
99

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Diversified Set of Security Features for XMPP Communication Systems
Useful in Cloud Computing Federation

Antonio Celesti, Massimo Villari, and Antonio Puliafito
DICIEAMA, University of Messina

Contrada di Dio, S. Agata, 98166 Messina, Italy.
e-mail: {acelesti, mvillari, apuliafito}@unime.it

Abstract—Nowadays, in the panorama of Cloud Computing,
finding a right compromise between interactivity and security
is not trivial at all. Currently, most of Cloud providers base
their communication systems on the web service technology.
The problem is that both Cloud architectures and services
have started as simple but they are becoming increasingly
complex. Consequently, web services are often inappropriate.
Recently, many operators in both academia and industry are
evaluating the eXtensible Messaging and Presence Protocol for
the implementation of Cloud communication systems. In fact,
the XMPP offers many advantages in term of real-time capa-
bilities, efficient data distribution, service discovery, and inter-
domain communication compared to web service technologies.
Nevertheless, the protocol lacks of native security features. In
this paper, we explore such security issues, discussing how they
can be mitigated using both SAML/SASL Single Sign-On (SSO)
and XEP 0027.

Keywords-Cloud computing, federation, security, XMPP, SSO
authentication, data encryption, digital signature.

I. INTRODUCTION

Nowadays, Cloud providers and their services are be-
coming more and more complex. Until now, the trend for
Cloud Computing has been to base the communication
systems on well-known web services such as the Repre-
sentational State Transfer (REST) and the Simple Object
Access Protocol (SOAP). This model has succeeded so far,
however, due to the increasingly degree of complexity that
Cloud architectures need for fulfilling the new emerging
business scenarios, the achievement of both interactivity and
security is not trivial at all. In fact, both REST and SOAP
web services present the following disadvantages: they are
based on request/response patterns, they do not provide
any native asynchronous interaction, their polling does not
scale and it is not real-time, they require a two-way data
exchange. Consequently, web services make complicated i)
the presence (availability) and discovery of software mod-
ules and services; ii) many-to-many distribution patterns; iii)
asynchronous and multi-step calls to remote services; iv)
federation with third-party providers and services especially
behind firewalls.

For these reasons, most operators in both academia and
industry fields are looking at alternative communication
systems for Cloud providers. To this regards, a valuable
solution consists in adopting the Extensible Messaging and

Presence Protocol (XMPP), i.e., an open-standard commu-
nications protocol for message-oriented middleware based
on the XML (Extensible Markup Language). On one hand,
the XMPP is able to overcome the disadvantages of web
services in terms of performance, but on the other hand
it lacks of native security features for addressing the new
emerging Cloud computing scenarios.

In this paper, we discuss how the XMPP can be adopted
for the development of secure Cloud communication sys-
tems. In particular, we combine and generalize the assump-
tions made in our previous works respectively regarding how
to secure inter-domain federation [1] and how to secure inter-
module communication [2] with the objective to provider to
the reader a guideline.

The US Department of NIST, is actively working for
accelerating Standards to foster the Adoption of Cloud Com-
puting [3]. Interoperability, Portability and Security are the
main objectives to achieve. Considering the intrinsic nature
of the XMPP, the first and the second objective can be easily
achieved [4], instead the third one deserves further assump-
tions. More specifically, to achieve secure federation-enabled
Cloud architectures over the XMPP, we will discuss how
to carry out Single Sign On (SSO) authentication between
providers belonging to different administrative domains, data
integrity, confidentiality, and non-repudiation. In order to ful-
fill such goals, we will discuss an experimental integration of
the XMPP with both a) Security Assertion Markup Language
and Simple Authentication - Security Layer (SAML/SASL)
for server-to-server SSO authentication and b) XEP-0027
extensions for secure message exchange.

The paper is organized as follows. Section II describes
the state of the art. Section III discusses the advantages
of using XMPP-based communication systems for complex
federation-enabled Cloud architectures. In Section IV, we
highlight the limits of the XMPP in term of security. Possible
security integration to the XMPP are discussed in Section
V. More specifically, we will discuss how the Internet-
Draft entitled “A SASL Mechanism for SAML”, defined
by CISCO TF-Mobility Vienna can be adopted to achieve
secure federation between Cloud providers belonging to
different administrative domains and how the XEP-0027
Specification can be adopted to achieve message signing/en-
cryption for the inter-module communication. Section VI



100

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concludes the paper.

II. RELATED WORKS

In this section, we describe the current state-of-the-art on
Security and Cloud computing.

More works treating security and privacy on Cloud com-
puting exist in literature. Many of them provide theoretical
discussions on different security aspects, but a few try to
find concrete assessments and real implemented solutions
[5], [6], [7]. In [8], the authors identify security challenges to
manage multi-provider Inter-Cloud environments with ded-
icated communication infrastructures, security mechanisms,
processes and policies. The existing security challenges in
Collaborative Clouds are highlighted in [9]. The authors
analyze different security initiatives, such as the FCAPS
model (ISO 10164), that is helpful for describing security
management functionalities, and the ISO/IEC 27001, that
offers a methodology for managing security services. We
agree with the authors in [10], who assert that an Information
Technology (IT) auditing mechanisms and framework can
play an important role in compliance of Cloud IT secu-
rity policies. In particular, a Third Party Auditor (TPA),
introduced on behalf of Cloud users, has resources and
experience that users do not have and it can be emplaced
to audit the integrity of large data stored on Clouds. Their
survey highlights the possibility to theoretically use recent
technologies for enforcing security from different point of
views, as well as SAML, OAuth, HMACs, homomorphic lin-
ear authenticators (HLAs), identity and access management
as a service (IDaaS). As the architecture of IDS (Intrusion
Detecting System), aimed at Nodes NIDS and Hosts HIDS.
A collaboration-based Cloud computing security manage-
ment framework is presented in [11]. The alignment of
NIST-FISMA standard with the Cloud computing model is
reported in a table form. The table reports the responsibilities
of Service Providers (SPs), Cloud Customers (CCs) and
Cloud Providers (CPs) in managing security assets. The
work that authors described is interesting, because it offers
a web portal along with a database where to track Cloud
resources utilization and their security implications. Risks
Management, where risk probabilities and vulnerability de-
scriptions along with standards are reported. The authors
in [12] describe a dynamic hierarchical role-based access
control model, useful in Cloud service aimed at Mobile
Internet. In particular, they introduce an interesting secu-
rity model with self-adaptive features. Their self-adaptive
schema enables their system to automatically meet the
environment parameters, hence offering the corresponding
protections. Another work that presents possible threats in
Cloud is [13]. The authors highlight that when organizations
migrate their data or services into the Cloud, they are not
aware of their locations. Organizations lose control over
their data and are not aware of any security mechanisms put
in place by the Cloud provider. In this situation, the main

