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Abstract—Designing a dependable system successfully is a
challenging issue that is an ongoing research subject in the
literature. Different approaches have been adopted to analyse
and verify the dependability of a system design. This process is
far from obvious and often hampered due to the limitations of
the classical dependability analysis and verification approaches.
This paper provides an overview of model-based dependability
analysis, design and verification approaches. Firstly, model-
based analysis approaches are grouped by the limitations of
the classical approaches. Secondly, design approaches have
been classified looking at their underlying recovery strategies:
hardware replication and hardware reuse. Then, the ins and
outs of model-based verification approaches are identified
starting from fault injection approaches towards their evolution
into model-based integrative approaches. Finally, a model-
based hybrid design process is presented making use of the
reviewed analysis, design and verification approaches.
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ACRONYMS AND ABBREVIATIONS

AADL Architecture Analysis and Design
Language

BDMP Boolean logic Driven Markov Process

CFP Compositional Failure Propagation

CFT Component Fault Tree

(D)FTA (Dynamic) Fault Tree Analysis

(D)RBD (Dynamic) Reliability Block Diagram

(D(S))PN (Deterministic and (Stochastic)) Petri Nets

(D)(C)TMC (Discrete)(Continuous) Time Markov
Chain

DOE Design of Experiments

FI Fault Injection

(FM)E(C)A (Failure Mode) and Effect (Criticality)
Analysis

FPT(C)(N) Failure Propagation and Transformation
(Calculus)(Notation)

HiP-HOPS Hierarchically Performed Hazard Origin
and Propagation Studies

IMA Integrated Modular Avionics

MC Model Checking

MCS Monte Carlo Simulations

SEFT State-Event Fault Trees

I. INTRODUCTION

Designing a dependable system presents many challenges
throughout the development phase - from system specifi-
cation to system validation and verification. This process
is further complicated owing to the increasing complex-
ity of the current systems, which use many and differ-
ent components. Model-based design approaches provide
mechanisms to manage this complexity effectively. However,
these approaches together with dependability analysis and
verification approaches, add some limitations to the system
design process. Hence, those who are not familiar with the
field of model-based design of dependable systems will find
it useful to have a list of sources characterized by their
limitations and evolutions. Our goal is not to exhaustively
evaluate the specific features of these approaches, neither to
give means to study these techniques in great detail. Instead,
we are aimed at aggregating a comprehensive list of works
grouped by their main characteristics.

We have completed our previous work [1] providing the
reader a guided collection of sources to indicate where to
learn about the model-based design of dependable systems.
Namely, we have extended previous concepts and character-
ized three additional aspects: (1) tool-support of the analysis
and verification approaches, (2) classification of dependable
design approaches with respect to their recovery strategies,
and (3) evolution of model-based fault injection approaches.

In computing systems, dependability is defined as “ability
of a system to deliver a service that can be justifiably trusted”
[2]. Such trustworthiness is based on the assurance of
dependability requirements. These requirements are defined
through dependability attributes: Reliability, Availability,
Maintainability, Safety (RAMS), confidentiality and integrity.
The scope of this overview focuses on RAMS attributes.
Consequently, security aspects (confidentiality and integrity)
are not addressed.

Reliability is the ability of an item to perform a re-
quired function under given conditions for a stated period
of time. It is usually characterized through Mean Time
To Failure (MTTF) [3]. Maintainability is the ability to
undergo repairs and modifications to restore to a state in
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which the system can perform its required actions and it is
commonly characterized by Mean Time To Restore (MTTR).
Availability is the readiness for correct service defined by the
ratio between MTTF and MTTF plus MTTR. Safety is the
absence of catastrophic consequences on the user(s) and the
environment. These four attributes are closely interrelated in
such a way that if an attribute fails to meet the requirements,
systems dependability is seriously threatened.

This survey concentrates on three main phases: depend-
ability analysis, system design and verification. Despite
being aware of the relevance of software code for system
dependability in each of these phases, we will consider soft-
ware code as a black box component to limit the extension
of this paper (interested readers can refer to [4] [5] as an
example).

Dependability analysis techniques can be organised by
looking at how different system failures are characterized
with its corresponding underlying formalisms. On one hand,
event-based approaches reflect the system functionality and
failure behaviour through combination of events. This anal-
ysis results in either Fault Tree (FT) like [6] or Failure
Mode and Effect Analysis (FMEA) like [7] structures, which
emphasizes the reliability and safety attributes. On the
other hand, state-based approaches map the analysis models
into a state-based formalisms (e.g., Stochastic Petri Nets
(SPN) [8]). Those approaches analyse system changes with
respect to time and concentrate on reliability and availability
attributes.

Concerning the design of dependable systems, there exist
alternative recovery strategies that add redundancies to the
system design in order to avoid single points of failure
and thus, provide fault tolerance. Traditionally, hardware
replication have been viewed as a feasible solution to recover
from failures. However, there is also another design strategy
which compensates for component failures through the reuse
of hardware components. We will address these design
strategies and their influence on dependability and cost.

Fault Injection (FI) and Model-Checking (MC) [9] ap-
proaches have been widely adopted for the verification of
design decisions. Since these approaches enable to learn
about the system behaviour in the presence of faults and
verify its correctness relying on a fully automated model-
based approach, we concentrate on model-based FI ap-
proaches. They evaluate the dependability requirements us-
ing functional and failure behaviour models. Moreover, we
also cover the recent evolution of these approaches towards
the integration multiple approaches using a single reference
model, i.e., model-based integrative verification approaches.
We are conscious that there are other verification approaches,
e.g., correct by construction paradigm aimed at ensuring the
validity of the system by design [10] (i.e., formal verifica-
tion). Nonetheless, we have decided to limit the overview
to model-based analysis and verification approaches due to
their potential to integrate in the system design process

seamlessly.
The remainder of this paper is organized as follows: Sec-

tion II classifies dependability analysis techniques based on
the limitations of classical dependability analysis techniques.
Section III groups dependable design approaches character-
ized by the replication and reuse of hardware components.
Section IV discusses the characteristics of the verification
approaches when designing a dependable system. Section
V outlines a model-based hybrid design process based on
the reviewed analysis, design and verification approaches.
Finally, Section VI draws conclusions remarking different
challenges for the model-based design of dependable sys-
tems.

II. REVIEW AND CLASSIFICATION OF MODEL-BASED
DEPENDABILITY ANALYSIS TECHNIQUES

Event-based approaches analyse the failure behaviour of
the system by investigating the logic succession of faults.
They identify an event sequence leading to equipment or
function failure. Differences are mainly based on represen-
tation and analysis structures. Two of the most widely used
techniques are: FT Analysis (FTA) [6] and FMEA [7].

• FTA is a top-down deductive analysis technique aimed
at finding all the ways in which a failure can occur.
Starting from an undesirable system-level failure (i.e.,
top-event), its immediate causes to occur are identified
until reaching the lowest component-level (i.e., basic-
event). The top-event is broken down into intermediate
and basic-events linked with logic gates organised in
a tree-like structure. The resulting FT, is a qualitative
model in the form of combinations of events which
are necessary to the top-event to occur. This model
can be quantified by ascribing probabilities to the basic
events and combining them to evaluate the probability
of the top-event. Moreover, importance measurements
can be carried out to quantify the contribution of the
basic-event occurrences to the top-event failure. There
exist different importance measurement methods, e.g.,
Fussell-Vessely, Birnbaum [6].

• FMEA is a bottom-up inductive analysis technique.
Starting from the different ways that a system can
fail (i.e., known Failure Modes (FM)), it evaluates
the effects that these failures can have on a process.
Its main objective is an early identification of critical
failure possibilities within the system design. Results
are organized in a table identifying at least component’s
failure modes, effects, safeguards and actions. FMEA
is characterised for being a qualitative technique for
design analysis, while quantification of failure modes
is carried out by Failure Mode and Effect Criticality
Analysis (FMECA). The criticality analysis ranks crit-
ical failure mode effects by taking into account their
occurrence probability.
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Both techniques focus on the identification of events
that jeopardize the system design objectives. However, their
initial assumptions as well as their logical orientation are
different: while FTA moves from known effects towards un-
known causes in a deductive manner, FMEA progresses from
known causes towards unknown effects inductively. They are
not orthogonal techniques, indeed they are complementary
and in some cases they overlap [11]. The extended usage of
these approaches for dependability related tasks have lead
to the identification of the main limitations. Subsequently,
there has been a long list of works aimed at overcoming
them:

• L1: FMEA and FTA are static representations of the
system, neither time information nor sequence depen-
dencies are taken into account [12].

