
121

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Mitigating Distributed Service Flooding Attacks with Guided Tour Puzzles

Mehmud Abliz∗, Taieb Znati∗†, and Adam J. Lee∗
∗Department of Computer Science
†Telecommunication Program

University of Pittsburgh
Pittsburgh, Pennsylvania 15260 USA
{mehmud, znati, adamlee}@cs.pitt.edu

Abstract—Various cryptographic puzzle schemes have been
proposed as defenses against Denial of Service (DoS) attacks.
However, these schemes have two common shortcomings that
diminish their effectiveness as a DoS mitigation solution. First,
the DoS-resilience that these schemes provide is minimized
when there is a large disparity between the computational
power of malicious and legitimate clients. Second, the legit-
imate clients also have to perform the same heavy puzzle
computations that do not contribute to any useful work from
the clients’ perspective. In this article, we introduce guided
tour puzzles (GTP), a novel puzzle scheme that addresses these
shortcomings. GTP uses latency — as opposed to computational
delay — as a way of forcing a sustainable request arrival rate
on clients. Measurement results from a large-scale network
test-bed shows that the variation in the puzzle solving times
is significantly smaller than the puzzle solving time variation
of computation-based puzzles. As attackers have much less
control over the round-trip delays than they do over the
computational power, a latency-based puzzle scheme, such as
GTP, provides significantly better protection against strong
attackers. Meanwhile, we show that GTP minimizes useless
computations required for the client computers. We evaluate
the effectiveness of guided tour puzzles in a realistic simulation
environment using a large-scale Internet topology, and show
that GTP provides a strong mitigation of DoS request flooding
attacks and puzzle solving attacks.

Keywords-denial of service; availability; tour puzzles; proof
of work; client puzzles; cryptography.

I. INTRODUCTION

A Denial of Service (DoS) attack is an attempt by mali-
cious parties to prevent legitimate users from accessing a ser-
vice, usually by depleting the resources of the server, which
hosts that service. DoS attacks may target resources such
as server bandwidth, CPU, memory, storage, or any combi-
nation thereof. These attacks are particularly easy to carry
out if a significant amount of server resource is required
to process a client request that can be generated trivially.
Cryptographic puzzles have been proposed to defend against
DoS attacks with the aim of balancing the computational
load of the server relative to the computational load of the
clients [1] [2] [3] [4] [5] [6].

In a cryptographic puzzle scheme, a client is required to
solve a moderately hard computational problem, referred
to as puzzle, and submit the solution as a proof of work
before the server spends any significant amount of resource

on its request. Solving a puzzle typically requires performing
significant number of cryptographic operations, such as
hashing, modular multiplication, etc. Consequently, the more
a client requests service from the server, the more puzzles
it has to solve, further expending its own computational
resources. Puzzles are designed so that their construction
and verification can be achieved with minimum server
computational load in order to avoid DoS attacks on the
puzzle scheme itself. Attacks aimed at the puzzle scheme
itself are thereafter referred to as puzzle solving attacks.

Originally, cryptographic puzzles were proposed to com-
bat spams [7]. They have then been extended to defend
against other attacks, including DoS [2] [3] [6] [8] [9]
and Sybil attacks [10] [11]. Furthermore, different ways of
constructing and distributing puzzles have been explored [6]
[12] [13] [14] [15]. Unfortunately, existing puzzle schemes
have shortcomings that limit their effectiveness in defending
against DoS attacks.

First, the effectiveness of computation-based puzzles de-
creases, as the variation in the computational power of
clients increases. To illustrate this limitation, consider a
system composed of a server whose capacity is R requests
per second, Nl legitimate clients whose clock frequency
is f , and Nm malicious clients whose clock frequency is
a · f , where a is a disparity factor that represents the
degree of disparity between the CPU powers of malicious
and legitimate clients. Furthermore, assume that legitimate
clients can tolerate a maximum puzzle difficulty of Dmax,
expressed in terms of the number of instructions. The
maximum protection the server can achieve against a DoS
attack is by setting the puzzle difficulty to Dmax. During an
attack, the total load on the server is the sum of the loads
generated by the legitimate and malicious clients, which
can be expressed as Nl

f
Dmax

+ Nm
af

Dmax
(without loss of

generality, we assume that when solving puzzles clients use
their full CPU capacity). Therefore, to carry out a DoS attack
against the server, an attacker must at least induce a load
on the server that exceeds the server’s full capacity, i.e.,
Nl

f
Dmax

+ Nm
af

Dmax
≥ R. Using simple deductions, it is

clear that the minimum number of malicious clients required
to cause denial of service should satisfy the inequality
Nm ≥ RDmax−Nlf

af . Consequently, the minimum number of

122

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

malicious clients required to stage a successful DoS attack
against the server becomes smaller as the disparity factor
a increases, decreasing the effectiveness of a puzzle-based
defense in mitigating the DoS attacks.

Second, existing puzzle schemes may exact heavy compu-
tational penalty on legitimate clients, when the server load
becomes heavy and the need to increase the computational
complexity of the puzzle becomes necessary to prevent
overloading the server. The negative impact of such a penalty
is further compounded by the fact that the puzzle-induced
computation does not usually contribute to the execution of
any task that is useful to the client, thereby further wasting
client resources and limiting the client’s ability to carry out
other computational activities.

In this article, we propose a novel, latency-based puzzle
scheme, referred to as Guided Tour Puzzle (GTP), to address
the shortcomings of current cryptographic puzzle schemes in
dealing with DoS attacks. The guided tour puzzle scheme
is the first to use the concept of latency, as opposed to
computational delay, to control the rate of client requests
and prevent potential DoS attacks on the server. The main
contributions of the proposed work include:

• A comprehensive study of the cryptographic puzzles to
derive a list of basic requirements;

• The introduction of two novel puzzle properties, namely
puzzle fairness and minimum interference, that are
essential to the effectiveness of puzzle-based defense
against DoS attacks;

• Design and analysis of the GTP scheme, and showing
that the proposed scheme meets the list of basic require-
ments while achieving puzzle fairness and minimum
interference;

• A thorough evaluation of the guided tour puzzle ef-
fectiveness against distributed DoS attacks, using a
realistic simulation framework.

The rest of the article is organized as follows. Section II
provides a survey of cryptographic puzzle based DoS pre-
vention schemes. Section III describes the system model and
the threat model used. Section IV discusses the design goals
of GTP scheme. Section V introduces the GTP scheme.
In Section VI, we use analysis and measurement to show
that guided tour puzzles meet the design goals of GTP
scheme. The effectiveness of the GTP in mitigating DDoS
attacks is evaluated in Section VII. A conclusion and future
plans for extending the puzzle framework are presented in
Section VIII.

II. RELATED WORK

Currently, there are many different type of DoS and
DDoS defense mechanisms such as filtering based [16]
[17], traceback and pushback based [18] [19], capability
based [20] [21] and cryptographic puzzle based defense
mechanisms. One approach that is similar to GTP scheme is
a system called speak-up that encourages legitimate hosts to

increase their request sending rate during application layer
DoS attacks [22]. This method uses a bandwidth based
puzzle and is different from the latency based puzzle we
proposed. WebSOS [23] is similar to GTP in that both builds
a strong distributed network of protection points in front of a
DoS vulnerable server. However, key differences exist. The
overlay network in WebSOS is used as a tool to hide the
IP addresses of the secret nodes that are permitted to send
traffic to the protected server, whereas the set of tour guides
act as a “delay box” to let the client wait between requests.
The WebSOS is designed to protect private services whose
users are known a priori, whereas the GTP scheme can be
used by both private and public services.