three security concerns are: Loss Of Control, Compliance
Implications and Confidentiality and Auditing. Our work
focuses the attention on these issues.

III. CLOUD COMPUTING AND XMPP

A valuable solution for the design of a performance and
secure Cloud middleware is to conceive its communication
system adopting an instant message-oriented approach. To
this regard the XMPP (RFC 3920 and RFC 3921), also
called Jabber, is becoming more and more popular due to
its flexibility to suit different scenarios where a high level
of re-activeness is strongly required. Despite it was born for
human interaction via chat room it can be used to develop the
communication of whatever distributed system well fitting
the requirements of Cloud computing. XMPP is an XML-
based protocol used for near-real-time, extensible instant
messaging and presence information. XMPP remains the
core protocol of the Jabber Instant Messaging and Presence
technology. The “Jabber” technology leverages open stan-
dards to provide a highly scalable architecture that supports
the aggregation of presence information across different
devices, users and applications. Like email, anyone who has
a domain name and an Internet connection can run the Jabber
server and chat with other users. The Internet Engineering
Task Force has formalized XMPP as an approved instant
messaging and presence technology, and the specifications
have been published as RFC 3920 and RFC 3921. Born for

Figure 1. CLEVER architecture.

human interaction via chat the XMPP offers many advan-
tages for the design of communication system of complex
distributed system In the panorama of Cloud computing
the XMPP represents a flexible solution because custom
functionality can be built on top of XMPP, and common
extensions are managed by the XMPP Software Foundation.
The XMPP provides a technology for asynchronous end-to-
end exchange of structured data. Considering a distributed
system, the protocol allows to build one or more overlay net-
works having: global addressing (JIDs), network availability
(presence), concurrent information transactions, distributed
federated networks, structured data with XML payload.



101

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Activity diagram of the external communication.

The architecture is similar to the email network, but it
introduces several added value features to facilitate near-
real-time communications. The end-to-end communication
in XMPP is logically peer-to-peer but logically client-to-
server-to-server-to-client. If we assume that each server
can manage a domain, a server-to-server connection can
enable inter-domain federation. In the XMPP, data are sent
over persistent XML steams. XMPP clients (i.e., human or
software modules) are connected over a room that represents
a sort of broadcast domain.

Summarizing, the XMPP presents several advantages
compared to the HTTP-based web services including

• End-to-end communication
• It offers real-time capabilities such as heartbeat, alarms,

and any kind of asynchronous communication.
• Efficient distribution of data with public/subscribe and

direct-push approaches (e.g., configuration distribution,
push RSS/Atom, data collection, log processing, fast
results delivery software modules and clients.).

• Advance service discovery.
• Federation. Most firewalls allow users to fetch and post

messages without hindrance. Thus, if the TCP port
used by XMPP is blocked, a server can listen on the
normal HTTP port and the traffic should pass without
problems.

In order to describe how an XMPP-based communication
system of a federation-enabled Cloud architecture works, in
the following we will consider as model CLEVER [14], an
Infrastructure as a Service (IaaS) middleware. The CLEVER

middleware is based on the architecture schema depicted in
Figure 1, which shows a cluster of n nodes (also an inter-
connection of clusters could be analyzed) each containing
a host level management module (Host Manager). A single
node may also include a cluster level management module
(Cluster Manager). All the entities interact exchanging infor-
mation by mean of the Communication System based on the
XMPP. The set of data necessary to enable the middleware
functioning is stored within a specific Database deployed in
a distributed fashion.

Figure 1 shows the main components of the CLEVER
architecture, which can be split into two logical categories:
the software agents (typical of the architecture itself) and the
tools they exploit. To the former set belong both the Host
Manager and the Cluster Manager:

• The Host manager (HM) performs the operations
needed to monitor the physical resources and the in-
stantiated VMs. It runs the VMs on the physical hosts
and performs the migration of VMs.

• The Cluster Manager (CM) acts as an interface between
the clients (software entities, which can exploit the
Cloud) and the HM agents. It performs the management
of VM images (uploading, discovering, etc.) and the
monitoring of the overall state of the cluster (resource
usage, VMs state, etc.).

Regarding the tools such middleware components exploit,
we can identify the Distributed Database and the XMPP
Server. The XMPP-based communication system allows to
conceive more flexible inter-module communication and



102

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Activity Diagram of the sub-activity Executing Operation.

inter-domain federation capabilities compared to the HTTP-
base web services.

A. Inter-Module Communication

When two different hosts have to interact each other, the
inter-module communication has to be exploited. The typical
use cases refer to:

• Communication between CM and HM for exchanging
information on the cluster state and sending specific
commands;

• Communication between the administrators and CM
using the ad-hoc client interface.

