.

[28] M. D. Grammatikakis, “System-Level Modeling of a NoC Firewall
on Spidergon STNoC,” February 2015. [Online]. Available:
http://www.cspforum.eu/uploads/Csp2014Presentations/Track 8/
System-Level%20Modeling%20of%20a%20NoC%20Firewall%20on%
20Spidergon%20STNoC.pdf

[29] “Programmer’s Guide for ARMv8-A,” March 2015. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/
DEN0024A v8 architecture PG.pdf

[30] “Programmable Interrupt Controllers: A New Architecture,” July 2015.
[Online]. Available: http://community.arm.com/groups/processors/blog/
2015/07/27/gicv3-architecture

[31] “ARM Trusted Firmware,” February 2015. [Online]. Available:
https://github.com/ARM-software/arm-trusted-firmware

[32] “FreeRTOS v8.2.2 port (AARCH32) for ARMv8 platform (ARM
FastModel virtual platform and ARM JUNO Development
Platform) using the GCC ARM compiler (arm-none-eabi),” August
2015. [Online]. Available: http://interactive.freertos.org/entries/
83649935-FreeRTOS-v8-2-2-port-AARCH32-for-ARMv8-platform-\
\ARM-FastModel-virtual-platform-and-ARM-JUNO-Developm

[33] “Add a dispatcher for 32-bit Secure Payload,” Au-
gust 2015. [Online]. Available: https://github.com/ARM-software/
arm-trusted-firmware/pull/363/commits

[34] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized
Cloud Infrastructure Without the Virtualization,” SIGARCH Comput.
Archit. News, vol. 38, no. 3, Jun. 2010, pp. 350–361. [Online].
Available: http://doi.acm.org/10.1145/1816038.1816010

[35] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
Hypervisor Attack Surface for a More Secure Cloud,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 401–412.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046754

[36] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, Oct. 2007, pp. 335–350.
[Online]. Available: http://doi.acm.org/10.1145/1323293.1294294

[37] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.
Skalsky, “HyperSentry: Enabling Stealthy In-context Measurement of
Hypervisor Integrity,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security, ser. CCS ’10. New
York, NY, USA: ACM, 2010, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866313

[38] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing Kernel Code
Integrity on the TrustZone Architecture,” CoRR, vol. abs/1410.7747,
2014. [Online]. Available: http://arxiv.org/abs/1410.7747

[39] R. Perez and et al., “vTPM: virtualizing the trusted platform module,” in
Proc. 15th Conf. on USENIX Security Symposium, 2006, pp. 305–320.

[40] R. e. a. Sailer, “sHype: Secure hypervisor approach to trusted virtualized
systems,” 2005.

[41] H. Nahari, “Trusted secure embedded Linux,” in Proceedings of 2007
Linux Symposium, 2007, pp. 79–85.

[42] T. K. Lengyel, T. Kittel, J. Pfoh, and C. Eckert, “Multi-
tiered Security Architecture for ARM via the Virtualization and
Security Extensions,” in Proceedings of the 2014 International
Semiconductor Laser Conference, ser. ISLC ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 308–312. [Online]. Available:
http://dx.doi.org/10.1109/DEXA.2014.68