Due to the enormity of various DoS defense solutions,
here we limit our survey only to the cryptographic puzzle
based mechanisms.

A. Client Puzzles

Dwork and Noar [7] were the first to introduce the
concept of requiring a client to compute a moderately hard
but not intractable function, in order to gain access to a
shared resource. However this scheme is not suitable for
defending against the common form of DoS attack due to
its vulnerability to puzzle solution pre-computations.

Juels and Brainard [2] introduced a hash function based
puzzle scheme, called client puzzles, to defend against
connection depletion attack. Client puzzles addresses the
problem of puzzle pre-computation. Aura et al. [4] extended
the client puzzles to defend DoS attacks against authentica-
tion protocols, and Dean and Stubblefield [5] implemented a
DoS resistant TLS protocol with the client puzzle extension.
Wang and Reiter [6] further extended the client puzzles
to prevention of TCP SYN flooding, by introducing the
concept of puzzle auction. Price [24] explored a weakness of
the client puzzles and its above mentioned extensions, and
provided a fix for the problem by including contribution
from the client during puzzle generation.

Waters et al. [9] proposed outsourcing of puzzle distri-
bution to an external service called bastion, in order to
secure puzzle distribution from DoS attacks. However, the
central puzzle distribution can be the single point of failure,
and the outsourcing scheme is also vulnerable to the attack
introduced by Price [24].

Wang and Reiter [8] used a hash-based puzzle scheme to
prevent bandwidth-exhaustion attacks at the network layer.
Feng [25] argued that a puzzle scheme should be placed at
the network layer in order to prevent attacks against a wide
range of applications and protocols. And Feng and Kaiser
et al. [3] implemented a hint-based hash reversal puzzle at
the IP layer to prevent attackers from thwarting application
or transport layer puzzle defense mechanisms.

Portcullis [26] by Parno et al. used a puzzle scheme
similar to the puzzle auction by Wang [6] to prevent denial-
of-capability attacks that prevent clients from setting up

123

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

capabilities to send prioritized packets in the network. In
Portcullis, clients that are willing to solve harder puzzles
that require more computation are given higher priority, thus
potentially giving unfair advantage to powerful attackers.

In all of proposals above, finding the puzzle solution
is parallelizable. Thus an attacker can obtain the puzzle
solution faster by computing it in parallel using multiple
machines. Morever, they all suffer from the resource dis-
parity problem, and interferes with the concurrently running
user applications. In comparison, guided tour puzzles are
non-parallelizable, and addresses the problems of resource
disparity and interference with user applications.

B. Non-Parallelizable Puzzles

Non-parallelizable puzzles prevents a DDoS attacker that
uses parallel computing with large number of compromised
clients to solve puzzles significantly faster than average
clients. Rivest et al. [27] designed a time-lock puzzle, which
achieved non-parallelizability due to the lack of known
method of parallelizing repeated modular squaring to a
large degree [27]. However, time-lock puzzles are not very
suitable for DoS defense because of the high cost of puzzle
generation and verification at the server.

Ma [14] proposed using hash-chain-reversal puzzles in the
network layer to prevent against DDoS attacks. Hash-chain-
reversal puzzles have the property of non-parallelizability,
because inverting the digest i in the chain cannot be started
until the inversion of the digest i+1 is completed. However,
construction and verification of puzzle solution at the server
is expensive. Furthermore, using a hash function with shorter
digest length does not guarantee the intended computational
effort at the client, whereas using a longer hash length makes
the puzzle impossible to be solved within a reasonable time.

Another hash chain puzzle is proposed by Groza and
Petrica [15]. Although this hash-chain puzzle provides non-
parallelizability, it has several drawbacks. The puzzle con-
struction and verification at the server is relatively expensive,
and the transmission of a puzzle to client requires high-
bandwidth consumption.

More recently, Tritilanunt et al. [28] proposed a puz-
zle construction based on the subset sum problem, and
suggested using an improved version [29] of LLL lattice
reduction algorithm by Lenstra et al. [30] to compute the
solution. However, the subset sum puzzles has problems
such as high memory requirements and the failure of LLL
in dealing with large instance and high density problems.

Although the non-parallelizable puzzles addresses one of
the weaknesses of client puzzles discussed in Section II-A,
they still suffer from the resource disparity problem and
interferes with the concurrently running user applications
on client machines. Guided tour puzzles, on the other hand,
address these two weaknesses of non-parallelizable puzzles.

C. Memory-Bound Puzzles

Abadi et al. [12] argued that memory access speed is
more uniform than the CPU speed across different computer
systems, and suggested using memory-bound function in
puzzles to improve the uniformity of puzzle cost across
different systems. Dwork et al. [13] further investigated
Abadi’s proposal and provided an abstract memory-bound
function with an amortized lower bound on the number of
memory accesses required for the puzzle solution. Although
these techniques seem promising, there are several issues
that need to be resolved regarding memory-bound puzzles.

First, memory-bound puzzles assume a upper-bound on
the attacker machine’s cache size, which might not hold
as technology improves. Increasing this upper-bound based
on the maximum cache size available makes the memory-
bound puzzles too expensive to compute by average clients.
Secondly, deployment of proposed memory-bound puzzle
schemes require fine-tuning of various parameters based on
a system’s cache and memory configurations. Furthermore,
puzzle construction in both schemes is expensive, and band-
width consumption per puzzle transmission is high. Last,
but not least, clients without enough memory resources,
such as PDAs and cell phones, cannot utilize both puzzle
schemes, hence require another service that performs the
puzzle computation on their behalf.

III. SYSTEM MODEL

In this section, we introduce our system model, including
a system overview, a model of cryptographic puzzle proto-
col, and a threat model.

A. System Overview

We consider an Internet-scale distributed system of clients
and servers. A server is a process that provides a specific
service, for example a Web server or an FTP server. A client
is a process that requests service from a server. The term
client and server are also used to denote the machines that
run the server process and the client process respectively.
Clients are further classified as legitimate clients that do
not contain any malicious logic and malicious clients that
contain malicious logic. In the denial of service context,
a malicious client attempts to prevent legitimate clients
from receiving service by flooding the server with spurious
requests. An attacker is a malicious entity who controls the
malicious clients. We refer to a user as a person who uses
a client machine.

B. Threat Model

The attacker attempts to disrupt service to the legitimate
clients by sending apparently legitimate service requests
to the server to consume its computational resources. We
consider DoS attacks that flood the server with large amount
of requests and attacks that attempt to thwart puzzle defense
using massive computational resources. It is assumed that

124

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network resources are large enough to handle all traffic, and
the resource under attack is server computation.

Our threat model assumes a stronger attacker than previ-
ous schemes do. First, we assume that the attacker may pos-
sess hardware resources that are several orders of magnitude
more powerful than that of the average legitimate clients.
Meanwhile, the attacker can take maximum advantage of
her resources by perfectly coordinating all of her available
computation resources. Next, the attacker can eavesdrop
on all messages sent between a server and any legitimate
client. We assume that the attacker can modify only a
limited number of client messages that are sent to the
server. This assumption is reasonable since if an attacker
can modify all client messages, then it can trivially launch
a DoS attack by dropping all messages sent by all clients to
the server. Finally, the attacker may launch attacks on the
puzzle scheme itself, including puzzle construction, puzzle
distribution, or puzzle verification.

IV. DESIGN GOALS

The design goal of GTP scheme is twofold. First, it
aims to achieve the general puzzle properties that have been
discussed in the existing literature. Second, it must meet the
puzzle fairness and minimum interference requirements that
are proposed by us to address the limitations of existing
puzzle schemes. These requirements and puzzle properties
are explained next.