As previously discussed, in order to implement the inter-
module communication mechanism, an XMPP server must
exist within the CLEVER domain and all its entities must be
connected to the same XMPP room. When a message has
to be transmitted from the CM to an HM, as represented
in Figure 2, it is formatted and then sent using the XMPP.
Once received, the message is checked from the HM, for
verifying if the requested operation can be performed. As the

figure shows, two different situations could lay before: if the
request can be handled, it is performed sending eventually an
answer to the CM (if a return value is expected), otherwise
an error message will be sent specifying an error code. The
“Execution Operation” is a sub-activity whose description is
pointed out in Figure 3. When the sub-activity is performed,
if any return value is expected the procedure terminates, else
this value has to be forwarded to the CM in the same way
has been done previously with the request. The sequence of
steps involved in the sub-activity is represented in Figure
3. If the operation that has to be executed involves a
component different from the Host Coordinator, the already
described intra-module communication has to be employed.
Once the selected component receives the message using this
mechanism, if no problem occurs, the associated activity
will be performed, else an error will be generated. If the
operation is executed correctly and a return value has to be
generated, the component will be responsible of generating
the response message that will be forwarded to the HM, and
thus, to the CM.



103

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Inter-Domain Federation

CLEVER has been designed with an eye toward federa-
tion. In fact, the choice of using XMPP for the CLEVER
module communication (i.e., external communication XMPP
room) has been made thinking about the possibility to sup-
port in the future also interdomain communication between
different CLEVER administrative domains. Federation al-
lows Clouds to “lend” and “borrow” computing and storage
resources to/from other Clouds. In the case of CLEVER,
this means that a CM of an administrative domain is able
to control one or more HMs belonging other administrative
domains. For example, if a CLEVER domain A runs out of
resources of its own HMs, it can establish a federation with a
CLEVER domain B, in order to allow the CM of the domain
A to use one or more HMs of the domain B. This enables the
CM of domain A to allocate VMs both in its own HMs and
in the rented HMs of domain B. In this way, on one hand
the CLEVER Cloud of domain A can continue to allocate
services for its clients (e.g., IT companies, organization,
desktop end-users, etcetera), whereas on the other hand
the CLEVER Cloud of domain A earns money from the
CLEVER Cloud of domain B for the renting of its HMs.

As anyone may run its own XMPP server on its own
domain, it is the interconnection among these servers that
exploits the interdomain communication. Usually, every user
on the XMPP network has an unique Jabber ID (JID). To
avoid requiring a central server to maintain a list of IDs, the
JID is structured similarly to an e-mail address with an user
name and a domain name for the server where that user re-
sides, separated by an at (@) sign. For example, considering
the CLEVER scenario, a CM could be identified by a JID
bach@domainB.net, whereas a HM could be identified by a
JID liszt@domainA.net: bach and liszt respectively represent
the host names of the CM and the HM, instead domainB.net
and domainA.net represent respectively the domains of the
Cloud that “borrows” its HMs and of the Cloud that “lends”
HMs. Let us suppose that bach@domainB.net wants to
communicate with liszt@domainA.net, bach and liszt, each
respectively, have accounts on domainB.net and domain A
XMPP servers.

Figure 4. Example of federation between two CLEVER Clouds.

The idea of CLEVER federation is straightforward by

means of the built-in XMPP features. Figure 4 depicts
an example of interdomain communication between two
CLEVER administrative domains for the renting of two
HMs from a domain A to domain B. Considering the afore-
mentioned domains, i.e., domainA.net and domainB.net,
in scenarios without federation, they respectively include
different XMPP rooms for intradomain communication (i.e.,
cleverRoom@domainA.net and cleverRoom@domainB.net)
on which a single CM, responsible for the administration
of the domain, communicates with several HMs, typically
placed within the physical cluster of the CLEVER domain.
Considering a federation scenario between the two domains,
if the CM the domainB.net domain needs of external re-
sources, after a priori agreements, it can invite within its
cleverRoom@domainB.net room one or more HMs of the
domainA.net domain. For example, as depicted in Figure
4, the CLEVER Cloud of domainB.net rents from the
CLEVER Cloud of domainA.net, HM6 and HM16. Thus, the
two rented HMs will be physically placed in domainA.net,
but they will be logically included in domainB.net. As
previously stated, in order to accomplish such a task a trust
relationship between the domainA.net and the domainB.net
XMPP servers has to be established in order to enable a
Server-to-Server communication allowing to HMs of domain
A to join the external communication XMPP room of
domain B.

IV. SECURITY ISSUES IN XMPP-BASED CLOUDS

According to the Domains and sub-topics investigated by
the CSA, we worked on partial security needs for making a
concrete solution aimed at IaaS level. The elements we iden-
tified in this assessment that are useful in the IaaS context
are presented in the CSA guidance [15] and summarized as
following:

1) In the Governance and Enterprise Risk Management,
there is the need to “divulge policies, procedures and
processes comprising the Cloud providers’ Information
Security Management System (ISMS)”, knowing who
makes what.

2) Whereas in the Information Management and Data
Security, it is necessary to “assure that Cloud provider
personnel controls are in place to provide a logical
segregation of duties.”

3) In the Traditional Security, Business Continuity and
Disaster Recovery, “Customers should perform onsite
inspections of Cloud provider facilities whenever pos-
sible.”

4) Data Center Operation, “Cloud providers must all be
able to demonstrate comprehensive compartmentaliza-
tion of systems, networks, management, provisioning
and personnel.”

5) In the Incident Response, Notification and Remedia-
tion, “Cloud providers should construct a registry of



104

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application owners by application interface (URL, SOA
service, etc.)”.