• L2: Orientation of FTA and FMEA concentrate on
the analysis of failure chain information. Consequently,
their hierarchy reflects failure influences without con-
sidering system functional architecture (design) infor-
mation [13].

• L3: FMEA and FTA depend on the analyst’s skill to
reflect the aspects of interest. Failure modes and un-
desired events must be foreseen, resulting in a process
highly dependent on analyst’s knowledge of the system
[14].

• L4: Manageability and legibility of FTA and FMEA
models is hampered when analysing complex systems.
Model size, lack of resources to handle interrelated
failures and repeated events, in conjunction with few
reusability means, are its main impediments [13] [15].

L1 refers to the capability of the technique to handle
temporal notions. This is of paramount importance when
analysing fault tolerant systems. L2 emphasizes the interdis-
ciplinary work between dependability analysis and architec-
tural design. Joining both procedures helps obtaining a de-
sign, which meets dependability requirements consistently.
L3 entails a trade-off solution between the time consuming
analysis resulted from understanding the failure behaviour
of the system and the acquired experience. A substantial
body of works have been oriented towards the automatic
generation of analysis models from design models (refer
to groups 3, 5 in Table IV) addressing limitations L2 and
L3. These approaches promote the reuse of design models
showing the effects of design changes in the analysis results.
However, note that the correctness of the analysis lies in the
accuracy of the failure annotations. Finally, L4 underlines
the capability of the model to handle the component-wise
nature of embedded systems. This permits obtaining a model
that better adheres to the real problem and avoids confusing
results.

Many authors have developed new alternatives or ex-
tended existing ones. Three groups are identified in order to
gather the approaches and limitations strategically. Firstly,

L1 is addressed in the Subsection Dynamic Solutions for
Static-Logic Approaches. Secondly, L2 and L4 are covered
in the Subsection Compositional Failure Propagation Anal-
ysis Approaches. Finally, specifically focusing on L3 and
generally addressing the remainder of limitations Model-
Based Transformational Approaches are studied. Note that
some approaches cannot be limited to a specific group, hence
they are classified accordingly to its main contribution.

A. Dynamic Solutions for Static-Logic Approaches

The limitation concerning the lack of time information
has been addressed by several authors to deal with system
dynamics such as redundancy or repair strategies.

Dugan et al. [12] paved the way to cope with configuration
changing analysis using FTs by defining Dynamic Fault Tree
(DFT) methodology. New gates were introduced accounting
for event ordered situations like common cause failures and
redundancy strategies. In [16], temporal notions and FT
models were integrated in order to handle the probabilistic
timed behaviour of the system. The model reflects how
modular FT models are switched through discrete points in
time taking into account time dependant basic events.

Other alternatives to analyse DFT models are based on
Monte Carlo Simulations (MCS) by specifying temporal
failure and repair behaviours of components through state-
time diagrams [17]. In [18], MatCarloRe approach is pre-
sented based on Simulink [19] for DFT modelling and
reliability analysis. The technique integrates MCS and FTA
methodologies resulting in a intuitive model-based simulat-
ing environment.

Following the way of DFTs, an approach emerged based
on Reliability Block Diagrams (RBD) [3]. RBD is focused
on the analysis of the success of the system, instead of the
failure analysis orientation of FTs. Dynamic RBDs (DRBDs)
[20] model failures and repairs of components based on their
dependencies using state machines. To analyse these models,
an algorithm which converts DRBDs into Coloured Petri
Nets was presented in [21]. However, an integrated mod-
elling and analysis toolset for DRBDs is lacking. Signoret
et al. in [22] presented an approach called RBD driven Petri
nets (RdP) which uses RBDs as an interface to build large
Petri nets systematically. The modular characterization of
Petri nets enables the intuitive creation of RdP models from
predefined module libraries. Aligned with these formalisms,
the OpenSESAME modelling environment connects RBDs
and state-based formalisms [23]. It enables an straightfor-
ward evaluation of highly available system’s fault tolerant
behaviour including system dynamics. Its input models are
based on RBDs and failure dependency diagrams, while
component and repair tables are used to indicate component-
specific characteristics (MTTF, MTTR) and repair groups.
To carry out system analyses, these models are transformed
into state-based SPN and Stochastic Process Algebra (SPA)
models.
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Lopatkin et al. [24] utilise FMEA models for system
formal specifications. The approach defines generic pat-
terns establishing direct correspondence between FMEA and
state-based Event-B [25] formalism. The characterization
of error detection and recovery patterns lead to analysing
and verifying whether safety properties are preserved in the
presence of faults. The use of these patterns, allows tracing
from static FMEA considerations towards system dynamics.

Progression in the conjoint use of event and state for-
malisms is reflected with Boolean logic Driven Markov
Processes (BDMP) [26]. BDMP employs static FT as a
structure function of the system and associates Markov
processes to each leaf of the tree. Similarly, State-Event
Fault Tree (SEFT) [27] formalism combines elements from
FT with both statecharts [28] and Markov chains, increasing
the expressiveness of the model. SEFT deals with functional
and failure behaviour, accounts for repeated states and events
and allows straightforward transformations of SEFT models
into Deterministic and Stochastic Petri Net (DSPN) models
for state-based analysis.

In [29], Steiner et al. described a process to create and
analyse SEFTs based on the ESSaRel tool [30]. Subse-
quently, the SEFT models are exported and analysed by
means of a DSPN analyser tool called TimeNET [31].
The model described in Figure 1, shows some of the
SEFT’s strengths and characteristics in a simple behaviour
model: (1) combination of statecharts with Markov chains
by means of states (S) and events (E); (2) compositional
characterization of system functionalities connected through
required inports and provided outports (event out vel ok,
event out vel high), which enables linking components in
a FT-like structure while managing system’s complexity;
(3) characterization of functional and failure behaviour of
the system, i.e., functional state (out vel ok), failure state
(out vel high), and transition events between these states
(no obstacle detected and sensors working); and (4) under-
lying transformable logic to analyse with a target state-based
formalism.

Figure 1. SEFT model example [29].

Likewise, El Ariss et al. in [32] presented an approach
called Integrated Functional and Safety Specification (IFSS)
model, in which they provide a systematic transformation
from FT models into statecharts accounting for the temporal
behaviour of faults. As a result of this integration process,
they eliminate inconsistencies when using functional and
non-functional models and account for the order of failure
occurrences.

Table I displays among the addressed approaches those
which has tool support for the specification and analysis of
the dynamic behaviour of systems.

Table I
TOOL-SUPPORT OF THE DYNAMIC APPROACHES

Approach -
Work Tool Support Type of

Tool
Latest

Release

DFT e.g., Galileo [33] Commercial,
Educational 2003

Rao et al.
[17] DRSIM tool Internal 2009

MatCarloRe RAATSS [34]
Academic
evaluation

copy
2012

RdP BStoK [35] Comercial 2011

OpenSESAME OpenSESAME [36] Available 2009

Lopatkin et
al. [24] Rodin Plugin [25] Available 2012

BDMP KB3 Workbench [37] Available 2012

SEFT ESSaRel extension &
transformation [29] Internal* 2013

* Available for research purposes under agreement

DFT is a well-known mature approach for the evalua-
tion of the system’s dynamics. It has been adopted with
different tools over the last years (e.g., Galileo [33]). In
contrast, approaches such as IFSS, DRBD or SEFTs do
not have a integrated tool support. The compositional and
transformational features of the SEFT approach, provide an
adequate abstraction of the system structure and behaviour.
Developing a model-based tool which extracts DSPN models
from SEFT models automatically would create an adequate
environment for building a sound approach for manageable
and consistent dependability analyses.

B. Compositional Failure Propagation Analysis Approaches

The common factors for Compositional Failure Propaga-
tion (CFP) approaches are: the characterization of the system
architectures by design components; the annotation of the
failure behaviour of each of them and the system failure
analysis based on inter-components influences. Conceptu-
ally they all are very similar: the main objective of CFP
approaches is to avoid unexpected consequences resulting
from the failure generation, propagation and transformation
of components.