A. General Properties

Computation guarantee. The computation guarantee
(also referred to as ”bounds on cheating” [31]) means a
cryptographic puzzle guarantees a lower and upper bound
on the number of cryptographic operations spent by a client
to find the puzzle answer. In other words, a malicious
client should not be able to solve a puzzle by expending
significantly less operations than required. This is discussed
in [7].

Efficiency. The construction, distribution, and verification
of a puzzle by the server should be efficient in terms
of CPU, memory, bandwidth, hard disk, etc. Specifically,
puzzle construction, distribution, and verification should add
minimal overhead to the server to prevent the puzzle scheme
itself from becoming an avenue for denying service [7] [4]
[3].

Adjustability of difficulty. This property is also referred
to as puzzle granularity [28]. Adjustability of puzzle diffi-
culty means the cost of solving the puzzle can be increased at
a fine granularity from zero to impossible [4]. Adjustability
of difficulty is important, because finer adjustability enables
the server to achieve better trade-off between blocking
attackers and the service degradation of legitimate clients.

Correlation-free. A puzzle is considered correlation-free
if knowing the solutions to all previous puzzles seen by a
client does not make solving a new puzzle any easier [4]. If a

puzzle is not correlation-free, then it allows malicious clients
to solve puzzles faster by correlating previous answers.

Stateless. A puzzle is said to be stateless if it requires
constant memory at the server for storing client information
or puzzle-related data. This property is discussed in [4].

Tamper-resistance. A puzzle scheme should limit replay
attacks over time and space. Puzzle solutions should not be
valid indefinitely and should not be usable by other clients
[4] [3].

Non-parallelizability. Non-parallelizability means a puz-
zle solution cannot be computed in parallel using multiple
machines [28]. Non-parallelizable puzzles can prevent at-
tackers from distributing computation of a puzzle solution
to a group of machines to obtain the solution quicker.

B. Puzzle Fairness and Minimum Interference

Puzzle Fairness. Puzzle fairness means that a puzzle
should take approximately the same amount of time to com-
pute by any client, regardless of the CPU power, memory
size, and bandwidth available to that client. If a puzzle
scheme achieves fairness, then a malicious client with very
strong computational resources will effectively be reduced
to a legitimate client. Without puzzle fairness, few powerful
malicious clients can solve puzzles at a higher rate than
many computationally weaker legitimate clients, and may
lead to the occupation of most of the server’s capacity by
few malicious clients.

Minimum Interference. This property requires that puz-
zle computation at the client should not interfere with the
normal usage of the client computer by its users. If a puzzle
scheme consumes too many resources, then it interferes with
users’ normal computing activity. For example, if computing
a hash reversal puzzle expends most of the CPU cycles,
then a user may feel a very slow response in using other
applications that are running concurrently on the client
machine. Consequently, users may avoid using any service
that deploys such a puzzle scheme.

V. GUIDED TOUR PUZZLE

This section presents the GTP scheme. We start out with
the main idea behind the GTP scheme, and describe a very
basic puzzle protocol. Then, the limitations of the basic
protocol is discussed and a solution is given to address each
limitation.

A. The Basic Protocol

When a server suspects that it is under attack or its load is
above a certain threshold, it asks all clients to solve a puzzle
prior to receiving service. In the GTP protocol, the puzzle
is simply a tour that needs to be completed by the client
via taking round-trips to a set of special nodes, called tour
guides, in a sequential order. We call this tour a guided tour,
because the client should not know the order of the tour a
priori, and each tour guide must direct the client towards

125

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: A summary of notations.

N Number of tour guides in the system
Gj j-th tour guide (1 ≤ j ≤ N)
kS Secret key only known to the server
kSj Shared key between the server and Gj

ki,j Shared key between Gi and Gj (i 6= j)
L Length of a guided tour
Ax Address of client x
is Index of the s-th stop tour guide (1 ≤ is ≤ N)
ts Coarse timestamp at the s-th stop of the tour
Rs Client puzzle solving request at s-th stop
B Size of the hash digest in bits

the next tour guide. Each tour guide may appear zero or
more times in a tour, and the term stop is used to represent
a single appearance of a tour guide in a given tour.

Figure 1 shows an example of a guided tour with two tour
guides and 6 stops. The tour guide at the first stop of a tour
is randomly selected by the server, and will also be the last
stop tour guide, i.e., a guided tour is a closed-loop tour. The
tour guide at each stop randomly selects the next stop tour
guide. Starting from the first stop, the client contacts the tour
guide at each stop and receives a reply. Each reply contains
a token that proves to the next stop and the last stop that the
client has visited this stop. Prior to sending its reply, the tour
guide at each stop verifies that the client visited the previous
stop tour guide, so that the client cannot contact multiple
tour guides in parallel. After completing L − 1 stops in a
L-stop tour, the client submits the set of tokens it collected
from all previous stops to the last stop tour guide (which is
also the first stop tour guide), which will issue the client a
proof of tour completion. The client then sends this proof
to the server, along with its service request, and the server
grants the client service if the proof is valid.

There are several issues concerning the basic protocol.
First of all, a security mechanism must be in place to enforce
the sequentiality of a single tour. Second, as a guided tour
does not create a computational or bandwidth bottleneck
at the client machine, an attacker may take many tours
simultaneously, thereby qualifying itself for more resources
of the server. Third, an attacker may cause DoS on the server
indirectly by attacking the tour guides and the puzzle scheme
itself. In the following subsections, we address each of these
challenges individually.

B. Ensuring Sequential Guided Tour

We set up N tour guides in the system, where N ≥ 1.
The server keeps a secret kS that only it knows, and a set of
keys kS1, kS2, . . . , kSN are shared between the server and
each tour guide. Each tour guide Gi maintains a pairwise
shared key ki,j with every other tour guide Gj , where i 6= j
and 1 ≤ i, j ≤ N . The total number of keys need to be
maintained by each tour guide or the server is N , and this
key management overhead is acceptable since N is usually

Internet

Server

Client

Addr: Ax Guide 2

Guide 1

S4
S5 initial req

S1
S3

final req

S2

S6

Figure 1: Example of a guided tour; the tour length is 6, and the
order of visit is: G2 → G1 → G2 → G1 → G1 → G2.

a small number in the order of 10 or less. The tour length
L is decided by the server to adjust the puzzle difficulty.
Notations are summarized in Table I.

The four steps of the GTP protocol is as follows.
1) Service request: A client x sends a service request to

the server. If the server load is normal, the client’s request is
serviced as usual; if the server is overloaded, then it proceeds
to the next step.

2) Initial puzzle generation: The server replies to the
client x with a message that informs the client to complete a
guided tour. The reply message contains {L, i1, t0, h0,m0},
where i1 is the uniform-randomly selected index of the first
stop tour guide, t0 is a coarse timestamp, h0, m0 are message
authentication codes that provide message integrity. h0 and
m0 are computed as follows:

h0 = hmac(kS , (Ax||L||i1||t0)) (1)
m0 = hmac(kSi1 , (Ax||L||i1||t0||h0)) (2)

where, || denotes concatenation, Ax is the address (or
any unique value) of the client x, and hmac is a crypto-
graphic hash-based message authentication code (HMAC)
[32]. Since m0 is computed using the key kSi1 that is shared
between the first stop tour guide Gi1 and the server, it
enables Gi1 to do integrity checking later on.