6) Encryption and Key Management, where “segregate the
key management from the Cloud provider hosting the
data, creating a chain of separation”.

Even though the XMPP support the SASL and TLS
technologies for the authentication and encryption of the
communication channels between different eJabberd servers,
it presents some security limitations due to the decentralized
nature of the protocol that demands the accomplishment of
specific security mechanisms to the different implementa-
tions. On the other hand, the flexible and extensible nature of
the protocol allows to integrate basic security mechanisms,
improving the level of the security in communication. In
particular, considering federation-enabled Clouds, the XMPP
does not allow to natively develop the following security
mechanisms

• Data Confidentiality, Integrity, and Non Repudi-
ation for Inter-Module Communication. As previ-
ously discussed, the different software modules can
communicate over one or more chat-rooms. Chat-rooms
allow to isolate the communication of the involved
software modules also providing a way to control which
module can join a chat-room by means of a user-
name/password authentication. This level of security
is particularly weak considering Cloud architectures.
Considering software modules A and B of a Cloud
system i) module A and B have to perform a mutual
authentication before communicating through X.509
certificates in order to avoid identity-thief attacks; ii)
message exchanged between two software modules
have to be confidential and not corrupted in order to
avoid man-in-the-middle attacks; iii) if software module
A sends a message to B, module A cannot deny of hav-
ing done so. In order to guarantee Data Confidentiality,
Integrity, and Non Repudiation for Message Exchange
further security mechanisms have to be integrated in
the XMPP.

• SSO Authentication for Inter-Domain Federation.
Federation between Cloud providers implies the es-
tablishment of a secure inter-domain communication
between the XMPP servers of the involved Clouds.
This raises several issues regarding the management
of authentication between the XMPP servers of dif-
ferent Clouds. In fact, considering a scalable scenario
including n Clouds in order to perform an inter-domain
federation the XMPP server of each Cloud should
perform n − 1 authentication on the other n − 1,
hence managing n−1 different credentials for accessing
the federated Clouds. Considering the whole Cloud
federation ecosystem it is required to manage n(n−1)
different credentials. The IdP/SP scheme allows to
address this problem introducing a trusted third-party,

the IdP, so that a cloud that wants to perform a
federation with the other n− 1 Clouds has to perform
the authentication once, gaining the access on the other
n− 1 Clouds, which will be trusted with the IdP. This
form of federation is called SSO. Unfortunately, at the
moment of the writing of this paper, the SASL/TLS
on which the XMPP is based does not support any
standard form of SSO Authentication for server-to-
server federation.

In the following, we will deepen the previously introduced
security limitations considering a federated Cloud computing
scenario based on the XMPP.

A. XMPP Concerns Regarding Data Confidentiality, In-
tegrity, and Non Repudiation for Inter-Module Communi-
cation

Let us consider a message oriented Cloud system includ-
ing several distributed software modules or components and
whose inter-module communication takes place by means of
an instant messaging protocol. The question is: which are the
security requirements of the involved communication sys-
tem? Definitely it should ensure: data confidentiality, data
integrity, and data non-repudiation of the sender/receiver.
Let us assume that in order to achieve a totally secure
communication system each message has to be signed and
encrypted by each component. From now on, for simplicity,

Figure 5. XMPP messages encryption in CLEVER.

we will focus our analysis on the XMPP as instant mes-
saging protocol. Considering the aforementioned security
requirements, XMPP as has to be properly extended. In our
opinion, considering a Public Key Infrastructure (PKI), the
XMMP-based communication of a message oriented Cloud
system should support the following functionalities:

• Digital identity management. Each component during
the in-band registration (i.e., an automatic enrollement
of a client on the XMPP server) with the XMPP server
requires a digital certificate to a trusted Certification
Authority (CA) through the Simple Certificate Enroll-
ment Protocol (SCEP).

• Signed message exchange. Each component should be
able to sign a message sent to another one.



105

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Encrypted message exchange. Each component
should be able to perform a total or partial encryption
of a message.

• Private chat rooms. The communication system
should allow the management of private chat room with
restricted access to authorized components.

• Encrypted chat rooms. The communication system
should allow the management of private and encrypted
chat rooms. The key exchange between the commu-
nicating components should take place according to
a PKI schema. The component that play the role of
“moderator” instantiate a new chat room associating a
session key. When a new component wants to join the
communication, the “moderator” component sends the
session key encrypted with the public key of the new
component itself.

B. XMPP Concerns Regarding SSO Authentication for
Inter-Domain Federation

Considering that the communication in each CLEVER
Cloud is achieved through XMPP or Jabber messages by
means of an Ejabberd server (i.e., an instant message server),
the federation establishment between two or more CLEVER
Clouds implies a secure server-to-server inter-domain com-
munication between their respective Ejabberd servers. In
fact, in the XMPP terminology, the term “federation” is
commonly used to describe communication between two
servers.

Thus, in CLEVER, each Cloud belongs to a domain
managed by an XMPP server. In CLEVER, the way to
federate two Clouds is to establish a server-to-server inter-
domain communication between the XMPP servers to the
involved Clouds.

Cloud federation raises many issues especially in the field
of security and privacy. Single Sign On (SSO) authenti-
cation is fundamental for achieving security in a scalable
scenario such as Cloud federation. However, the Simple
Authentication and Security Layer (SASL) [16], i.e., a
framework for authentication and data security in Internet
protocols, supported by XMPP does not support any SSO
authentication mechanism.

The public-subscribe technology is reemerging for en-
abling real-time communication within Cloud infrastructure,
nevertheless its major protocol XMPP is somewhat dated
from the point of view of security.

