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Abstract—This paper summarizes work on formal mecha-
nized verification of security protocols using Avispa, a model
checker dedicated to security protocols. Avispa has been
successfully used in various Master’s projects. In this paper, we
present two outstanding projects of quite different nature that
highlight the spectrum of formal security protocol verification
and lead us to a proposition of engineering practice for the
development of secure protocols based on two main ideas (a)
refactoring existing formalisations to prove adaptations of secu-
rity protocols (b) compositional proof of new protocols allowing
the combination and reuse of (parts of) existing formalisations
of other protocols. This paper presents first Radius-SHA256, an
adaptation of the Radius protocol for remote authentication for
network access to the secure hash function SHA-256. Second,
we present the Secure Simple Protocol which is an extension
for security of a protocol developed at our university for next
generation networks. Both protocols have been formalized in
the Avispa model checker and security has been proved.

Keywords-Security protocols, Model Checking, Crypto-
graphic Hashes, Simple Protocol

I. INTRODUCTION

Radius [19], [20], a remote authentication protocol used
for building up secure communications of clients with net-
works via network access servers, uses the message digest
function MD5, a hash function which has meanwhile been
proven to have security weaknesses. By contrast, the hash
function SHA-256 still remains unchallenged. Although
seemingly straightforward and thus tempting, simply re-
placing MD5 by SHA-256 in the Radius protocol must be
considered potentially harmful since authentication protocols
are extremely sensitive to minor changes as the history of
attacks shows. In December 2008, an attack on the SSL
protocol has been demonstrated based on the previously
discovered collisions of the MD5 hash function [16]. The
engineers of that attack recommend the discontinuation of
use of SSL based on MD5. Fortunately, for SSL the use
of the hash function is already by design a choice point.
For Radius, this flexibility is not yet established; this is the
subject and one of the results of this paper. Triggered by
the alarming history of attacks of security protocols, formal
verification techniques have long been deemed to be a way
out. We investigate whether Radius-SHA256 – our proposed
adaptation of the Radius protocol – can provide better
security guarantees than its original. To provide evidence
based on mathematical rigor we use the Avispa model

checker. Fortunately, we can rely on the rich data base of
this tool providing a model of the original protocol. By
adapting this model to our Radius-SHA256 and checking
that the original security guarantees still hold we prove two
things (a) that Radius-SHA256 is secure and (b) that the
security guarantees have general validity, i.e. they can be
carried over to protocols Radius-X for hashes X. The latter
result corresponds to a reduction of Radius security to the
security of the underlying hash function.

Model checking, a push-button technology for mathemat-
ical verification of finite state systems has been discovered
to be a suitable tool for security analysis of authentication
protocols, e.g. [7]. Ever since, this technology has proved
to be useful for the engineering of secure protocols, e.g.
for adaptation of the Kerberos protocols to mobile scenarios
[6]. However, little attention has been given to investigate
to what extent we can use known engineering techniques,
like refactoring, reuse, and composition to help us engineer
formal security verifications of protocols. This paper is
to be seen as a first step towards such an engineering
process. We mainly present two distinct and unrelated case
studies on Avispa formalisations. The first one being the
aforementioned Radius and the second one a new specially
LAN-centric transport protocol called simple protocol (SP)
developed in our research group [21] and extended here
by security, i.e. authentication. As a second engineering
exercise, we report on this secured version of the SP
protocol. This exercise shows how a new development of
a special purpose protocol can profit from a simultaneous
modelling and analysis with a dedicated modelchecker like
Avispa. The two case studies need not be related since they
just serve as case studies for engineering security protocols
with general engineering principles like refactoring, reuse
and composition. Even though, there is a bridge between
those seemingly unrelated projects: securing local servers
and services. So the first project (Radius) looks at a server
protocol and the other project (SP) looks at a secure,
optimized and tunable protocol for local servers.

This paper is an extension of the conference paper [4]
and is based on the Masters Theses of two of the authors
[11], [14]. The extensions are a more verbose introduction
to the SP protocol and the technical presentation of the
Avispa encoding of SP. In this paper we first provide
the prerequisites of this project: brief introductions to the
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Radius protocol, the Simple Protocol, Avispa model check-
ing, and hashes (Section II). From there, we develop our
new version Radius-SHA256 by introducing its model in
Avispa in detail (Section III) and illustrate how this model
can be efficiently used to verify security goals (Section
III-D). To illustrate that Modelchecking is also useful in the
engineering of new protocols we show its application to the
Simple Protocol (Section IV). We first give a motivation and
deeper introduction to this protocol and its context for future
networks thereby extending the original paper [4]. Next we
show how this Simple Protocol can be extended step by
step introducing cryptographic keys to add authentication
and secure it. We finally offer conclusions and an outlook
(Section V).