Generally, CFP approaches characterise the system as
component-wise developed FT-like models linked with a
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causality chain. System architectural specifications and sub-
sequent dependability analyses of CFP approaches rely on
a hierarchical system model. This model comprises com-
ponents composed from subcomponents specifying system
structure and/or behaviour. CFP approaches analyse the
system failure behaviour through characterizations of indi-
vidual components, which lead to achieving a manageable
failure analysis procedure. Failure Propagation and Trans-
formation Notation (FPTN) [38], Hierarchically Performed
Hazard Origin and Propagation Studies (HiP-HOPS) [39]
and Component Fault Tree (CFT) [13] are the principal
CFP approaches. Their main difference is in the failure
annotations of components, which specify incoming, out-
going and internal failures to each component. In order to
annotate the logical combinations of these failures, FPTN
uses logical equations, HiP-HOPS makes annotations using
Interface Focused FMEA (IF-FMEA) tables and CFT as-
sociates to each component individual FTs. Subsequently,
the connections between system components determines the
failure flow of the system, linking related failure annotations
of each component.

Concerning the different contributions of CFP approaches,
FPTN first addressed the integration of system-level deduc-
tive FTA (from known effects to unknown causes) with
component-level inductive FMEA (from known causes to
unknown effects). HiP-HOPS integrates design and depend-
ability analysis concepts within a hierarchical system model.
However, instead of exclusively linking functional compo-
nents with their failure propagations like in FPTN, first the
hierarchical system model is specified and then, composi-
tional failure annotations are added to each component by
means of IF-FMEA annotations. These annotations describe
the failure propagation behaviour of the component in terms
of outgoing failures specified as logical combinations of
incoming and internal failures (cf. Figure 2).

From the IF-FMEA annotations shown in Figure 2, the
outgoing failures at the port out 1 will be specified as fol-
lows: omission-out 1 = omission-in 1 AND omission-in 2
OR Stuck at 0. Once characterized all the outgoing failures of
all the ports, a FT synthesis algorithm analyses the propaga-
tion of failures between connected components. Traversing
the hierarchical system model, while parsing systematically
the IF-FMEA annotations of its constituent components,
allows the extraction of the system FT and FMEA models.

CFTs are a model-based extension of FTA models. The
component FTs can be combined and reused to systemati-
cally obtain the FT for any failure without having to create
and annotate a FT for each failure. In order to integrate
analysis and design concepts, it has been extended in [40]
resulting in the Safe Component Model (SCM) approach.
The approach separates components’ functional/failure spec-
ification and realization views and through the integration
of the failure propagation and hierarchical abstraction, SCM
allows obtaining a hierarchical component based abstraction

in_1
in_2 out_1

Output
 FM

Description
Input Deviation

Logic
Component 
Malfunction

λ 
(f/h)

omission-
out_1

no output
at out_1

omission in_1 
AND

omission in_2
Stuck at 0 3.10-8

... ... ... ... ...

Component-wise
IF-FMEA 

Annotations

System Design

Subcomponents

Components

IF-FMEA Table

Figure 2. Hierarchical structure and CFP annotations in HiP-HOPS.

of CFTs.
They all have been extended to cope with occurrences of

temporal events. Temporal extensions for FPTN [41] and
HiP-HOPS [42] have been influenced by the DFT method-
ology. They concentrate on the analysis of non-repairable
systems examining the order of events so as to identify
specific sequence of events leading to failures. Integration
of CFT concepts with state-based techniques resulted in the
SEFT formalism, which is able to handle availability and
maintainability properties of repairable systems.

Transformation of CFP approaches into dependability
analysis formalisms is an ongoing research subject (see Sub-
section II-C). HiP-HOPS extracts FTA and FMEA models
thanks to its underlying logic and SEFT applies translation
schemes to generate DSPN models.

Other interesting extensions include mechanisms to au-
tomate and reuse analysis concepts. Failure Propagation
and Transformation Calculus (FPTC) [43] approach adds
the characterization of the nominal behaviour to FPTN
models and generalizes the FPTN equations to improve
the manageability and analysability. Moreover, an algorithm
is implemented to handle the general inability of CFP
approaches to cope with cyclic dependencies of feedback
structures. In [44], general failure logic annotation patterns
were defined for HiP-HOPS. Similarly, the CFP approach
presented in [45] by Priesterjahn et al., emphasizes the reuse
of failure propagation properties specified at the port level
of components. These specifications centre on the physical
properties of different types of flows, which allow reusing
failure behaviour patterns for functional architectures.

Concerning the model-based generation of FMEA models,
in [46] Struss and Fraracci presented an approach to extract
FMEA models mechanically. To do so, they based on devia-
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tion models which describe formally the constraints of sys-
tem functionalities and it provides the necessary predictions
for extracting FMEA models. The approach implements
reuse mechanisms through the use of generic libraries and
it has been implemented in the Raz’r tool [47].

The evolution of CFP approaches focus on reusability,
automation and transformation properties. Since the anno-
tations of the components’ failure behaviour depend upon
designers experience, reusing failure annotations leads to
reducing the error proneness. Based on the fact that different
dependability analyses have to be performed when designing
a system, definition of a unique consistent model covering
all analyses would benefit these approaches. This is why
recent publications in this field centre on integrating existing
approaches (cf. Subsection II-C and Section IV).

Regarding the tool support of the CFP approaches (cf.
Table II) we can see that all approaches have been turned
into toolsets. Nonetheless, the CFP approaches are moving
one step further, integrating design languages in order to link
the design and analysis processes (cf. Subsection II-C).

Table II
TOOL-SUPPORT OF THE CFP APPROACHES

Approach -
Work Tool Support Type of

Tool
Latest

Release
FPTN SSAP Toolset [38] Unavailable 2006

HiP-HOPS HiP-HOPS Tool [39] Available 2012

CFT ESSaRel tool [30] Available 2009

SCM [40] ComposeR Internal 2012

FPTC Epsilon [48] Available 2009

Priesterjahn
et al. [45]

MechatronicUML,
Fujaba [49] Available 2012

Struss &
Fraracci [46] Raz’r Tool [47] Comercial 2012

C. Model-Based Transformational Approaches

The main aim of the transformational approaches
is to construct dependability analysis models
(semi-)automatically. The process starts from a
compositional design description using computer science
modelling techniques. The failure behaviour is specified
either by extending explicitly the design model or
developing a separate model, which is allocated to the
design model. Transformation rules and algorithms extract
dependability analysis models from it.

These approaches lead to adopting trade-off decisions be-
tween dependability design and analysis processes. On one
hand, the automation and reuse of analysis techniques in a
manageable way makes it a worthwhile approach for design
purposes. The impact of design changes on dependability
attributes are analysed systematically. On the other hand,
from purist’s point of view of classical analysis techniques,

the automation process removes the ability of these tech-
niques to identify and analyse hazards or malfunctions in a
comprehensive and structured way.

Architectural Description Languages (ADLs) provide an
adequate abstraction to overcome the limitations. Simulink
[19], AADL [50] and UML [51] have been used for both
architectural specification and failure behaviour specifica-
tion. UML is a widely used modelling language, which has
been extended for dependability analyses following Model
Driven Architecture (MDA) concepts [52]. Namely, profiles
allow extending and customizing modelling mechanisms to
the dependability domain [53].

Lately, a wide variety of independently developed exten-
sions and profiles have come up for dependability analysis
[54]. However, some generally applicable metamodel is
lacking. In an effort to provide a consistent profile CHESS
ML emerged [55]. CHESS ML provides all necessary mech-
anisms to model dependable systems and extract either
event-based (FMECA, FPTC) or state-based (SPN) analysis
models. Recently in [56], a model-driven failure logic anal-
ysis method called CHESS-FLA has been presented. This
approach is built upon Formalism for Incompletion, Incon-
sistency, Interference and Impermanence Failures’ Analysis
(FI4FA) approach [57] which is based on the concepts of
FPTC. FI4FA differs from FPTC in that it offers two addi-
tional features. Namely, it provides mechanisms to analyse
more types of failures than FPTC and it allows modelling
and analysing the mitigation behaviour. The CHESS-FLA
approach supports back-propagation of the results to ease
the readability of the analysis results.

CFP approaches have been shifted towards the transforma-
tional paradigm. The toolset for FPTC approach [43] relies
on a generic metamodel in order to support transformations
from SysML and AADL models. In [58], a metamodel is
developed so as to extract CFT models from functional
architecture models specified in UML. This process permits
the generation of reusable CFT models consistent with
the design model. In the same line, integration of HiP-
HOPS model with EAST-ADL2 automotive UML profile
is presented in [59]. Translations from high-level ADLs to
well established CFP analysis techniques, enable an early
dependability analysis and allow undertaking timely design
decisions.