3) Puzzle solving: After receiving the puzzle information,
the client visits the tour guide Gis at each stop s, where
1 ≤ s ≤ L, and receives a reply. Each reply message con-
tains {hs,ms, is+1, ts}, where is+1 is the uniform-randomly
selected index of the next stop tour guide, ts is the timestamp
at stop s, and hs, ms are computed as follows:

hs = hmac(kis,i1 , (h0||Ax||L||s||is||is+1)) (3)
ms = hmac(kis,is+1 , (ms−1||Ax||L||s||is||is+1, ts)) (4)

At each stop s, the client sends a puzzle solving request
message Rs that contains {h0, L, s, ts−1,ms−1, i1, is} to
the tour guide Gis , and the tour guide Gis replies to the
client only if ms−1 is valid. In other words, each stop
enforces that the client correctly completed the previous stop
of the tour.

At the (L−1)-th stop, the tour guide GiL−1
knows that the

next stop is the last stop, and replaces is+1 with i1 (recall
that the first stop i1 is also the last stop) when computing

126

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hs and ms. After completing the (L− 1)-th stop, the client
computes hL as follows

hL = h1 ⊕ h2 ⊕ . . .⊕ hL−1 (5)

where ⊕ means exclusive or, and submits
{h0, hL, L,mL−1, i1, i2, . . . , iL} to the first stop tour
guide Gi1 . Using these information, Gi1 can compute
h1, h2, . . . , hL−1 using formula (3), and subsequently hL
using formula (5). Note that only Gi1 can compute values
h1 to hL−1, since only it knows the keys ki1,i2 to ki1,iL−1

that are used in the HMAC computations.
If the hL submitted by the client matches the hL computed

by Gi1 itself, then Gi1 sends back the client a token hsol
that can prove to the server that the client did complete a
tour of length L. The token hsol is computed as follows:

hsol = hmac(kSi1 , (h0||Ax||L||tL)) (6)

4) Puzzle verification: The client submits to the server
{h0, hsol, t0, tL, i1} along with its service request, and the
server checks to see if h0 and hsol that it computes using
formulas (1) and (6) matches the h0 and hsol submitted by
the client. If both hash values match, the server allocates
resources to process the client’s request.

C. Thwarting Simultaneous Tours

The sequential completion of a single tour can be achieved
via cryptographic hash chains, as shown above. However, a
malicious client can still take multiple tours simultaneously.
To prevent simultaneous tours, the GTP scheme limits the
number of tours that can be carried out within each time
interval. The details are described next.

The time in the GTP protocol is divided into time intervals
of length ∆, and Ti is used to denote the i-th time interval.
The token that the client receives during the time interval
Ti for completing a tour can only be used during the time
intervals Ti and Ti+1. This restriction can be achieved easily
by using a clock tick value of ∆ for the coarse timestamp
ts used in the GTP protocol. The interval length ∆ must be
set to a value that provides enough time for completion of
at least a single tour.

Acquiring the token in Ti and using it in Ti+1 eliminates
the additional service delay incurred by using GTP scheme.
But, there must be limits to how many tokens a client can
acquire per interval and how much service a single token can
buy. The policy concerning the per-token resource allocation
at the server can be decided by the owner of the service,
hence it is beyond the scope of this article. However, it
is worth noting that reuse of a token can be prevented by
caching only the verified tokens in a Bloom filter [33], and
check for the existence in the Bloom filter whenever a new
token arrives.

To limit how many tokens a client can acquire per interval,
we propose the following solution. During each time interval
Ti, a tour guide keeps a pair of counting Bloom filters

(in a counting Bloom filter the array positions, or buckets,
are extended from being a single bit, to an n-bit counter),
one for each interval Ti−1 and Ti. The tour guide counts
the number of tours a client x is taking during each time
intervals using the bloom filter, and ignores the client if it
has already taken CTi

tours for that period. The value of
C is decided by the server for each time interval based on
its load, and it is included in the hash chain computation to
protect against manipulation by the client. The number of
tours are accounted for two time intervals (Ti−1 and Ti), as
a single tour may span two time intervals and using a single
counter does not capture that situation. The GTP scheme
uses the server timestamp t0 to decide, which interval a
tour belongs to; if t0 = Ti−1, the tour belongs to the
interval Ti−1, and vice versa. This scheme for limiting tours
requires the clocks of the tour guides and the server to be
synchronized. However, the accuracy of the synchronization
is coarse-grained enough (in the order of seconds) such
that synchronizing the server and the tour guide clocks
independently with a time server using NTP protocol [34]
suffices.

D. Increasing Tour Guide Robustness

To prevent attackers from indirectly launching DoS on the
server by attacking one of the tour guides, tour guides should
be robust against attacks on themselves. As tour guides per-
form very simple operation, i.e., computing a hash function,
they are very light-weight and far less susceptible to DoS
attacks. Also due to their simple operation, securing the
tour guides against compromise attempts also becomes much
simpler. Furthermore, the basic guided tour puzzle scheme is
designed to localize the impact of a compromised tour guide.
Due to the all-pair pair-wise shared keys, compromising one
tour guide only gives the attacker a free ride for the leg of
the tour that starts with the compromised tour guide, and
the attacker still has to complete the majority of the tour.

In terms of DoS attacks on the tour guides, we propose
a simple solution to thwart DoS attacks. In this solution,
whenever a tour guide receives a puzzle solving request
from the client, it checks to see if the client’s request is
already in its service queue (the priority queue when the
puzzle solving time adjustment mechanisms is used), and it
simply drops the request if another request from the same
client is already in the queue. This will prevent a malicious
client from unfairly taking up more than one slot in the tour
guide’s service queue, and subsequently minimizes the effect
of a DoS attack on legitimate clients.

Although the tour guides are highly immune to DoS
attacks, it is still possible for a tour guide to be down due
to internal failure or a very strong DoS attack that involves
millions of nodes. To operate gracefully even when one of
the tour guides is down, all tour guides exchange heartbeat
messages with each other and with the server, such that
unavailability of a tour guide is immediately known by the

127

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

server and other tour guides, and forwarding of clients to the
failing or unavailable tour guide is avoided. The heartbeat
messages should be adequately protected to thwart attacks
on the tour guides.

VI. ANALYSIS

In this section, we use analytical reasoning and experi-
mental results to demonstrate that guided tour puzzles meet
all of our proposed design goals.

A. General Puzzle Properties

For each property, we briefly explain how that property
is achieved in guided tour puzzle.

Computation guarantee. Each client is required to com-
plete L round-trips in order to obtain a token that proves
to the server that it has completed a length L guided
tour. A client cannot skip any one of the required round-
trips, because doing will be detected by the tour guides
immediately. Therefore, guided tour puzzles achieve a strict
computation guarantee that enforces the same number of
operations for computing the same puzzle answer at all
clients.

Efficiency. In guided tour puzzle, construction of a puzzle
takes only two hash operations (to compute h0 and m0) at
the server, and verification of a puzzle answer also takes two
hash operations (to compute h0 and hL). This efficiency can
be further improved at the cost of a small fixed size memory
for caching h0 values. Transferring of puzzle from server to
the client requires 2 ∗ B/8 plus few extra bytes, where the
size of hash digest B is usually 160 ∼ 256 bits.

Adjustability of difficulty. The difficulty of a tour puzzle
is adjusted by adjusting the tour length L, which can be
increased or decreased by one as needed. So, guided tour
puzzle provides linear adjustability of difficulty.