II. BACKGROUND

A. Radius

One of the major issues with networks is their security and
one response to this challenge are authentication protocols.
Radius is a popular protocol providing security to commu-
nication channels. Radius stands for Remote Authentication
Dial in User Service and serves to secure communication be-
tween Network Access Servers (NAS) and so-called Radius
servers. Radius satisfies the AAA (Authentication, Autho-
rization and Accounting) protocol standards in both local
and roaming situations. In January 1997, Radius standards
were first introduced in RFC 2058 and Radius accounting
in RFC 2059. After that RFC 2138 and RFC 2139 were
published and they made the previous RFC obsolete. They
both were made obsolete in turn by RFC 2865 and RFC
2866 respectively. Following were updates by RFCs 2868,
3575, and 5080 [20].

Assume that there is an Internet service provider (ISP)
and he has two NAS. A NAS allows a user to connect
directly to the ISP’s network and be accepted by a core
router which directly connect with ISP’s network backbone.
When a user wants to access his services, he sends a request
to the NAS which forwards the user request to the main
server to check the supplied credentials. This process is
called authentication.

After authentication, the NAS has to check the access list
of the user and then decide which services are permitted
to this user. The RADIUS server then replies to the NAS
with Access Reject, Access Challenge, or Access Accept
as illustrated in Figure 1. This information is forwarded by
the Radius server to the NAS. This is called authorization.
Once a user is authenticated and authorized successfully, the
NAS creates a connection between the user and the main
server through which both can exchange their information.
This secure connection is called a session. All the infor-
mation regarding the session will be saved by the NAS for
its accounting purposes. It includes start time of session,
termination time of session, size of total received and sent
data, amongst other information for accounting.

Figure 1. Radius access request and possible replies [18]

B. Simple Protocol

A new trend in next generation networks is the divergence
between local area networks (LAN) and wide area networks
(WAN) because there is still an increase of efficiency to be
expected in LANs. Additionally, the ubiquity of computing
devices and common usage of mobile devices asks for a
flexibility that is better supported with fixed core networks
and flexible wireless networks at the periphery. A recon-
sideration of the TCP/IP seems appropriate since adaptation
of TCP to the often heterogeneous requirements of local
wireless networks is not easy. The Simple Protocol (SP) [10]
is intended to be used in combination with TCP but TCP for
the WAN and SP for the LAN communication. SP is part
of a wider development of the Y-Comm framework [21] –
a new architecture for mobile heterogeneous networking.

A specially LAN-centric transport protocol has different
requirements from a WAN transport protocol, e.g. TCP,
since performance issues differ. These requirements mark
the design decision that define SP [10]. Since most LAN
communications consist of messages or transactions, SP
supports a message-based communication in contrast to TCP
streams. The higher speed available in LAN is exploited by
using a larger window size for SP than WAN protocols: SP
supports 4MB message sizes by default and can even be
increased. In order to keep packet processing simple, SP
uses a small number of connection states as well as packet
types. Flexibility is achieved by allowing Quality of Service
(QoS) to be set using the packet types.

In this paper (Section IV), we summarize briefly how the
Avispa support helped in designing a secure extension of
SP by hybrid cryptography. Extending the initial connection
part of the protocol, we add public-key based authentication
while simultaneously exchanging symmetric session keys for
the following secured data exchange of SP. The protocol
achieves authenticity by public keys while preserving its
efficiency to an extent through the use of faster symmetric
key encryption.

C. Avispa

Avispa stands for Automated Validation of Internet
Security-sensitive Protocols and Applications [2]. To model
and analyze a protocol, Avispa provides its own High-Level
Protocol Specification Language (HLSPL). In order to check
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Figure 2. Avispa: language formats and tool architecture [2]

security, Avispa translates the given HLSPL specification in
the intermediate format IF, which is then the basis for four
different verification machines that can be applied to model
check security properties on a protocol expressed as depicted
in Figure 2. Avispa uses Dolev-Yao channels annotating
them as a type as channel(dy). This means that the attacker
is assumed to be able to do eavesdropping, intercepting and
faking on these channels. Protocols can be very naturally
specified in Avispa using the role concept. Every principal is
modeled as such a role which enables encapsulating its com-
munication parameters, local variables and constants. Based
on that, a role describes state changes by defining transitions
between states that may depend on pre- and postconditions
of the current state. Roles can furthermore be instantiated in
other roles. This enables the composition of the single roles
representing the single principals into a protocol session
while synchronizing them on their communication. It also
enables specifying an attacker. Once the protocol is thus
specified predefined HLSPL propositions, most prominently
secrecy and authentication can be automatically verified.
We introduce more detail on HLSPL constructs, their IF
translation, and the verification features when applying them
to formalize Radius-SHA256 in the following section.