In order to enable federation between servers, it is needed
to carry out a strong security to ensure both authentication
and confidentiality thanks to encryption. According to the
IETF 6120, compliant implementations of servers should
support Dialback or SASL EXTERNAL protocol for au-
thentication and the TLS protocol for encryption.

The basic idea behind Server Dialback [17] is that a re-
ceiving server does not accept XMPP traffic from a sending
server until it has (i) “called back” the authoritative server

for the domain asserted by the sending server and (ii) verified
that the sending server is truly authorized to generate XMPP
traffic for that domain. The basic flow of events in Server
Dialback consists of the following four steps:

1) The Originating Server generates a Dialback key and
sends that value over its XML stream with the Receiv-
ing Server. (If the Originating Server does not yet have
an XML stream to the Receiving Server, it will first
need to perform a DNS lookup on the Target Domain
and thus discover the Receiving Server, open a TCP
connection to the discovered IP address and port, and
establish an XML stream with the Receiving Server.)

2) Instead of immediately accepting XML stanzas on the
connection from the Originating Server, the Receiving
Server sends the same Dialback key over its XML
stream with the Authoritative Server for verification. (If
the Receiving Server does not yet have an XML stream
to the Authoritative Server, it will first need to perform
a DNS lookup on the Sender Domain and thus discover
the Authoritative Server, open a TCP connection to the
discovered IP address and port, and establish an XML
stream with the Authoritative Server).

3) The Authoritative Server informs the Receiving Server
whether the key is valid or invalid.

4) The Receiving Server informs the Originating Server
whether its identity has been verified or not.

SASL is a framework for providing authentication and
data security services in connection-oriented protocols via
replaceable mechanisms. It provides a structured interface
between protocols and mechanisms. The resulting frame-
work allows new protocols to reuse existing mechanisms and
allows old protocols to make use of new mechanisms. SASL
is used in various application protocols (e.g., XMPP, IMAP,
LDAP, SMTP, POP, etc.) and support many mechanisms
including:

• PLAIN, a simple clear text password mechanism.
PLAIN obsoleted the LOGIN mechanism.

• SKEY, an S/KEY mechanism.
• CRAM-MD5, a simple challenge-response scheme

based on HMAC-MD5.
• DIGEST-MD5, HTTP Digest compatible challenge-

response scheme based upon MD5. DIGEST-MD5 of-
fers a data security layer.

• GSSAPI, for Kerberos V5 authentication via the GSS-
API. GSSAPI offers a data-security layer.

• GateKeeper, a challenge-response mechanism devel-
oped by Microsoft for MSN Chat

At the time of writing of the IETF 6120, in March 2011,
most server implementations still use the Dialback protocol
to provide weak identity verification instead of using SASL
to provide strong authentication, especially in cases where
SASL negotiation would not result in strong authentication
anyway (e.g., because TLS negotiation was not mandated



106

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by the peer server, or because the PKIX certificate presented
by the peer server during TLS negotiation is self-signed and
has not been previously accepted). The solutions is to offer
a significantly stronger level of security through SASL and
TLS.

V. SECURING XMPP-BASED COMMUNICATION SYSTEM
FOR FEDERATION-ENABLED CLOUDS

A. A Solution for Secure Message Exchange
in Inter-Module Communication

Custom functionality can be built on top of XMPP, and
common extensions are managed by the XMPP Software
Foundation. Regarding the security, even though the XMPP
specification support the SASL and TLS technologies for the
authentication and encryption of the communication chan-
nels, it presents some limitations due to the decentralized
nature of the protocol that demands the accomplishment of
specific security mechanisms to the different implementa-
tions. On the other hand, the flexible and extensible nature of
the protocol allows to integrate basic security mechanisms,
improving the level of the security in the communications.

As previously discussed, in order to guarantee data con-
fidentiality, integrity, and non repudiation in the XMPP-
based communication system of a federation-enabled Cloud
Architecture specific security extensions are required. The
XEP 0027 [18] specification describes the use of Jabber
with the Open Pretty Good Privacy (OpenPGP - RFC
4880 - [19]). OpenPGP is an interoperable specification
that provides cryptographic privacy and authentication for
data communications. As highlighted by the internet draft,
the XEP 0027 does not represent a standard, although it
could be in the future, but it describes a possible solution
for authentication and data encryption in end-to-end XMPP
communication. XEP 0027 allows the addition of specific
XML tags in the XMPP message, each one defined by
a specific namespace: for example “jabber:x:signed” and
“jabber:x:encrypted”. Such tags, indicate to the system how
to process the information contained within them. As sug-
gested in the specification, it is possible to apply the digital
sign of a sender to the message, for example calculating a
message digest and signing it with his/her private key. The
specification, also allows to sign the presence message in a
chat room. In this case, it is possible to sign the status of the
sender. In the following, it is shown an example of XMPP
message sent from the Alice to Bob user.

<presence from=’alice@example.com’
to=’bob@example2.com’>

<status>Online</status>
<x xmlns=’jabber:x:signed’>

iQA/AwUBOjU5dnol3d88qZ77EQI2JAC
fRngLJ045brNnaCX78ykKNUZaTIoAoP
HI2uJxPMGR73EBIvEpcv0LRSy+=45f8

</x>
</presence>

The status of alice is signed with her private key, so that
bob can verify by means of the Alice’s public key that she
is really online. In the same way, it is possible to encrypt the
content of the tag body using the public key of the receiver
in order to achieve confidentiality. In the following, it is
shown a message sent from Alice to Bob whose content has
been encrypted with the public key of Bob.