Correlation-free. Attackers may try to correlate previ-
ousy seen puzzles and puzzle solution to directly obtain a
new valid puzzle solution or compute new puzzle solutions
after obtaining the secret key used in the hash computations.
In guided tour puzzle scheme, resistance to such correlation
attacks are achieved through the pre-image resistance and
collision resistance properties of the cryptographic hash
function used. It is important to pick a hash function that is
proven in practice to be secure against various cryptanalytic
attacks.

Stateless. Guided tour puzzle does not require the server
to store any client or puzzle related information, except for
the cryptographic keys that are used for the hash calculation.
Puzzle answer verification using memory lookup require
few megabytes of memory, but the size of this memory
is constant and does not increase as the number of clients
increase. The Bloom filter memory used by tour guides is
also roughly constant in size and small enough such that it
is not susceptible to memory depletion attacks.

Tamper-resistance. The server can guarantee a limited
validity period of a puzzle answer, by checking if the
difference between the tL and t0 is within an acceptable
value tD, i.e. tL − t0 ≤ tD. Recall that t0, tL are submitted
by the client to the server in the verification phase of
the puzzle protocol, and the client cannot change these
values since they are protected by the hash values h0 and
hL. Meanwhile, the puzzle answer computed by one client
cannot be used by any other client, since a value unique to
each client is included in the computation of h0 and hs.

Non-parallelizability. A guided tour puzzle cannot be
completed in parallel, because at each stop s, the tour guide
Gis requires the client to submit the hash values ms−1

from the previous stop, and replies to the client if only
ms−1 is valid. As such, the puzzle scheme strictly enforces
sequential completion of a guided tour and achieves non-
parallelizability.

B. Achieving Puzzle Fairness

The guided tour puzzle scheme is not affected by the
disparity in the computational powers. It is because the
round trip delays that consist the puzzle solving time of
a guided tour puzzle are mostly decided by the intermediate
network between the client and the tour guides, and the
clients’ CPU, memory, or bandwidth resources have minimal
impact. In terms of the uniformity of puzzle solving time
across clients, the guided tour puzzle scheme provides a
better guarantee compared to the computation-based puzzle
schemes as shown in next subsections.

1) Experimental Analysis: In the following, we use tour
delay to refer to the sum of all round trip delays occurred
in a single tour. We use a two-week long measurement data
collected on PlanetLab [35] to show that the variation in
tour delay across clients is within a small factor for a large
distributed system. PlanetLab has a collection of over 1, 000
nodes distributed across the globe, and provides a realistic
network testbed that experiences congestion, failures, and
diverse link behaviors [35]. We used about 40% (over 400)
of the nodes that had complete measurement data available
throughout the two-week period.

We first randomly chose 20 nodes, out of the 400 selected
nodes, as candidates for tour guides. The remaining nodes
are used as client nodes. The number of tour guides N is
varied from 4 to 20, and the tour length L is varied from
2 to 18. For each (N , L) pair, guided tours are generated
for all client nodes. The tour delay at a given time is
computed based on the round trip delays for corresponding
time periods.

To give a better idea of how the tour delays vary across
clients on average, we averaged tour delays of all clients
over two-week period. To find the average tour delay of a
client for a specific (N , L) setting, all tour delays of the
client for a given (N , L) configuration is averaged over the
two-week period to get the average tour delay of a client

128

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 100 200 300 400
Client node index

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

to
ur

 d
el

ay
 (m

illi
se

co
nd

)

L=18
L=14
L=10
L=6
L=2

(a) Average tour delays of two-week period, N = 4.

Histogram of x

Guided tour delay (ms)

D
e

n
s
it
y

0 2000 4000 6000 8000

0
e

+
0

0
2

e
!

0
4

4
e
!

0
4

6
e
!

0
4

8
e
!

0
4

1
e
!

0
3

(b) PDF of tour delay (unit: millisecond) when N = 4

Figure 2: The tour delays of clients when 4 tour guides are used.

for that (N,L) setting. Next, the average tour delays are
sorted by least-to-most to provide a better view of the delay
variation across clients. Figures 2a shows the average tour
delays computed using this method for all client nodes when
N = 4. Results for other values of N are skipped due to
the space limitation, but they are very similar to the results
shown here. The ratio of the largest and the smallest tour
delays is around 5, when outliers are excluded. This disparity
is several orders of magnitude smaller when compared to
the disparity in available computational power (which can
be in thousands [12] [13]). Figure 2b shows that majority
of tour delays are clustered within a tight area of delay and
the distribution of tour delays closely simulates a normal
distribution.

2) Analytical Analysis: Although the PlanetLab data pro-
vides a somewhat good approximation of the delay char-
acteristics of the Internet, it certainly has limitations. Due
to the fact that the majority of the PlanetLab machines
are connected to the Internet through campus networks, the
delay data may not sufficiently reflect the diverse access
network technologies that are used for connecting end hosts
to the Internet. Next, we use latency data from the existing
literature to show that even when clients are connected
to the Internet using access technologies that provide very
different delay properties, the disparity in their end-to-end
round trip delays will be still smaller than the disparity in
the computational power.

Let us take four very common access network technolo-
gies with very different delay characteristics: 3rd genera-
tion mobile telecommunications (3G), Asymmetric Digital
Subscriber Line (ADSL), cable, and campus Local Area
Network (LAN). The average access network delays are
200ms for 3G [36], 15 ∼ 20ms for ADSL and cable [37],
[38], and in the order of 1ms or negligible for campus
LANs. Here, we refer to the access network delay as the
round-trip delay between the end host and the edge router of
the host’s service provider. This latency is usually measured

by measuring the round-trip delay to the first pingable hop.
Based on the measurement analysis of the Internet delay
space [39], the delay space among edge networks in the
Internet can be effectively classified into three major clusters
with average round trip propagation delays of about 45ms
for the North America cluster, 135ms for Europe cluster,
and 295ms for Asia cluster. Using these edge to edge
propagation delay values and the average access network
delay values, we can compute an average end to end round
trip delays of 245, 335, and 495 ms for 3G hosts, 65,
155, and 315 ms for DSL & cable hosts, and 45, 135,
and 295 ms for campus LAN hosts. The biggest disparity
occurs between the hosts in the Asia cluster that connect
through 3G and the hosts in the US cluster that connects
through campus LAN, and the ratio of their round trip delays
is 495ms/45ms = 11. This disparity is about 4 times
smaller than the low estimate of computational disparity
provided in [26]. The round trip delays may get higher than
495ms due to congestion and high queuing delays in the
intermediate routers. However, these congestions and high
queuing delays affects all packets, regardless of whether
they are from malicious clients or legitimate clients. Being
able to persistently decrease the tour delay requires the
attacker to compromise majority of the intermediate routers
between itself and the tour guides, which is hard compared
to minimizing computational puzzle solving time by adding
more computing power.

C. Achieving Minimum Interference

In guided tour puzzle scheme, a client only has to
send/receive packets to/from tour guides. To complete a
guided tour puzzle with tour length L, a client only needs
to send and receive a total of 2×L packets with about less
than few hundred bytes (depending on the output size of
the cryptographic hash function) of data payload. Since L is
usually a small number in the order of tens, this creates
negligible CPU and bandwidth overhead even for small

129

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

devices such as cellular phones.