Architecture Analysis and Design Language (AADL) cap-
tures the system architectural model in terms of components
and their interactions describing functional, mapping and
timing properties among others. The core language can be
extended to meet specific requirements with annex libraries.
Behaviour and error model annexes are provided with the
tool. The error annex links system architecture components
to their failure behaviour specification making possible the
analysis of the dependability attributes of the system. It has
been used for both state-based [60] and event-based [61]
analysis.



18

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AltaRica [62] is a dependability language, which enables
describing the behaviour of systems when faults occur. The
model is composed of several components linked together
representing an automaton of all possible behaviour scenar-
ios, including those cases when reconfigurations occur due
to the occurrence of a failure [63]. It is possible to process
such models by other tools for model-checking or generation
of FTs [64]. Transformations from AADL to AltaRica
are presented in [65], based on MDA concepts so as to
perform dependability analyses and avoid inconsistencies
while working with different formalisms.

Riedl and Siegle presented a language for the speci-
fication of reconfigurable and dependable systems called
LARES [66]. It expresses system’s fault tolerant behaviour
using a generic language in which any kind of discrete-
event stochastic system can be specified. It is based on
fully automated model transformations to measure systems
dependability. Namely, transformations into TimeNET [31]
and CASPA [67] tools are carried out in order to solve state-
based SPA and SPN models respectively.

In [68], Cressent et al. defined a method for RAMS
analysis centred on SysML [69] modelling language from
where a FMEA model is deduced. SysML diagrams define
a functional model connected to a dysfunctional database
enabling the identification of failure modes. This database
contains the link between system architecture and failure
behaviour giving the key for FMEA extraction. Further,
the methodology for dependability assessment is extended
using AltaRica, AADL and Simulink models. They address
reliability and timing analyses and simulation of the effects
of faults respectively.

Definition of a model for the extraction of all necessary
formalisms for dependability analysis is the common goal
for the aforementioned works. Interconnections between dif-
ferent formalisms in order to take advantage of the strengths
of each ADL, allow analysing dependability properties ac-
curately. AltaRica and AADL cover adequately the analysis
of reliability, availability and maintainability attributes. Ex-
traction of the main CFP approaches from ADLs should
help to analyse comprehensively system safety properties.
Moreover, Simulink model simulations allow evaluating the
effects of failure and repair events in the system. Thereby,
integrations between language specific models like in [68]
helps evaluating accurately all dependability aspects of a
system.

The acceptance of the transformational approaches de-
pends on the availability of toolsets capable of performing
(automatic) transformations. As it is shown in Table III,
all ADLs have their own implementation toolsets. Namely,
transformations from ADL models into CFP models have
been carried out through metamodels and profiles imple-
mented as plugins.

Table III
TOOL-SUPPORT OF THE TRANSFORMATIONAL APPROACHES

Approach -
Work Tool Support Type of

Tool
Latest

Release
Simulink Matlab [19] Comercial 2012

UML,
SysML

e.g., Eclipse Papyrus
[70] Available 2012

AltaRica e.g., AltaRica Tools
[71] Available 2013

AADL e.g., Osate [72] Available 2012

CHESS-ML CHESS Plugins [73] Partially
available 2012

FPTC Epsilon [48] Available 2009

Adler et al.
[58] CFT UML Profile Internal 2012

HiP-HOPS EAST-ADL2
Eclipse Plugin [74] Available 2010

LARES [66] LARES toolset Internal Ongoing

Cressent et
al. [68]

MéDISIS
Framework Internal Ongoing

D. Classification of Techniques

In order to classify the covered approaches, Table IV
groups them taking into account limitations specified in
Section II.

Table IV
SUMMARY OF LIMITATIONS OVERCOME BY APPROACHES

Group Approach Limitations
1 [12] [16] [17] [18] [23] [26] L1

2 [13] [38] [40] [43] [46] L2, L4

3 [39] [45] [56] [61] L2, L3, L4

4 [20] [22] [32] [41] [63] L1, L2, L4

5 [24] [27] [42] [55] [60] [66] [68] L1, L2, L3, L4

Approaches gathered within the group 5 contain all
necessary features in order to analyse dynamic systems
consistently and in a manageable way. Compositional failure
annotation, dynamic behaviour and automatic extraction of
analysis models are the key features addressed by these
approaches. Utilization of failure annotation patterns pro-
mote flexibility and reuse and consequently, reduce the error
proneness. Nevertheless, as noted in [75], characterization of
the failure behaviour of components depends on the com-
ponent context, which conditions compositional and reuse
properties. Moreover, automatic generation of the analysis
model does not completely alleviate the dependency on the
knowledge of the analyst. However, it lets managing and
specifying the failure behaviour in a clear and consistent
way.
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III. DESIGN OF DEPENDABLE SYSTEMS:
TRADE-OFF BETWEEN DEPENDABILITY AND COST

Generally, dependability design decisions and objectives
are related to trade-off decisions between system depend-
ability attributes and cost. Dependability requirements often
conflict with one another, e.g., safety-availability compro-
mise when a faults leads the system to a safe shutdown
in order to prevent it from propagating. The time at which
design decisions are taken determines the cost that the design
process can incur.

Designing a dependable system within considered require-
ments requires a process to match and tune combination of
architectural components so as to find an optimal solution
satisfying design constraints. There are other approaches
concentrated on the design of dependable systems under the
correct-by-construction paradigm. For instance, the approach
presented in [76] creates a formal system specification
preserving the correctness through gradual refinements of the
system design model. However, instead of addressing formal
correct-by-construction dependable design approaches, we
will overview those approaches which are aimed at charac-
terizing at design time the implications of design decisions
(combination of components) on dependability and cost.

More specifically, we group dependable design ap-
proaches by looking at how system recovery strategies are
implemented. Traditionally, hardware replication has been
viewed as a feasible solution to recover from failures, e.g.,
N modular redundancy. Nonetheless, there are other kinds of
recovery strategies which make the repair possible reusing
already existing hardware components. On one side, in
Subsection III-A we group those approaches that replicate
the nominal functionality by aggregating additional hard-
ware resources, i.e., homogeneous redundancies. On the
other side, in Subsection III-B we group those approaches
which are aimed at reusing hardware components to pro-
vide a compatible functionality and reduce hardware costs,
i.e., heterogeneous redundancies [77]. Finally, in Subsec-
tion III-C, we have summarized and characterized these
approaches with respect to our design criteria and identified
key design activities to progress in the use of heterogeneous
redundancies.

A. Design of Dependable Systems by Means of
Homogeneous Redundancies

The principal question addressed by the approaches
grouped in this subsection is the evaluation of the effect
of design choices (e.g., robustness level of components,
redundancy configurations) on dependability and cost.

Cauffriez et al. [78] and Clarhaut et al. [79] focused on de-
signing a dependable system based on a design methodology
presented in [80]. The main focus of this methodology relies
on the early and systematic characterization of dependability
criteria during the system design activities. As it is shown
in Figure 3, the approach comprehends three types of

architectures: functional architecture, equipment architecture
and operational architecture.

� State complexity: Size-related complexity often leads to
state-related complexity. The states, or modes, of a
system include operating, stand-bye or failure modes.
Detecting and identifying all the modes of an automated
system without ambiguity is difficult.
� Technological complexity: Systematic use of new tech-

nologies such as information/communication technolo-
gies (ICT), artificial intelligence, expert systems or
communication networks,y) can lead to failures,
mainly due to ignorance concerning about how these
technologies will interact in the system in a given
environment.
� Integration complexity: The use of generic components

or pre-existing systems when designing new systems or
improving existing systems can save time and money,
but can also lead to problems due to lack of interoper-
ability between subsystems or to the incompatibility of
replacement parts. In addition, reusing ‘‘on-shelf com-
ponents’’ in a new environment can modify the
characteristics of these components and, consequently,
the behavior of the system [7].
� Stochastic complexity: Stochastic complexity is inherent

to studies of the stochastic processes that characterize
the random behavior of a system over time.
� Structural complexity: The interactions between system

elements or functions are characterized by a variety of
structures, including series, parallel, mixed and/or
bridged structures.

This range of complexity often leads to uncertain
knowledge of system behavior, particularly in the case of
system disturbances, like random failures, for example.
Designing dependable systems is difficult precisely because
the various types of complexity must be taken into account
during system modeling.