<message to=’alice@example1.com’
from=’bob@example2.com’>

<body>This message is encrypted.</body>
<x xmlns=’jabber:x:encrypted’>

qANQR1DBwU4DX7jmYZnncmUQB/9KuKBdd
zQH+tZ1ZywKK0yHKnq57kWq+RFtQdCJWp
dWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS
9p0ovStmNcyLhxVgmqS8ZKhsblVeuIpQ0
JgavABqibJolc3BKrVtVV1igKiX/N7Pi8
RtY1K18toaMDhdEfhBRzO/XB0+P

</x>
</body>

</message>

The specification does not define the exchange of public
keys that is demanded to OpenPGP. Even though the chat
messaging is something that purely seem regarding the
human interaction, the same approach can be applied to
Cloud computing systems in which different distributed
software components need to interact each others in both
real time and in secure way.

In order to secure the inter-module communication, it is
needed to integrate PKI, SCEP, CA, and LDAP mechanism.
In order to achieve a secure inter-module communication,
it is mandatory to have a digital identity for each element.
For this reason, during the initialization of each entity (e.g.,
administration client, CM, or HM module), it is needed to
setup the corresponding digital identity. Each entity obtains
through the SCEP a private/public key pair from the CA.
After that, it creates a KeyStore local object, in which
each requesting entity can find, protected by password, its
private key and the digital certificate in PKCS# format. After
that the certificate is published on the LDAP server acting
as “publisher” of the digital certificates associated to the
various entities.

When a module has obtained its own digital identity and
it can access the LDAP server storing the public keys of the
other entities, it is able to establish a secure inter-module
communication with other modules. Thus, each module will
be able to sign a message with its private key and to encrypt
target message contents. In the first case, the receiver module
will verify the digital sign of the sender by means of the
corresponding public key read from the LDAP server. In
the second case, a module will be able to use the PKI
infrastructure in order to negotiate a shared key in order
to encrypt the date according to a symmetric cryptography
scheme (we remark that the symmetric encryption is more
performing than an asymmetric one from a computational
point of view). Figure 6 and Figure 7 show the activity
diagrams of the inter-module communication respectively



107

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in plain text and with authentication/encryption. The basic
difference from the two activity diagrams consists in an
encoding task before the message sending and in a decoding
task after the reception of the message.

Figure 6. Inter-module communication without security.

Figure 7. Inter-module communication with security.

In order to guarantee data confidentiality, integrity, and
non repudiation in the XMPP-based communication system
of a federation-enabled Cloud Architecture, four basic ex-
tensions are required in the XMPP messages:

• Signed. It allows to attach to the message body a digest
signed with the private key of the sender component.
The signed extension is identified by the XML name
space jabber:x:signed (<x xmlns=’jabber:x:signed’>)
known by all the components. When the message
arrives to the receiver component, it detects the signed
extension and it queries the LDAP publisher server if

an X509 certificate exists for the sender. If it exists,
the receiver validates the sign and verifies the message
digest according to a shared algorithm.

• Encrypted. It allows to attach to the message body a
content encrypted with the public key of the receiver
component. When a component wants to send an en-
crypted message, it requests to the LDAP publisher
server the X509 certificate of the receiver component.
Thus using the public key of the receiver, the sender
encrypts the message and it includes the encryption
extension identified by the “jabber:x:encrypted” name
space (<x xmlns=’jabber:x:encrypted’>). When the
message arrives to destination, the receiver component
decrypts it with its private key. This process is schema-
tized in Figure 5.

• Session Key. It allows to attach the message a session
key. It is used to support an hybrid encryption scheme:
the unique share key or the session key is used to en-
crypt/decrypt the messages by both sender and receiver
according to a symmetric encryption scheme (already
used in the SSL/TLS protocol), but the session key
is exchanged between the two parties according to a
public key or asymmetric schema. The advantages of
such a hybrid cryptographic scheme is twofold: session
key secrecy and faster processing during the encryption
of the message.

• Timestamp. It allows to attach to the message a signed
timestamp, in order to make the message oriented
Cloud system normative compliant.

B. A Solution for SSO Authentication
in Inter-Domain Federation

In a scalable scenario of federation, each Cloud can
require to frequently establish/break partnerships with other
Clouds. This implies that each Cloud should manage a huge
number of credentials in order to authenticate itself in other
Clouds. In a federated environment, this means that the
XMPP server of the Cloud requiring federation has to be
authenticated by the XMPP server of the Cloud accepting
the federation request. If we consider thousand of Clouds,
each Cloud should manage one credential for accessing to
each federated Cloud. This is problem is commonly known
as Single-Sign-One (SSO), i.e., considering an inter-domain
environment, performing the authentication once, gaining
the access to the resources supplied by different Service
Provider, each one belonging to a specific domain. A model
addressing the SSO problem is the Identity Provider/Service
Provider Model (IdP/SP). Typically, a client who wants to
access to the resources provided by a SP performs the au-
thentication once on the IdP (asserting party), which asserts
to the SP (relaying party) the validity of the authentication of
the client. Considering many SPs relaying on the IdP if the
client wants to access another SP, as this latter will be trusted
with the IdP, no further authentication will be required. This



108

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model is widely known on the Web with the term “Web
Browser SSO”, in which the client is commonly an user
who perform an authentication fill in an HTML form with
his user name and password. Nowadays, the major standard
implementing defining the IdP/SP model is the Security
Assertion Markup Language (SAML) [20], developed by
OASIS.