D. Limitation

As with any other solution, GTP scheme has its limitation.
First of all, GTP is a mitigation scheme that reduces the
impact of DDoS, hence does not eliminate the effects of
the DDoS entirely. The optimal defense that is achievable
without being able differentiate malicious requests or detect
malicious clients is to service all clients equally. The GTP
scheme aims at being very close to such optimal defense.
Secondly, the GTP scheme only works at the applica-
tion/service layer, and relies on other solutions to provide
protection against bandwidth flooding DoS attacks. Lastly,
the tour delay seen by different clients for the same tour
length can be different in the GTP scheme, and this may
lead to different levels of service response time experience
by different clients. However, note that this disparity in the
tour delay does not discriminate against clients that possess
less computational resources, and both malicious clients and
legitimate clients are equally likely to experience longer
tour delays. Having more computational power does not
particularly help malicious clients complete a guided tour
faster.

VII. STUDY OF DDOS DEFENSE EFFICACY

In this study, we focus our evaluation on the ability
of guided tour puzzles in mitigating the application layer
DDoS attacks. We show that the guided tour puzzle scheme
provides an optimal defense against request flooding attacks
and a near optimal defense against puzzle solving attacks,
when the server does not have the capability to differentiate
the malicious clients from the legitimate ones.

A. Simulation Setup

To evaluate the effectiveness of guided tour puzzle in a
practical simulation environment, we used Network Simu-
lator 2 (NS-2) [40]. To create a network topology that can
closely simulate large-scale wide area networks, such as the
Internet, a topology with 5, 000 nodes is generated using
the Internet Topology Generator 3.0 (Inet-3.0) [41]. The
bandwidth and the link delay values are calculated based on
the Inet-3.0 generated link distance values. Note that the link
and queueing delays are different from one link to another,
therefore the round trip delays, and consequently the tour
delays, of different clients will be different.

Since client nodes, tour guides, and server nodes will be
located in the edge in real networks, we use only degree-
one nodes from the generated topology as client, server, and
tour guide nodes. From a total of 1, 922 degree-one nodes,
we randomly choose a degree-one node as the server node
and another 20 degree-one nodes as potential tour guides.
The remaining 1, 901 degree-one nodes are all used as client
nodes, which includes both legitimate and malicious client
nodes. The percentage of malicious client nodes is varied

0 20 40 60 80
Percentage of attackers (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

No GTP, flooding attack
GTP, flooding attack
GTP, puzzle solver

Figure 4: The cost of guided tour puzzles in terms of request
completion times.

from 0% to 90% with an increment of 10%, and the server
load is increased from 0.96 to 8.74 correspondingly. The
server load is calculated as the ratio of the number of
incoming requests per second to the server CPU capacity
in requests per second.

A simulation model of the guided tour puzzle scheme is
developed in NS-2. Clients in the simulation model generate
self-similar traffic to closely mimic the Internet traffic. Since
the self-similar traffic can be produced by multiplexing
ON/OFF sources that have fixed rates in the ON periods and
heavy-tail distributed ON/OFF period lengths [42] [43], each
client application is implemented as an ON/OFF source with
ON/OFF period lengths are taken from a Pareto distribution
with shape parameter α equals to 1.5 (NS-2 default). The
average ON and OFF times are set to 2 seconds. Each
legitimate client sends at an average rate of 8000 bits
per second. The average client request size is set to 1000
bytes, thus each legitimate client essentially sends requests
at one request per second during on times, and 0.5 request
per second on average. The average ON and OFF times,
the client request size, and the server response size values
selected based on the Web workload model introduced by
Barford and Crovella [44].

The same client application model is used for malicious
clients except that 1) malicious clients can choose to follow
or not to follow the puzzle process, whereas legitimate
clients always follow the puzzle process; and 2) malicious
clients send requests at a higher rate than legitimate clients.
We experimented with two different types of attacks — the
flooding attack and the attack against the puzzle scheme. In
a flooding attack, a malicious client sends requests at a high
rate and ignores the server’s request for solving puzzles.
In the attack against the puzzle scheme, a malicious client
solves puzzles as fast as they can to send requests at the
maximum speed possible. The latter is a much stronger
attack, since a server that deploys guided tour puzzle scheme
can trivially filter out a malicious request that contains an

130

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 20 40 60 80
Percentage of malicious clients (%)

0

0.2

0.4

0.6

0.8

1

%
 o

f s
er

ve
r C

PU
 a

llo
ca

te
d

to
 le

gi
tim

at
e

cl
ie

nt
s

No DFF, flooding attack
Analytic (no DFF, flooding)
DFF, adaptive DDoS
DFF, flooding attack

(a) Percentage of CPU allocated to legitimate clients

0 20 40 60 80
Percentage of malicious clients (%)

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 o

f d
ro

pp
ed

 le
gi

tim
at

e
re

qu
es

ts
 (%

) No DFF, flooding attack
DFF, flooding attack
DFF, adaptive DDoS

(b) Percentage of dropped legitimate requests

Figure 3: The effectiveness of guided tour puzzle against flooding attacks and puzzle solving attacks (N=4, L=8).

incorrect puzzle solution, while a malicious request that
includes a correct puzzle solution consumes significantly
more resources at the server.

The server’s behavior is modeled as described in Sec-
tion V. Since NS-2 does not provide a CPU model, the
server’s CPU is modeled as a link between the server node
and a dummy node that is connected only to the server.
When a client request arrives at the server, the server injects
a packet with its size equals to the server response size into
the link toward the dummy node. And when the packet
is pinged back by the dummy node (which implies the
completion of the server processing of the request), the
server sends a response to the client. The capacity of this
link is set to 80 Mbps to simulate a CPU processing capacity
of 80Mbps

8×10,000bytes = 1, 000 requests per second, where the
10, 000 bytes is the average size of a server response. The
server capacity of 1, 000 requests per second is used so that
the server’s full capacity can be reached when all clients are
legitimate, and the server load can be increased by 100%
with each increase of the percentage of malicious clients. A
round-robin queue is used to model the CPU’s round-robin
process scheduling.

Using the average estimated client request rate of 0.5
request per second and the server CPU rate of 1, 000 requests
per second, we can compute that the expected utilization
of the server is 0.5×1901

1000 = 0.9505 when all the clients
are legitimate clients. We achieved a utilization of 0.9656
for this setting in our experiments, which validates the
correctness of our simulation setup.

To keep the simulation simple, instead of using an
adaptable tour length, a fixed tour length is used within
a single run of the simulation. For each solved puzzle,
clients are granted service for a single request. We may
achieve significantly better protection against the denial of
service attack by dynamically adapting the tour length and
the number of granted requests per completed puzzle.

We use three evaluation metrics — average completion
time of a single legitimate request, percentage of the server
CPU allocated to legitimate requests, and percentage of
dropped legitimate requests. The average completion time is
calculated by recording the time spent between sending of a
request and the receiving of its response, which includes the
time spent on solving puzzles, for all completed requests
of all the legitimate clients and taking the average. The
percentage of the server CPU allocated to legitimate requests
is computed as the fraction of the time the server’s CPU is
processing the requests of legitimate clients. The percentage
of dropped legitimate requests is computed by dividing
the total number of dropped legitimate requests by the
total number of legitimate requests sent. For the results
we report here, we set the simulation length of each run
to 1000 seconds. For each simulation a warmup period of
100 seconds is used, after which recording of the evaluation
metric measurement is started. Each experiment is repeated
10 times, and the average of 10 runs is reported along with
a 99% confidence interval.

B. Simulation Results

The first set of simulations are conducted with a fixed tour
length of 8 and using 4 tour guides. The results are reported
in Figure 3 and 4.