D. Hash Functions

Hash functions – also known as message digests or
compression functions – map arbitrary length inputs to fixed
size outputs. They are considered as cryptographic hash
functions if they provide the following three properties: (a)
they cannot be inverted, i.e. given y = H(x) the input x
cannot be found, (b) it is impossible to find collisions, i.e.
we cannot find x, y with H(x) = H(y), and (c) given an
input hash pair it is impossible to find another input with
the same hash value, i.e. for H(x) = y we cannot find x′

such that H(x′) = y. The latter two properties resemble
each other expressing the idea of collision resistance but
the second one is stronger.

These basic properties of good hashes give rise to use

them for cryptography. However, since a hash is a de-
terministic function it has as such not the same quality
as an encryption algorithm: anyone can apply the hash.
However, a hash can be easily combined with a shared
secret to provide authentication which is often used for so-
called message authentication codes (MAC). For example,
let Kcs be a shared secret. Then, H(Kcs) can be used as an
authentication token since only principals who have access
to Kcs can produce this token.

III. RADIUS-SHA256

In this section, we present the protocol Radius-SHA256
as derived from the classical Radius of RFC2865/66 by
replacing MD5 by SHA-256. At the abstract protocol level
this replacement seems simple but in order to ensure that
this change of the original protocol preserves the security
properties, we start from the formal presentation of the orig-
inal Radius protocol and develop the new Radius-SHA256
on that formal basis. This enforces a detailed investigation
of the necessary adjustment to the old – no longer secure
– version of Radius and in addition enables comparison
to the previously established security guarantees showing
whether they still hold. From an engineering perspective, this
procedure corresponds to a kind of refactoring of a protocol
specification: re-engineering the previous security specifi-
cation enables re-invocation of the previous verification by
rerunning security check routines.

We introduce the protocol Radius-SHA256 by its formal
model in HLSPL, the specification language of Avispa. Its
level of abstraction is sufficient to comprehend just the major
gist of the protocol. This model contains four roles: client,
server, session, and environment. The idea is that the client
role represents the NAS and the server role represents the
Radius server. In applications, client and server might as
well be represented by proxies depending on the type of
network. For the formal presentation of the protocol we
simplify by summarizing the scenario as a client-server
session. As a session we consider the time period of a client-
server communication. The attacker is modeled by the role
of the environment that specifies the basis for the attacks on
protocol executions.

Each of these components client, server, session and
environment is modeled by a so-called “role” in HLSPL.
Client (Section III-A) and server (Section III-B) define the
two matching sides of the protocol; their composition as
defined in the role session only gives the full protocol (see
Section III-C and Figure 5) which can again be instantiated
to model legal session and attacker.

A. Client-side Protocol

The client role is specified in Figure 3. This role definition
defines the protocol by specifying the necessary entities, like
identifiers, messages and used cryptographic primitives, e.g.
the symmetric key Kcs in its header. Note, here how we
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role client(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text,
SND, RCV: channel(dy))

played_by C def=
local State: nat,

NAS_ID, NAS_Port: text,
Chall_Message: text

const kcs: protocol_id,
sec_c_Kcs : protocol_id

init State := 0
transition

t1. State = 0 ∧ RCV(start) ⇒
State’:= 1 ∧ NAS_ID’:=new()
∧ NAS_Port’:=new()
∧ SND(NAS_ID’.NAS_Port’.SHA256(Kcs))
∧ secret(Kcs,sec_c_Kcs,C,S)

t2. State = 1 ∧ RCV(NAS_ID.Access_accept) ⇒
State’:= 2 ∧ SND(NAS_ID.Success)

t3. State = 1 ∧ RCV(NAS_ID.Access_reject) ⇒
State’:= 3 ∧ SND(NAS_ID.Failure)

t4. State = 1 ∧ RCV(NAS_ID.Chall_Message’) ⇒
State’:= 4 ∧ SND(NAS_ID.Chall_Message’_Kcs)