The scenario of federation is quite similar. In this case,
the client who wants to perform the authentication is the
XMPP server of the Cloud requiring federation, instead the
role of the SP is played by the XMPP server of the Cloud ac-
cepting the federation request. As the XMPP server support
authentication through SASL a concern raises: the RFC 4422
does not support any security mechanism implementing
the IdP/SP model. Therefore, in order to achieve such a
scenario, we followed the Internet-Draft entitled “A SASL
Mechanism for SAML”, defined by CISCO TF-Mobility
Vienna, describing the applicability and integration between
the two protocols for non-HTTP use cases. According to
such a draft, the authentication should occur as follows:

1) The server MAY advertise the SAML20 capability.
2) The client initiates a SASL authentication with

SAML20
3) The server sends the client one of two responses:

a) a redirect to an IdP discovery service; or
b) a redirect to the IdP with a complete authentication

request.
4) In either case, the client MUST send an empty re-

sponse.
5) The SASL client hands the redirect to either a browser

or an appropriate handler (either external or internal
to the client),and the SAML authentication proceeds
externally and opaquely from the SASL process.

6) The SASL Server indicates success or failure, along
with an optional list of attributes

In this way, thanks to SASL and SAML, for each Cloud
it is possible to perform the authentication once gaining the
access to all the other Clouds relying on the IdP, thence,
lending and/or borrowing HMs according to agreements.

In a Cloud Federated scenario, in which the communica-
tion system of each involved Cloud is based on the XMPP,
the most convenient and easy way for the establishment of a
federation is the employment of the federation features made
available by the XMPP protocol itself. This latter assumes
a XMPP server can be configured for accepting external
connections from other servers for creating server-to-server
interactions (server federation).

According to the XMPP specifications, this mechanism is
quite easy to implement and the result will be the ability for
two XMPP servers in different domains to exchange XML
stanzas. There are different levels of federation:

• Permissive Federation, a server accepts a connection
from any other peer on the network, even without ver-

ifying the identity of the peer based on DNS lookups.
• Verified Federation, a server accepts a connection from

a peer only after the identity of the peer has been
weakly verified via Server Dialback, based on infor-
mation obtained via the Domain Name System (DNS)
and verification keys exchanged in-band over XMPP.

• Encrypted Federation, a server accepts a connection
from a peer only if the peer supports Transport Layer
Security (TLS) and the client authenticates itself using
a SASL mechanisms.

On one hand, Permissive and Verified Federation are the
simplest federation approaches: as discussed in the previous
section, they lack some security aspects since they are not
based on any password exchange procedure and, in order
to implement domain filtering (in the second case), a list of
allowed sites has to be compiled preemptively. On the other
hand, the Encrypted Federation level relies on a more secure
way to perform the authentication, based on challenge-
response authentication protocols relaying on passphrase.

This standard authentication mechanisms are enough
when you want to enable the communication among a lim-
ited endpoint number but, in a scenario where several XMPP
servers might exist, it could be a difficult task to statically
pre-configure the binding among all the involved entities and
manage credentials for authenticating a given server to each
other. Our idea aims to address these issues and propose the
integration of a new SASL security mechanism for allowing
a more scalable management of the authentication process
exploiting the well-known concept of SSO. The integration
we are talking about refers to the use of SAML 2.0.

In order to discuss how to achieve the above mentioned
scenario, we two hypothetical Cloud providers each one
relying on its own Ejabberd XMPP server [21] to allow
communication within its domain. Generally, the server-to-
server federation is accomplished by an Ejabberd module
that manages incoming and out-coming connections from/to
external servers. According to the XMPP core specification,
this module is able to establish server federation according
to the three different levels pointed out above. In order to
enable Ejabberd servers to perform SSO authentication it
is required to consider the Encrypted Federation case and
extending the Ejabberd module performing SASL to add in
the list of the supported security mechanism also SAML 2.0.

A possible way for the achievement of this environment is
the implementation of the Internet-Draft entitled “A SASL
Mechanism for SAML” defined by CISCO TF-Mobility
Vienna relying on an external software module based on
Shibboleth, we named Authentication Agent (AA). The AA
acts as user when it is contacted from the Source Ejabberd
Server for starting the Federation, whereas represents the
Relying Party when it is contacted from the Destination
Ejabberd Server.

In the following, we present the sequence of steps per-
formed by two servers (for simplicity Source Server and



109

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Step performed by two XMPP servers aiming to build Federation: the authentication process is executed using SAML 2.0 as external SASL
mechanism.

Destination Server) that aim to build the federation. As
Figure 8 depicts, the involved actors in the process are
the s2s Manager(s) of both the Ejabberd servers, the two
authentication agents acting as User and Relying Party (User,
the one interacting with the Source Server; Relying Party the
one interacting with the Destination Server) and the Identity
Provider (also implemented using Shibboleth).

• Step 1: s2s Manager of Source Server initiates stream
to the s2s Manager of the Destination server.

• Step 2: s2s Manager of the Destination Server responds
with a stream tag sent to the s2s Manager of the Source
Server.

• Step 3: s2s Manager of the Destination Server informs
the s2s Manager of the Source Server of available
authentication mechanisms.

• Step 4: s2s Manager of the Source Server selects
SAML as an authentication mechanism.

• Step 5: s2s Manager of Destination Server sends a
BASE64 encoded challenge to the s2s Manager of the
Source Server in the form of an HTTP Redirect to the
Destination AA (acting as Relying Party).

• Step 6: a) s2s Manager of Source Server sends a
BASE64 encoded empty response to the challenge and
b) forward to the Source AA the URL of the Relying
Party.

• Step 7: The Source AA (User) engages the SAML
authentication flow (external to SASL) contacting the

Destination AA (Relying Party).
• Step 8: Destination AA redirect Source AA to the IdP.
• Step 9: Source AA contacts IdP and performs Authen-

tication
• Step 10: IdP responds with Authentication Assertion
• Step 11: Source AA contacts Destination AA for gain-

ing access to the resource.
• Step 12: Destination AA contacts the s2s Manager of

the Destination Server informing it about the authenti-
cation result.