3. Methodology for designing complex automated systems

Automated system design involves constructing three
distinct classes of architecture [8]:
The functional architecture of an automated system is

built according to the functional specifications (see Fig. 1,
activity A1) and represents the links and interactions
between the system’s diverse functions. The model of this
architecture is composed of the elementary functions that
are found when the main functions are decomposed (see
Fig. 1, activity A2).
The equipment architecture reflects the choices made

concerning the components, macro systems or commu-
nication devices that are incorporated into the system (see
Fig. 1, activity A3). These choices can be improved in order
to satisfy the dependability criteria (see Fig. 1, activity A5).
The operational architecture is established by projecting

the functional architecture onto the equipment architecture
(see Fig. 1, activity A4). The operational architecture must
be validated in terms of the objectives stated in the
functional specifications, such as dependability, perfor-
mance, and cost objectives (see Fig. 1, activity A6). If the
objectives are not accomplished, the feed-back loop
existing between activities A6 and A1 provides information
that can be used to improve system performances, for
example by modifying the model’s functions or by
facilitating decisions about making certain components
redundant or integrating other more reliable components.
Please note that, if the architecture includes equipment
with integrated functions, a partial specification has
already been done by the equipment designers.
All the system’s equipment is heterogeneous, and cannot

be supplied completely by a single source. Because the
equipment serves as host for part of the distributed
application, it must be configured, downloaded, and

ARTICLE IN PRESS

Fig. 1. Methodology for designing complex automated systems.

V. Benard et al. / Reliability Engineering and System Safety 93 (2008) 179–196180

Figure 3. Methodology for designing distributed control systems [80].

The design process starts from the characterization of
functional and equipment architectures addressing functional
and dependability criteria. Subsequently, the allocation of
the functional architecture onto the equipment architecture
is evaluated in relation to dependability. As a result, the
operational architecture is produced which could require
reconsidering functional and/or equipment decisions in order
to obtain a validated operational architecture with respect to
dependability requirements.

Cauffriez et al. in [78] concentrated on the analysis of
repairable architectures evaluating how the use of alternative
hardware components affects system functionality and de-
pendability. To do so, they characterized system-level func-
tions in a top-down manner until lowest level subfunctions
are reached. At the bottom layer, failure and repair rates of
hardware components permit analysing system top layer’s
performance, reliability and availability using Monte Carlo
simulations. In this way, a structural function is characterized
which links functions and hardware resources and allows
evaluating alternative operational modes by associating dif-
ferent subfunctions to perform the system-level function.
The overall design methodology for modelling and analysing
alternative architectural design choices has been integrated
within a design tool.

Clarhaut et al. described a design approach overcoming
the static-logic limitation of event-based analysis techniques
(cf. Subsection II-A) by identifying sequential component-
wise contributions to system-level failures [79]. During
the design process, a functional hierarchical tree model
characterizes dependencies between functions and hardware
resources. This model accounts for alternative resources and
hence, architectures to perform the modelled control func-
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tions. Subsequently, the Improved Multi-Fault Tree (IFT)
is constructed characterizing sequential failure relationships
between components’ failure modes (FM) and system func-
tions which lead to the system-level undesired effects des-
ignated as dreaded events.

As shown in Figure 4, the structure of the design method-
ology revolves around the characterization, analysis, and
optimization of system architectures so as to adopt optimal
design decisions regarding dependability and cost. The IFT
determines the dependability level of the overall architecture
weighting the contribution of each component to the system-
level dreaded events. Architectural design choices cover
active and passive redundancies. The cost associated with
each hardware component enables progressing between al-
ternative architectures toward an optimal architecture which
maximizes dependability and reduces hardware cost.

Equipment
Architecture

Functional
Model

Improved Multi
 Fault Tree

-Available Components
- Components Organization

- Dreaded Events, FMs
- Sequential Failure Relationships

Design Methodology
- Modelling
- Evaluation

- Optimization

- Functional Requirements
- Functional Alternatives

Set of Equipment
Architectures

- Dependability Level
- Cost

Figure 4. Clarhaut et al.’s design approach.

Adachi et al. in the work presented in [81], extended
the HiP-HOPS approach with recovery strategies in order
to design optimal architectures reducing cost and increasing
dependability. The recovery strategies are formally repre-
sented using patterns. These patterns characterize the po-
tential to detect, mitigate, and block affecting component
failures which are previously identified with HiP-HOPS and
analysed by means of FTA and FMEA. Finally, starting from
an abstract architecture, recovery strategies are introduced
without violating user constraints and an evolutionary opti-
mization algorithm allows converging through dependability
and cost requirements.

All the covered approaches aim at increasing system de-
pendability through the replication of nominal components.
This design decision implies a cost increase. Consequently,
this drawback needs to be justified through an exhaustive and
adequate analysis of how the system design meets functional
and dependability requirements.

B. Design of Dependable Systems by Means of
Heterogeneous Redundancies

One of the key properties of the systems which exercise
heterogeneous redundancies is the ability to successfully
accommodate changes in case of failure occurrences. Con-
sequently, the system design approaches that we will cover
in this subsection not only address dependability issues, but
also adaptation capabilities. Thus, we group them as adaptive
dependable design approaches.

Shelton and Koopman first worked on the
concept of heterogeneous redundancies by means of
functional alternative strategies. It allows to compensate for
component failures changing the system functionality [77].
The approach models alternative system configurations and
assigns a relative utility value to each of them weighing their
contribution to the system performance and dependability.
From this model, system’s overall utility value is calculated
which enables the evaluation and comparison of design
choices as to where allocate resources for functional
alternatives or redundancy. This characterization make it
possible to evaluate how component failures affect system
utility.

Wysocki et al. in [82] addressed the same design strategy
under the shared redundancy concept. They concentrated
on the reuse of processing units through the strategic
distribution of software modules. Consequently, given the
failure occurrence of a software component, it is possible
to still continue operating through the reconfiguration of
communication routes. To evaluate the reliability and safety
of the alternative architectures, first a FTA is carried out.
This analysis permits extracting minimal combination of
events which leads the system to failure. Additionally, this
information is used as input for further analysis through
Design Of Experiments (DOE) to calculate system cost and
failure probabilities. Based on the same design concept,
Galdun et al. in [83] analysed the reliability of a networked
control system structure using Petri Nets (PN) and Monte
Carlo simulations.

Rawashdeh and Lump in [84] presented a framework
for designing reconfigurable architectures for fault tolerant
embedded systems called ARDEA. The approach is based
on processing units’ reconfigurations to achieve graceful
degradation and cope with hardware failures. A gracefully
degrading system tolerates system failures by providing the
same or equivalent functionality with the remaining system
components. Dependency Graphs (DGs) are used to model
the functional flow of information from input to output con-
sidering alternative implementations. A centralized system
manager uses DGs and a hardware resource list to find
a viable mapping of software on the available processing
units. It decides when to schedule/un-schedule software
modules moving object code among available processing
units without exceeding processor time and bandwidth.
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In the MARS project, Trapp et al. [85] proposed a
component based modelling and analysis method to ex-
ploit implicit redundancies so as to react to system failures
by reusing hardware resources. It provides methodological
support for modelling and gathering system configurations.
Moreover, reasonable system configurations are elicited from
a set of possible candidates. The system’s adaptive behaviour
is modelled based on quality types, which drive the system’s
graceful degradation possibilities. The quality type system
determined at design time and modelled with a system
inheritance tree, defines the possibilities for exchanging
quality types between components.

Each system component operates under different configu-
rations determined by Quality Attributes (QAs). These QAs
are attached to each component’s every I/O port. Configu-
ration activation rules are defined over these ports based on
the needed QAs to activate a configuration (preconditions)
and provided QAs by this configuration (postconditions)
(cf. Figure 5).

Figure 5. Example of an adaptation specification view [86].

As it is shown in Figure 5, for each component within the
hierarchical system architecture, its possible configuration
variants are defined. Each port has linked its own quality
type which will determine the corresponding constraints
over the port. Each configuration has its own activation
preconditions and propagation postconditions defined over
the component ports’ QAs. This characterization leads to
determining compatible components based on QAs. As a
result, component compositions are abstracted into hier-
archical components with a explicitly defined adaptation
behaviour.

From this modelling paradigm (MARS modelling), differ-
ent analyses have been carried out. In [87], transformations
of MARS models into hybrid-CFT were performed in order
to calculate configuration probabilities (cf. Subsection II-A).

Moreover, in order to ensure the causality of the reconfig-
uration sequences and safety-related properties, verification
activities have been carried out in [86]. Last but not least,
methodological support for identifying an adaptation model
meeting availability-cost trade-off were addressed in [88].

Similar design concepts are addressed in the avionics
field. Namely, the Integrated Modular Avionics (IMA) de-
sign paradigm defines robust partitioning in on-board avionic
systems so that one computing module (Line Replaceable
Unit - LRU) is able to execute one or more applications
of different criticality levels independently. The standardised
generic hardware modules forming a network leads to looser
coupling between hardware and software applications [89].