1) Server CPU utilization: Figure 3(a) illustrates the
improvement in the percentage of the server’s effective CPU
capacity that is allocated to processing the requests of legit-
imate clients. As the line “No GTP, flooding” (GTP means
guided tour puzzle) indicates, the legitimate clients’ share of
the server’s CPU capacity drops rapidly as the percentage of
attackers increases when no guided tour puzzle is used. The
percentage of server CPU allocated to processing legitimate
requests in this case is predominantly decided by the ratio
of total number of legitimate requests to the total number of
requests. This can be validated by computing the percentage

131

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4 6 8 10 12
ttl

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(a) 40% attacker, N = 4

4 6 8 10 12
ttl

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(b) 80% attacker, N = 4

Figure 5: The effect of the tour length on the effectiveness of the guided tour puzzle defense.

of legitimate requests for different percentage of malicious
clients using the following formula.

r × (1− x)×Nc

r × (1− x)×Nc + 10× r × x×Nc
=

1− x
1 + 9x

(7)

where, r denotes the request rate of legitimate clients, Nc is
the total number of client nodes, and x is the percentage of
malicious nodes. The line “Analytic (no GTP, flooding)” is
then computed using the Formula (7), and it overlaps per-
fectly with the experiment results from the NS-2 simulation
for the case of “No GTP, flooding attack”.

The top line “GTP, flooding attacker” in the Figure 3(a)
shows that using guided tour puzzle eliminates the impact
of flooding attackers entirely. In this scenario, the malicious
clients do not solve any puzzle, but send requests that
include fake puzzle solutions at a high rate in an attempt
to consume as much server CPU capacity as possible. The
slight decrease in the legitimate clients’ utilization of the
server CPU as the percentage of attackers increases is due
to the increase in the percentage of server’s CPU capacity
allocated to verifying puzzle solutions. We intentionally used
a low estimate of 106 hash operation per second as the
server’s hash computation rate to highlight the cost of puzzle
solution verification.

The last line “Puzzle, solver” in Figure 3(a) is correspond-
ing to the attack targeted at the guided tour puzzle scheme
itself. It shows that the percentage of server CPU allocated
to legitimate clients is roughly equal to the percentage
of legitimate clients in the system when the guided tour
puzzle scheme is used. We argue that without being able to
differentiate legitimate clients from the malicious ones, the
best a DoS prevention scheme can achieve is to treat every
client equally and fairly allocate the server CPU to all the
clients that are requesting service. Therefore, the optimal
protection that a defense mechanism can provide without
being able to differentiate malicious clients is to guarantee

the legitimate clients the amount of server CPU that is equal
to the percentage of legitimate clients in the system.

2) Request drops: Figure 3(b) shows the percentage of
dropped legitimate requests. When no guided tour puzzle is
used, the flooding attack caused legitimate clients to drop
most of their requests as the line ”No puzzle, flooding”
indicates. When the percentage of attacker is increased to
90%, almost all legitimate requests are dropped as a result
of the flooding attack. After switching to use guided tour
puzzles (line “Puzzle, flooding”), the percentage of dropped
requests becomes zero under the flooding attack even when
the 90% of the clients are malicious. In the case of puzzle
solving attacks, guided tour puzzle scheme reduces the
legitimate request drops by more than half in all cases, and
reduces the request drops to zero in some cases. In fact, the
legitimate request drops can be eliminated entirely even in
the case of puzzle solving attacks, as the simulation results
in “effect of tour length” subsection show.

3) Request completion time: Of course, the benefit of
using the guided tour puzzle scheme comes at the cost
increased average request completion time, similar to any
other ”proof of work” based DoS defense mechanism. This
cost is shown in the Figure 4. When guided tour puzzle is
utilized, the average completion time of a request increased
significantly in both flooding attack and puzzle solver attack
cases, due to the extra delay introduced by the puzzle
solving process. Nonetheless, the increase in the request
completion time is within an acceptable range of degradation
of service quality. Moreover, the guided tour puzzle scheme
provides an easy way to achieve a better trade-off between
two mutually restricting sets of quality of service goals by
varying the tour length.

4) Effect of tour length: The tour length in guided tour
puzzles is critical for the optimality of the guided tour puzzle
defense, especially for the legitimate clients’ utilization of
server CPU in the case of puzzle solving attacks. The next
set of simulation experiments are conducted to measure the

132

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4 6 8 10 12 14 16
The number of DFF nodes

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(a) 40% attacker, L = 8

4 6 8 10 12 14 16
The number of DFF nodes

0

0.2

0.4

0.6

0.8

1

Le
gi

tim
at

e
ut

iliz
at

io
n

(%
)

/
R

eq
ue

st
 D

ro
p

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Av
g.

 c
om

pl
et

io
n

tim
e

pe
r r

eq
ue

st
 (s

)

Legitimate utilization
Request drop
Req completion time

(b) 80% attacker, L = 8

Figure 6: The effect of the number of tour guides on the effectiveness of the guided tour puzzle defense.

effect of tour length on utilization, request completion time,
and request drops in the case of puzzle solving attacks.
Configurations of 40% and 80% malicious clients are used
in these experiments, and the number of tour guides N is
set to 4.

The response of various metrics to the change in tour
length is illustrated in Figure 5. As the tour length increases,
the CPU allocated to legitimate clients (”Legitimate utiliza-
tion”) and the request completion time (”Req completion
time”) increase while the percentage of dropped legitimate
requests (”Request drop”) decreases. After increasing the
tour length to 12, the percentage of dropped legitimate
requests becomes zero, and the server CPU allocated to
legitimate clients becomes optimal in both cases of 40% and
80% malicious clients. Here the optimal means legitimate
clients are granted the amount of server CPU capacity that
is equal to the percentage of legitimate clients in the system.
Further increasing the tour length does not improve the
utilization and request drop metrics and decreases the total
utilization of the server CPU, while increasing the request
completion time. The increase in the request completion time
is evident since larger tour length means more round trips
between clients and tour guides. These observations tell us
that choosing the right tour length is important in achieving
optimal DoS prevention results and providing better trade-
off between mutually restricting metrics.

5) Effect of the number of tour guides: The last set of
experiments are conducted to determine the effect of the
number of tour guides on the effectiveness of guided tour
puzzles. The 40% and 80% malicious clients are used, while
the tour length L is set to 8. As the results in Figure 6 show,
increasing the number of tour guides in the system does not
produce any significant change in terms of all three metrics
we are measuring. We can conclude from these results that
guided tour puzzle can provide a good protection against
the DDoS attack with just a few tour guides. Since the tour
guides have a single function, which is replying to every

request with the hash of the input message contained in the
request, it is much easier to protect and maintain. The cost
of hardware devices that can be used as tour guides likely
to be significantly cheaper than over-provisioning by adding
new servers. Moreover, a set of tour guides can be used to
protect multiple servers, which further minimizes the cost
per server by amortizing the total cost of tour guides over
multiple servers.

VIII. CONCLUSION AND FUTURE WORK

In this article, we showed that most existing cryptographic
puzzle schemes do not consider the resource disparity be-
tween clients. We argued that resource disparity reduces
or even nullifies the effectiveness of cryptographic puzzle
schemes as a defense against denial of service attacks. To
this end, we introduced the guided tour puzzle scheme, and
showed that it achieves the desired properties of an effective
and efficient cryptographic puzzle scheme. In particular, we
showed how guided tour puzzles achieve puzzle fairness,
minimum interference properties, and how it can achieve
better defense against denial of service attacks. Meanwhile,
using extensive simulation studies we showed that guided
tour puzzle is very effective in mitigating distributed denial
of service attacks, and that it is a practical solution to be
adopted.