• Step 13: if the authentication is successful the
s2s Manager of the Source Server initiates a new
stream to the s2s Manager of Destination Server.

The advantage of performing the authentication among
servers in such a way mainly consists in the higher se-
curity level achieved than the traditional Dialback/SASL
mechanisms and in the possibility of exploiting the SSO
authentication. Looking at Figure 8, after that the federation
has been achieved with the depicted server, if the same
Source Cloud aims to perform server-to-server federation
with a new XMPP server that relies on the same IdP as
trusted third-party, such a process would be straightforward.
Since the Source Server already has an established security
context with the IdP, once the SASL process starts and the
SAML mechanism is selected, no further authentication will
be required.



110

International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION

Currently, the major Cloud solutions base their com-
munication systems on HTTP-based web services that do
not well suit the requirements of the new emerging Cloud
architectures and services. The XMPP presents several ad-
vantages for designing the communication system of a
federation-enabled Cloud architecture. On one hand, the
XMPP well suits the requirement of interactivity, but on
the other hand it lacks of native security features. Both the
inter-module communication and the inter-domain federation
require appropriate security mechanisms. In this paper, we
discussed two possible solutions to achieve such goals.
Regarding the inter-module communication, we discussed
how to extend the XMPP for enabling secure message
exchange according to the XEP-0027 specification, whereas,
considering the inter-domain federation, we proposed an
approach based on SSO authentication for server to server
federation according to the Internet-Draft entitled “A SASL
Mechanism for SAML”, defined by CISCO TF-Mobility
Vienna. We hope, we contributed to alleviate the gap in
security for the adoption of the XMPP in federation-enabled
Cloud architectures.

REFERENCES

[1] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Federation
between clever clouds through sasl/shibboleth authentication,”
in INTERNET 2012, The Fourth International Conference on
Evolving Internet, pp. 77–84, 2012.

[2] A. Celesti, M. Fazio, and M. Villari, “Se clever: A secure
message oriented middleware for cloud federation,” in IEEE
Symposium on Computers and Communications (ISCC), July
2013.

[3] National Institute of Science and Technology. Standards
Acceleration to Jumpstart Adoption of Cloud Computing;
http://csrc.nist.gov/groups/SNS/cloud-computing/ July 2011.

[4] P. Saint-Andre, “Xmpp: lessons learned from ten years of xml
messaging,” Communications Magazine, IEEE, vol. 47, no. 4,
pp. 92–96, 2009.

[5] W. Liu, “Research on cloud computing security problem
and strategy,” in Consumer Electronics, Communications and
Networks (CECNet), 2012 2nd International Conference on,
pp. 1216 –1219, April 2012.

[6] A. Behl and K. Behl, “Security paradigms for cloud comput-
ing,” in Computational Intelligence, Communication Systems
and Networks (CICSyN), 2012 Fourth International Confer-
ence on, pp. 200–205, July 2013.

[7] A. Celesti, N. Peditto, F. Verboso, M. Villari, and A. Pu-
liafito, “Draco paas: A distributed resilient adaptable cloud
oriented platform,” in IEEE 27th International Parallel and
Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), pp. 1490–1497, 2013.

[8] M. Kretzschmar, M. Golling, and S. Hanigk, “Security
management areas in the inter-cloud,” in Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pp. 762
–763, July 2011.

[9] M. Kretzschmar and S. Hanigk, “Security management inter-
operability challenges for collaborative clouds,” in Systems
and Virtualization Management (SVM), 2010 4th Interna-
tional DMTF Academic Alliance Workshop on, pp. 43 –49,
oct. 2010.

[10] I. Gul, A. ur Rehman, and M. Islam, “Cloud computing se-
curity auditing,” in Next Generation Information Technology
(ICNIT), 2011 The 2nd International Conference on, pp. 143–
148, June.

[11] M. Almorsy, J. Grundy, and A. Ibrahim, “Collaboration-based
cloud computing security management framework,” in Cloud
Computing (CLOUD), 2011 IEEE International Conference
on, pp. 364 –371, July 2011.

[12] Z. Lian-chi and X. Chun-di, “Cloud security service providing
schemes based on mobile internet framework,” in Computer
Science and Electronics Engineering (ICCSEE), 2012 Inter-
national Conference on, vol. 3, pp. 307 –311, March 2012.

[13] A. Behl, “Emerging security challenges in cloud computing:
An insight to cloud security challenges and their mitigation,”
in Information and Communication Technologies (WICT),
2011 World Congress on, pp. 217–222, December 2011.

[14] A. Celesti, F. Tusa, M. Villari, and A. Puliafito., “Integration
of CLEVER Clouds with Third Party Software Systems
Through a REST Web Service Interface,” in 17th IEEE
Symposium on Computers and Communication (ISCC’12), 1-
4 July 2012.

[15] Cloud Security Alliance, Security Guidance for
Critical Areas of Focus in Cloud Computing v3.0,
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf,
2011.

[16] RFC 4422, Simple Authentication and Security Layer
(SASL), http://www.ietf.org/rfc/rfc4422, Jun 2013.

[17] XEP-0220: Server Dialback, http://xmpp.org/extensions/xep-
0220.html, Jun 2013.

[18] XEP-0027: Current Jabber OpenPGP Usage,
http://xmpp.org/extensions/xep-0027.html, 2006.

[19] OpenPGP Message Format,
http://www.rfc-editor.org/info/rfc4880, 2007.

[20] SAML V2.0 Technical Overview, OASIS,
http://www.oasis-open.org/specs/index.php#saml, Jun 2013.

[21] Ejabberd, the Erlang Jabber/XMPP daemon:
http://www.ejabberd.im/, Jun 2013.