SCARLETT project [90] aims at designing reconfigurable
IMA architectures in order to mitigate the effect of failures
of functional, fault detection and reconfiguration implemen-
tations. Monitoring and fault detection functions aim at
detecting component failures. Once a permanent failure is
detected, the reconfiguration supervisor performs two key
activities. Firstly, it manages the modifications given the cur-
rent configurations and failed module and secondly, it checks
the correctness of the system configuration and the loaded
data in the LRU. The centralized supervisor determines
a suitable configuration based on a reconfiguration graph,
which contains all possible configurations. Reconfiguration
policies and real-time and resource constraints, define the
set of reachable safe transitions and states. In order to
analyse the reconfiguration behaviour when failures occur, a
safety model leads to finding the combinations of functional
failures [91]. Based on the same concepts, DIANA project
[92] aims at distributing these functionalities. This approach
improves the availability of the reconfiguration mechanisms
at the expense of relying on a complex, resource consuming
communication protocol.

C. Summary of the Design Approaches

In order to characterize the reviewed approaches within
this section, the following design properties have been
described in the Table V:

1) Type of recovery strategy.
2) Dependability analysis approach.
3) Cost evaluation.
4) Other tasks: optimization or verification.

Since the use of heterogeneous redundancies requires
considering system dynamics, the dependability analy-
sis approaches described so far address system’s tem-
poral behaviour either by linking event-based static-logic
approaches with state-based formalisms (e.g., Hybrid-
CFT) or evaluating through approaches which integrate
the temporal behaviour explicitly (e.g., MCS, DFT, PN)
(cf. Subsection II-A). Moreover, given the extra design com-
plexity of the systems which use heterogeneous redundan-
cies, the mechanisms which help structuring the analysis and
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Table V
APPROACHES AND ADDRESSED DESIGN PROPERTIES

Works 1 2 3 4

[78] Homogeneous
Redundancies MCS HW

cost NA

[79] Homogeneous
Redundancies IFT HW

cost Optimization

[81] Homogeneous
Redundancies HiP-HOPS HW &

SW cost Optimization

[77] Heterogeneous
Redundancies Utility Values NA Optimization

[82]
[83]

Shared
Redundancies

FTA, MCS,
DOE;

PN, MCS

Mainten.
cost NA

[84] Graceful
Degradation NA NA NA

[85] Implicit
Redundancy Hybrid-CFT HW &

SW cost
Optimization,
Verification

[90]
[92]

Reconfigurable
IMA

Safety
analysis,
AltaRica

NA NA

Legend: NA: Not addressed; Mainten: Maintenance

reusing the models are necessary (e.g., libraries, hierarchical
abstractions).

In order to obtain a predictable system design and avoid
unexpected failure occurrences, all the approaches address
design-time determined reconfigurations. Nonetheless, it is
necessary to go beyond and overcome their underlying
assumptions concerning the system’s critical functionalities
to perform reconfigurations effectively. Namely, among all
the reviewed approaches only [91] takes into account a
possible faulty behaviour of the fault detection and recon-
figuration implementations. Similarly, the faulty behaviour
of the communication network is only explicitly addressed
in [83]. The evaluation of the possible faulty behaviour of
these implementations leads to obtaining an approach which
better adheres to the reality and consequently, more reliable
results. Despite not addressing heterogeneous redundancy
like concepts directly, in [93] an approach called component
logic models is presented which does address the faulty
behaviour of fault detectors. To this end, it associates modes
with services and in the case of detection measures each
service-port evaluates the veracity of the fault detectors (e.g.,
modes of false veracity: false positive and false negative).

As a result, from our perspective it is necessary cover the
following design activities:

• A1: Systematic identification of heterogeneous
redundancies and extraction of system configurations
to react in the presence of failures.

• A2: Design of the system architecture to make the
use of heterogeneous redundancies possible, i.e., fault
detection and reconfiguration implementations.

• A3: Evaluation of the system dependability with respect
to dependability and adaptivity constraints.

The first design activity calls for an approach which
allows identifying systematically existing hardware com-
ponents to provide a compatible functionality. To the best
of our knowledge, only the work we presented in [94]
works towards this goal. In [86], Adler et al. worked on
the systematic extraction of system configurations annotating
component by component their adaptive behaviour. During
this process they evaluate in a ad-hoc manner if it is possible
to provide another configuration variant using alternative
hardware components and finally extract system configura-
tions based on inter-component influences.

The second activity requires addressing design decisions
regarding the organization of fault detection and reconfig-
uration implementations, i.e., their distribution and replica-
tion. On one hand, when implementing the fault detection
function within a networked control system, it is possible to
allocate it either on the source Processing Unit (PU) where
the information is produced (e.g., sensor, controller) or in the
destination PU, which is the target PU of the source informa-
tion (e.g., controller, actuator) or in both PUs. On the other
hand, when dealing with reconfiguration implementations,
its distribution influences the overall dependability and cost
of the system (cf. Table VI).

Table VI
DESIGN DECISIONS AND INFLUENCED ATTRIBUTES

Attribute
Design Fault Detection Reconfiguration

Source Destination Centralised Distributed

Dependability

Det. at
origin,

unable to
cope with

comm.
failures

Det. of
wrong

value &
omission.
Prone to

CCF

SPOF

Multiple
reconfig.

redundan-
cies

Cost

HW/SW
imple-

mentation
costs

Costly id.
of all

failures:
failure
transf.

Single
reconfig.
HW/SW

costs

Higher
cost:

multiple
reconfigs

Complexity
Direct
failure

handling

Further
failure
sources

Less
comm.

overhead

Complex
comm;

resource
handling

Legend: SPOF: Single Point of Failure; CCF: Common Cause
Failure; comm: communication; det: detection; reconfig: reconfiguration;
id: identification; transf : transformations.

Additionally, when adopting design decisions within the
second activity, it is necessary to address adaptivity con-
straints which also has influence on dependability, e.g., time-
liness constraints: maximal duration in which the adaptation
of one component can be performed [95], dependency con-
straints: dependencies between system components, where
adapting one component requires further adaptation on
other components [86] or hardware resource constraints:
limit the use of hardware resources, e.g., processing power,
memory [84].
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In the third activity, previously adopted system design
decisions are analysed with respect to dependability and
cost. To this end, we include the alternative configurations
and possible faulty behaviour of the fault detection, the
reconfiguration and the communication implementations.

IV. MODEL-BASED VERIFICATION:
FROM FAULT INJECTION TO INTEGRATIVE APPROACHES

Fault Injection (FI) approaches concentrate on verifying
system behaviour in the presence of faults according to
target dependability properties. The outcome of this process
may lead to considering design changes. However, changes
adopted late in the design process are costly. This is why
we focus on model-based FI approaches adopted at the
preliminary design phase. This process is based on the
analyst’s knowledge to reason about the functional, failure
and recovery behaviour of the system. Timely evaluation
of these properties provides a valuable feedback for design
purposes. However, difficulties arise from the accuracy of the
system behaviour, which requires an accurate knowledge of
the system.

Within the model-based FI approaches, the verification
process is characterized as follows: first, a functional model
is specified which is then converted into an extended system
model accounting for the functional and failure behaviour
of the system. Temporal logic languages are used to define
system requirements. They describe how the truth values
of assertions change over time, either qualitatively (Com-
putation Tree Logic (CTL), Linear Time Logic (LTL)) or
quantitatively (Continuous Stochastic Logic (CSL), prob-
abilistic CTL (PCTL)). Model-checking (MC) engine as-
sesses whether such requirements are met or not by the
extended system model, using a analysis model. To do so,
it is necessary to transform the extended system model into
the analysis model. When the analysis model fails to meet
these requirements, its effects are deduced automatically
identifying the paths that violate the conditions (counter-
examples (CEs)) [9]. The logical orientation of this analysis
process results in FMEA-like cause-effect analysis.

Automatic transformation from extended system models
to MC analysis models and definition of predefined libraries
for correct and complete failure specification and injection
are the main points in order to obtain a consistent and
robust FI process. ESACS project [96] addressed these
characteristics prominently providing mechanisms to extend
the model straightforwardly and extract FTA models from
it. Other approaches concentrated on the generation of
(probabilistic) FMEA (pFMEA) models [97] [98]. Applica-
tion of pFMEA models, improvement in the interpretation
of counter-examples [97] and automated tool support for
injecting faults and analysing its consequences [98] are their
main contributions.