As future work, we would like to further improve the
guided tour puzzle scheme in terms of the following. First,
we would like to eliminate the need for the server’s in-
volvement in the puzzle generation process. Second, further
investigation is needed to find out optimal ways to position
tour guides in the network. Last but not least, adopting
guided tour puzzle to defend against other application layer
attacks, such as Sybil attack and spam, is also desirable.

REFERENCES

[1] M. Abliz and T. Znati, “New approach to mitigating dis-
tributed service flooding attacks,” in the 7th International
Conference on Systems (ICONS ’12), Reunion Island, 2012.

133

International Journal on Advances in Security, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] A. Juels and J. Brainard, “Client puzzles: A cryptographic
countermeasure against connection depletion attacks,” in
NDSS ’99, San Diego, CA, 1999, pp. 151–165.

[3] W. Feng, E. Kaiser, and A. Luu, “The design and implemen-
tation of network puzzles,” in IEEE INFOCOM ’05, 2005.

[4] T. Aura, P. Nikander, and J. Leiwo, “DoS-resistant authenti-
cation with client puzzles,” in 8th International Workshop on
Security Protocols, vol. 2133, 2000, pp. 170–181.

[5] D. Dean and A. Stubblefield, “Using client puzzles to protect
TLS,” in 10th USENIX Security Symposium, 2001, pp. 1–8.

[6] X. Wang and M. K. Reiter, “Defending against denial-of-
service attacks with puzzle auctions,” in IEEE Symposium on
Security and Privacy, Oakland, 2003, pp. 78–92.

[7] C. Dwork and M. Naor, “Pricing via processing or combatting
junk mail,” in CRYPTO ’92, 1992, pp. 139–147.

[8] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion
attacks using congestion puzzles,” in CCS ’04, 2004.

[9] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New
client puzzle outsourcing techniques for dos resistance,” in
11th ACM CCS, 2004, pp. 246–256.

[10] N. Borisov, “Computational puzzles as sybil defenses,” in
P2P ’06: Proceedings of the Sixth IEEE International Con-
ference on Peer-to-Peer Computing, Washington, DC, USA,
2006, pp. 171–176.

[11] H. Rowaihy, W. Enck, P. Mcdaniel, and T. L. Porta, “Lim-
iting sybil attacks in structured p2p networks,” in the IEEE
INFOCOM ’07, 2007, pp. 2596–2600.

[12] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Mod-
erately hard, memory-bound functions,” in NDSS ’03, 2003.

[13] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound
functions for fighting spam,” in CRYPTO ’03, 2003.

[14] M. Ma, “Mitigating denial of service attacks with password
puzzles,” in International Conference on Information Tech-
nology: Coding and Computing, vol. 2, Las Vegas, 2005, pp.
621–626.

[15] B. Groza and D. Petrica, “On chained cryptographic puzzles,”
in 3rd Joint Symposium on Applied Computational Intelli-
gence (SACI ’06), Timisoara, Romania, 2006.

[16] D. G. Andersen, “Mayday: Distributed filtering for Internet
service,” in 4th USENIX Symposium on Internet Technologies
and Systems, Seattle, WA, 2003.

[17] R. Thomas, B. Mark, T. Johnson, and J. Croall, “Netbouncer:
Client-legitimacy-based high-performance DDoS filtering,” in
3rd DARPA Information Survivability Conference, 2003.

[18] S. M. Bellovin, M. Leech, and T. Taylor, “ICMP traceback
messages,” IETF Draft, 2003.

[19] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Prac-
tical network support for IP traceback,” in ACM SIGCOMM
’00, vol. 30(4), Stockholm, Sweden, 2000, pp. 295–306.

[20] A. Yaar, A. Perrig, and D. Song, “SIFF: A stateless Internet
flow filter to mitigate DDoS flooding attacks,” in IEEE
Symposium on Security and Privacy, 2004, pp. 130–143.

[21] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting
network architecture,” in ACM SIGCOMM, 2005, pp. 241–
252.

[22] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and
S. Shenker, “DDoS Defense by Offense,” in Proceedings of
the SIGCOMM ’06, 2006, pp. 303–314.

[23] A. Stavrou, D. L. Cook, W. G. Morein, A. D. Keromytis,
V. Misra, and D. Rubenstein, “WebSOS: An overlay-based
system for protecting web servers from denial of service
attacks,” Elsevier Journal of Computer Networks, vol. 48,
2005.

[24] G. Price, “A general attack model on hash-based client puz-

zles,” in 9th IMA Conference on Cryptography and Coding,
vol. 2898, Cirencester, UK, 2003, pp. 319–331.

[25] W. Feng, “The case for TCP/IP puzzles,” in ACM SIGCOMM
Future Directions in Network Architecture, 2003.

[26] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and
Y. Hu, “Portcullis: Protecting connection setup from denial-
of-capability attacks,” in ACM SIGCOMM, 2007, pp. 289–
300.

[27] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” MIT, Cambridge, Mas-
sachusetts, Tech. Rep., 1996.

[28] S. Tritilanunt, C. Boyd, E. Foo, and J. M. González, “To-
ward non-parallelizable client puzzles,” in 6h International
Conference on Cryptology and Network Security, 2007, pp.
247–264.

[29] M. J. Coster, A. Joux, B. A. Lamacchia, A. M. Odlyzko,
C. Schnorr, and J. Stern, “Improved low-density subset sum
algorithms,” Computational Complexity, vol. 2(2), 1992.

[30] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring poly-
nomials with rational coefficients,” Mathematische Annalen,
vol. 261(4), pp. 515–534, 1982.

[31] M. Jakobsson and A. Juels, “Proofs of work and bread
pudding protocols,” in the IFIP TC6/TC11 Joint Working
Conference on Secure Information Networks, 1999, pp. 258–
272.

[32] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
Hashing for Message Authentication,” RFC 2104 (Informa-
tional), Internet Engineering Task Force, Feb. 1997.

[33] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13(7),
pp. 422–426, 1970.

[34] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network
Time Protocol Version 4: Protocol and Algorithms Specifica-
tion,” RFC 5905, Internet Engineering Task Force, Jun. 2010.

[35] “About planet lab,” Planet Lab, [Accessed: Dec. 20, 2012].
[Online]. Available: http://www.planet-lab.org/about

[36] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl, “Anatomizing application performance differences on
smartphones,” in MobiSys ’10, 2010, pp. 165–178.

[37] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu,
“Characterizing residential broadband networks,” in IMC ’07,
2007, pp. 43–56.

[38] M. Yu, M. Thottan, and L. Li, “Latency equalization as
a new network service primitive,” Networking, IEEE/ACM
Transactions on, vol. PP, no. 99, p. 1, May 2011.

[39] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P. Druschel,
and G. Wang, “Measurement-based analysis, modeling, and
synthesis of the internet delay space,” IEEE/ACM Trans.
Netw., vol. 18, no. 1, pp. 229–242, 2010.

[40] VINT, “The network simulator - ns-2,” 2009.
[41] J. Winick and S. Jamin, “Inet-3.0: Internet topology gener-

ator,” University of Michigan, Tech. Rep. CSE-TR-456-02,
2002.

[42] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,
“On the self-similar nature of ethernet traffic,” IEEE/ACM
Transactions on Networking, vol. 2, no. 1, pp. 1–15, 1994.

[43] V. Paxson and S. Floyd, “Wide-area traffic: The failure of
poisson modeling,” IEEE/ACM Transactions on Networking,
vol. 3, pp. 226–244, 1995.

[44] P. Barford and M. Crovella, “Generating representative web
workloads for network and server performance evaluation,”
SIGMETRICS Perform. Eval. Rev., pp. 151–160, 1998.