Albeit these approaches provide a means to extract clas-
sical dependability models from the FI process, few of

them concentrate on integrating existing CFP approaches.
There are some incipient works linking CFP and verification
approaches. They are influenced by HiP-HOPS [99] and
FPTC [100]. Both approaches address the integration of
qualitative design models with quantitative analysis via prob-
abilistic MC. In [99], Gomes et al. described an approach
to verify quantitatively system’s dependability requirements.
To do so, they did a systematic transformation of Simulink
models into CTMC models by means of PRISM model
checker [101]. The annotation of the failure behaviour is
carried out as in HiP-HOPS using IF-FMEA. In [100]
Ge et al. proposed a probabilistic variant of FPTC called
Failure Propagation and Transformation Analysis (FPTA).
The approach links architectural models with probabilistic
model checkers specified in PRISM. The ins and outs of
these approaches are grouped in the Table VII.

Results extracted from this process helps verifying if a
system behaves as intended in the presence of failures.
Concerning the analysis of dependability attributes, gen-
erated counter-examples as well as extraction of classical
dependability analysis models, provides useful mechanisms
to evaluate these attributes. However, there are some lim-
itations hampering the analysis and interpretation of these
approaches. Representation structures of the results, state-
explosion problems, technical specification difficulties and
model inconsistencies are some challenges to be addressed.

Due to the complexity and difficulties emerged from
these approaches there have been a shift in the use of
model-based FI approaches. Instead of developing purely
verification oriented FI approaches, model-based integrative
verification approaches are gaining support. These works re-
sult from the integration of design, analysis and verification
tasks. They are aimed at combining dependability analysis
techniques examined within the group 5 (cf. Table IV)
with FI approaches. They express system behaviour using
a compositional model, which gathers nominal, failure and
recovery behaviours. Integrating approaches using model
transformations, allows using a single design model for de-
pendability and verification analyses. As a result, limitations
concerning the ease of use, consistency and completeness of
the analyses and automated tool support are addressed.

Within the model-based integrative verification ap-
proaches, the overall verification process is specified as
follows: the system design model specified using a Architec-
tural Description Language (ADL) characterizes functional,
failure and recovery behaviour and structure of system
components. This design model needs to be transformed in a
target analysis model which allows analysing and verifying
system requirements. There are two options to carry out this
transformation: (1) transformation of the design model to the
target analysis approach through direct transformation rules;
(2) intermediate transformation into a tool independent Inter-
mediate Model (IM), so that consistency and traceability be-
tween different design, analysis and verification approaches
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Table VII
SUMMARY OF MODEL-BASED FAULT INJECTION APPROACHES

Works Extended
Model

Analysis
Model Reqs. Results Specific Features Tool Support Limitations & Improvements

[96] NuSMV NuSMV CTL,
LTL FT

Model construction facility: library of
FM and requirements; Unification of
formal verification & safety analysis

FSAP/NuSMV-
SA, Internally

Available [102]

State explosion; FT
structure; Probabilistic

analysis; Failure ordering

[97] CTMC
(PRISM) PRISM CSL pFMEA,

CE
CE improvement; Auto. probability

calculations; Multiple failures PRISM [101] State explosion; Pattern
based FI

[98] BT SAL* LTL FMEA
FMEA automatic generation from BT
models; Analysis reduction strategies;

Effect analysis of multiple failures

BTE tool [103],
SAL Symbolic

MC [104]

CE readability; Timed FI;
pFMEA; Reduction techs.

[99] Simulink PRISM* CSL
Prob.
calc.;

CTMC

Systematic generation of analysis
models from CFP design models

Partialy available
[105]

No CE; State-explosion;
Dynamic behaviour

[100] Epsilon FPTA,
PRISM CSL CE Integration of CFP approach and

probabilistic model checking
FPTC toolset,
available [48]

Failure prone manual
transformation; Translate

CE to design model

Legend: CTL: Computation Tree Logic; LTL: Linear Time Logic; CSL: Continuous Stochastic Logic; CE: Counter-Example; BT: Behaviour Tree;
FM: Failure Modes; Symbols: *: Automatic Transformation;

are attained. In the second case, these models enable the
reuse of the same high level models for different target
approaches. Subsequently, the analysis of the corresponding
approach (either FI, state-based or event-based analysis)
makes use of the respective underlying characteristics (cf.
Figure 6). FI approaches allows extracting counter-examples,
which in turn can be transformed into dependability analysis
models (indicated with dashed lines in Figure 6).

Architectural
Description
Language

Dependability
Analysis

Event
Based

State
Based

Dependability
Verification

Qualitative
Evaluation

Quantitative
Evaluation

Transformation

Intermediate
Model

Direct
Tranformations

Figure 6. Structure of model-based integrative approaches.

The COMPASS project [106] is an integrative approach
based on System-Level Integrated Modelling (SLIM) lan-
guage which uses direct transformations [107]. The seman-
tics of SLIM cover the nominal and error behaviour of
AADL. The complete specification of SLIM consists of a
nominal model, a failure model and a description of the
effects of failures in the nominal model (extended model).
Due to its underlying formal semantics, various types of
analyses are possible: validation of functional, failure, and
extended models via simulation and MC; dependability anal-
ysis and performance evaluation; diagnosability analysis and
evaluation of the effectiveness of fault detection, isolation

and recovery strategies.
Similarly, Güdemann and Ortmeier [108] proposed an

intermediate tool-independent model called Safety Analysis
Modelling Language (SAML). SAML describes a finite state
automata, which is used to characterise the extended system
model. This model specifies the nominal behaviour, failure
occurrences, its effects and the physical behaviour of the sur-
rounding environment. From this single model, quantitative
and qualitative MC analyses are performed. The quantitative
analysis, based on Deductive Cause Consequence Analysis
(DCCA) [109], identifies minimal critical sets using CEs
to indicate time-ordered combinations of failures causing
the system hazard. The qualitative analysis, focusing on
probabilistic DCCA (pDCCA), calculates per-demand and
per-time failure probabilities.

Topcased project [110] aims at developing critical em-
bedded systems including hardware and software. Topcased
integrates ADLs and formal methods. The approach trans-
forms high-level ADL models (SysML, UML and AADL)
into an IM model specified in FIACRE language [111].
FIACRE specifies behavioural and timing aspects of high-
level models making use of timed Petri nets primitives.
Subsequent transformations of the IM model into MC tools
(TINA and CADP) make it possible the formal verification
and simulation of the specified requirements. TINA Petri
Nets analyser [112] evaluates requirements specified in the
state variant of LTL proposition logic (State/Event LTL
(SELTL)) focusing on timeliness properties. CADP toolbox
[113] transforms FIACRE models into LOTOS programs,
which are handled by its underlying tools for validation via
MC and simulation.

The pros and cons of the covered integrative works are
summarized in the Table VIII.

The addressed works integrate well-known tools and
formalisms. However, integration of analysis and verification
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Table VIII
SUMMARY OF MODEL-BASED INTEGRATIVE APPROACHES

Works Design
Model

Transf.
Type

Analysis
Model Reqs. Results Specific Features Tool Support Future works

[107] SLIM Direct
NuSMV*,
MRMC*,

RAT*

CTL,
LTL,
CSL

DFT,
FMEA,
prob.
calc.

Req. patterns; Integrated
verification, dependability

and performance analyses of
extended models

Toolset available
for ESA

members states
[114]

Manual extension of the
nominal model; Redundant

FTA-FMEA results;
State-explosion

[108]
SCADE,
Simulink

IM:
SAML

NuSMV*,
PRISM*,
MRMC*,
Cadence
SMV*

CTL,
PCTL

DCCA,
pDCCA

Combination of qualitative
and quantitative analyses on

the same model

S3 tool [115];
publicly
available

Manual extension of the
nominal model; Transf. of
ADLs (Simulink, Scade)

into SAML; Req. patterns.;
Library of FMs

[111]

SySML,
UML,
AADL

IM:
FIACRE

TINA,
CADP

LTL,
SELTL

Timing,
prob.
calc.

Req. patterns; Integrated
design, analysis and

verification approaches

Topcased toolset
[110]

State explosion; Back
annotation of results

Legend: IM: Intermediate Model; (P)CTL: (Probabilistic) Computation Tree Logic; LTL: Linear Time Logic; CSL: Continuous Stochastic Logic;
SELTL: State/Event LTL; FMs: Failure Modes; Req: requirements; Transf : transformations; Symbols: *: Automatic Transformation;

approaches when designing a dependable system is an
ongoing research subject. There is an increasing interest
in reusing and generalizing CFP approaches (e.g., trans-
formation of CFP approaches into metamodels [43] [58]
[59] and integration of CFP and verification approaches
[100] [116]). Additionally, there exist other approaches
closely related to the model-based integrative verification
approaches, which cover the design process using formal
analysis and verification approaches. For instance, under
the correct by construction paradigm, the work presented
in [117] matches with the idea of developing dependable
systems by integrating specific approaches well-suited to
each development phase. This methodology is based on
a portfolio of different formalisms: starting from initial
informal requirements, passing through formal requirements
specification, modelling in Event-B and verification, towards
the generation of executable code.

Interestingly, there still remain some challenges to be
addressed. Back-annotation of the results into the design
models would permit gaining more consistency between
models. Additionally, it will lead to identifying the influence
of the outcomes on the system components straightfor-
wardly. Another issue is the size of the verification model
extracted from the design model, which suffers from state-
explosion problems.

The construction of a user friendly toolset integrating all
these approaches is an issue itself. The last breakthroughs
among integrative approaches’ toolsets focus towards two
main directions. On one hand, the automatic translations
of design models into target specification formalisms is an
unceasing goal [115]. These “push-button” toolsets avoid the
designer to be exposed to the laborious, difficult and fail-
prone process of creating a analysis model. For instance, in
the COMPASS toolset [114], the designer is exposed to the
SLIM formal specification language directly instead of using
a ADL. However, one of the subtle problems underlying
these tools is the size of the target models as a result of

the design model transformations [110]. Another issue when
creating these toolsets is related with the analysis results:
the outcomes of the analysis results need to be displayed
in a intuitive way to be understood by the designers and if
necessary, take the corresponding countermeasures. To do
so, they would benefit from an automatic transformation or
back-propagation of the analysis results to the design model.
Taking the automated tool support as an indicator to measure
the potential to successfully integrate these approaches into
the industrial practice, it is recognizable that all the covered
approaches are working towards the construction of “push-
button” automated toolsets to gain higher acceptance.

V. MODEL-BASED HYBRID DESIGN PROCESS

The goal of this section is not to provide a new design
approach. Our aim is to make use of the reviewed analysis,
design and verification approaches so as to outline a consis-
tent and reusable model-based design process. This process
arises from the structure of the model-based integrative
verification approaches (cf. Section IV).

The separation of dependability analysis and verification
tasks may lead to hampering the system design since results
identified from either task need to be reconsidered during the
design process (cf. Section III). On one hand, dependability
analyses characterized by transformational approaches (cf.
Subsection II-C), allow tracing from design models toward
dependability analysis models. These approaches evaluate
the dynamic system behaviour, as well as the effect of
particular component failure occurrences at the system-level.
On the other hand, purely verification oriented approaches
mainly focus on the verification of the adequacy of the de-
sign model with respect to RAMS requirements. This is why
we centred on covering integrative verification approaches.

When matching and tuning design components so as to
find optimal design solutions satisfying design constraints,
possible inconsistencies may arise due to the independent
considerations of these approaches. This is why we should
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focus on outlining a model-based hybrid design process,
which unifies design, analysis and verification tasks. This
process relies on initial system requirements, models, trans-
formations and reuse of designer’s considerations and results
extracted from analysis and verification tasks (cf. Figure 7).
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Extend. Design
Model
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Failure Modes
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Failure
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Figure 7. Model-based hybrid design process.

This design process starts from initial functional and
physical characterizations. Functional verification analysis
evaluates the adequacy of the allocation of the functional
model into the equipment model according to functional
requirements. The outcome of this process allows consid-
ering the verified design model. Subsequently, this model
is extended with the failure model accounting for fail-
ure occurrences of the system. Failure patterns aid in the
construction of the failure model allowing the reuse non-
functional characterizations. Further, the effects of the con-
sidered failures and recovery strategies are annotated in
the extended design model in order to counteract failure
occurrences and its effects. With the aim to carry out
dependability analysis and formal verification evaluations of
the extended design model, twofold transformations need to
be performed. The means to perform these transformations
have been presented in Subsection II-C and Section IV
respectively. Transformations of these models make the eval-
uation of the adequacy of the extended design model respect
to RAMS requirements possible. Dependability analysis and
verification tasks enable finding further failure effects and
failure sources (apart from occurrence probabilities) either
by CEs or dependability specific models. These results need
to be transformed for design and analysis purposes. For
the sake of reusing and refining the design process, data
repositories have been considered consisting of annotation
patterns for requirements and models (both functional and
non-functional) and reusable recovery strategies.

On one hand, the outlined design approach enables bene-

fiting from consistent design considerations. Moreover, data
repositories allow the reuse of designer’s characterizations
as well as analysis results. Furthermore, user-friendly means
make the annotation processes more evident. On the other
hand, the automation of the extraction of dependability mod-
els hides information about the failure behaviour. Addition-
ally, the flexibility of the approach depends on the system
context, which would determine the reuse of functional and
non-functional considerations.

VI. CONCLUSION AND FUTURE WORK

Designing a dependable system, poses a wide variety of
challenges on all its phases. This paper groups different
approaches in order to identify and classify them.

The listed limitations guided the evolution of the anal-
ysis techniques towards Compositional Failure Propagation
(CFP) and transformational analysis approaches. Automatic
extraction of analysis models from design models is an
ongoing research field, which leads to achieving consistency
between design and analysis models.

However, this is not the cure-all remedy, which alleviates
analysts from identifying and analysing failure behaviours,
but helps obtaining a manageable analysis compared to
the difficult and laborious traditional process. User friendly
resources, such as design components or failure annotation
libraries, enable the reuse of nominal and failure models.

Dependable design strategies have been characterized
grouping them with respect to their underlying recovery
strategy. Reuse of the existing hardware components is a
promising solution to design dependable systems at the
expense of reducing hardware costs. In this way, we have
characterized the existing approaches addressing this design
concept. Moreover, we have identified some of the activi-
ties which will help extending their use. Mainly, we have
concentrated on the systematic identification of reusable
resources and overcoming the assumptions of existing ap-
proaches, i.e., perfect fault detection, reconfiguration and
communication.

For verification purposes, firstly Fault Injection (FI) ap-
proaches have been studied. Since the adoption of purely
verification oriented FI approaches may incur complexities
and difficulties in the system design process, then we have
addressed model-based integrative verification approaches.
Their main objective is to address consistently dependability
analysis, design and verification tasks at the preliminary
design phase. An early integration of these tasks would add
value to the dependable design process. There are many
challenging tasks to address when constructing an end-to-
end dependable design methodology. Integration of the CFP
approaches within this methodology or validation of the
correctness of the faults to be injected are some of the
subjects to be addressed.

Finally, we have outlined a model-based hybrid design
process integrating addressed design, analysis and verifi-
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cation approaches. The main purpose of this methodology
is to sketch an intuitive model-based dependable design
process attaining consistency and reuse among different
models. The integration of the approaches should allow
undertaking timely design decisions by reducing costs and
manual failure-prone annotations. Additionally, it will alle-
viate the need to clutter a model with redundant information.
Nevertheless, note that when designing a new system, special
care should be taken, since reuse properties depend on the
system context. The reuse of failure annotations in the design
process, eases the architectural iterative refinement process.
This makes possible the analysis of different implementa-
tions using the same component failure models.

Therefore, we foresee that instead of developing indepen-
dent approaches to identify, analyse and verify dependability
requirements, future directions will focus on integrating dif-
ferent approaches. This process requires tracing verification
results to the initial dependable design model and vice versa.
In this field, challenging work remains to do sharing infor-
mation between existing approaches so as to take advantage
of complementary strengths of different approaches.

Our current work focuses on the (re-)design of dependable
systems by means of exploiting the benefits of heterogeneous
redundancies, which may exist in some systems, e.g., trains
or buildings. Our research challenge concentrates on the
integration of dependability design and analysis activities,
systematizing all the design steps, and overcoming assump-
tions adopted by other approaches for the system’s operation
and recovery process.
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nent concept for fault trees,” in Proc. of SCS’03, 2003, pp.
37–46.

[14] A. Galloway, J. McDermid, J. Murdoch, and D. Pumfrey,
“Automation of system safety analysis: Possibilities and
pitfalls,” in Proc. of ISSC’02, 2002.

[15] C. Price and N. Taylor, “Automated multiple failure FMEA,”
Reliability Eng. & System Safety, vol. 76, pp. 1–10, 2002.
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