∧ witness(C,S,kcs,Kcs)
t5. State = 4 ∧ RCV(NAS_ID.Access_accept) ⇒

State’:= 5 ∧ SND(NAS_ID.Success)
end role

Figure 3. Client role of Radius-SHA256 in HLSPL

define SHA256 to be a hash function in this header by using
the Avispa keyword hash_func. This function is applied in
the first transition of the following client-side of the protocol
specification. In detail the steps of the protocol are defined as
state transitions that are conditional on logical conditions of
a current state State ∈ {1, . . . , 5}: each of the five rules in
the transition section in Figure 3 defines a precondition
for this current state (to the left of the implication arrow
⇒) and a postcondition on the post state State’ of a
transition after the ⇒. The conditions are conjoined by
logical conjunction with ∧. The initial state is State zero.
For example, the first transition t1 in Figure 3 can be read
as follows. If the precondition holds, i.e. the current state
is “state 0” and the role receives on its input channel RCV
the message start, then the transition t1 is enabled. If this
transitions fires, the post-state is “state 1” and the message
NAS_ID.Success is sent on the output channel SND. The
following transitions can be read in the same manner. Since
the client represents only one principal in this protocol, we
need to need to define the server side of the protocol to
complement it.

B. Server-side Protocol

Figure 4 now shows the definition of the second principal
in the model of Radius-SHA256: the Radius-server. The
transitions defined in the role server correspond to the
transitions of the client. Each SND on one side corresponds
to a RCV on the other side. However, in order to put

role server(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text,
SND, RCV: channel(dy))

played_by S def=
local State: nat,

NAS_ID, NAS_Port : text,
Chall_Message : text

const kcs: protocol_id,
sec_s_Kcs : protocol_id

init State := 11
transition
t1. State = 11

∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 12 ∧ SND(NAS_ID’.Access_accept)

∧ secret(Kcs,sec_s_Kcs,C,S)
t2. State = 12 ∧ RCV(NAS_ID.Success) ⇒

State’:= 13
t3. State = 11

∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 14 ∧ SND(NAS_ID’.Access_reject)

t4. State = 14 ∧ RCV(NAS_ID.Failure) ⇒
State’:= 15

t5. State = 11
∧ RCV(NAS_ID’.NAS_Port’.SHA256(Kcs)) ⇒
State’:= 16 ∧ Chall_Message’:=new()

∧ SND(NAS_ID’.Chall_Message’)
t6. State = 16 ∧ RCV(NAS_ID.Chall_Message_Kcs) ⇒

State’:= 17 ∧ SND(NAS_ID.Access_accept)
∧ request(S,C,kcs,Kcs)

t7. State = 17 ∧ RCV(NAS_ID.Success) ⇒
State’:= 18

end role

Figure 4. Server role of Radius-SHA256 in HLSPL

these building blocks together, we first have to define the
composition. This is done in a further role for the session,
presented in the following section.

C. Session and Attacker

The two roles of client and server are combined by defin-
ing a role for the session. Session uses the composition

keyword to couple the two instances of client and server
synchronized by common parameters.

role session(C,S: agent,
Kcs: symmetric_key,
SHA256: hash_func,
Success, Failure: text,
Access_accept,Access_reject: text) def=

local
S1, S2 : channel (dy),
R1, R2 : channel (dy)

composition
client(C,S,Kcs,SHA256,Success,Failure,

Access_accept,Access_reject,S1,R1) ∧
server(C,S,Kcs,SHA256,Success,Failure,

Access_accept,Access_reject,S2,R2)
end role

The synchronization couples the transitions of the client with
the server over their connecting channels. For example, the
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Figure 5. Composition of client and server yields protocol.

message SND(NAS_ID.Success) of t2 in client is now
being sent over S1 and coupled via R2 to the message
RCV(NAS_ID.Success) of server. The composition that is
defined in the role session actually defines the protocol
between the roles client (Section III-A) and server (Section
III-B) by instantiating their channels such that they mutually
connect; the overall protocol is best illustrated graphically
(see Figure 5).

The environment represents the attacker and uses a com-
position, now in turn of two session instances, where the
first is one between two agents c1 and s1 and the second
generalizes the first agent to be i – an unspecified agent that
triggers the search for intruder possibilities incorporating
agents. Note, also that the SHA256 is given openly to the
environment signifying that the attacker knows it and can
use it which formalizes the idea of a hash that it is applicable
by everyone (see Section II-D).

role environment() def=
const c1,s1: agent,

sha256: hash_func,
succs, fails: text,
acc_acp, acc_rej: text,
kcsk, kisk, kcik: symmetric_key,
kcs: protocol_id

intruder_knowledge = {c1,s1,sha256,kisk,kcik,
succs, fails, acc_acp, acc_rej}

composition
session(c1,s1,kcsk,sha256,succs,fails,acc_acp,acc_rej)
∧
session(i, s1,kisk,sha256,succs,fails,acc_acp,acc_rej)
end role

The representation is abstract enough to be comprehensible
while being in places a bit superficial. We dig deeper down
into the lower levels of the Avispa model in the next section
to investigate the influence of the hash function on the
Radius-SHA256.

D. Security Verification

This section now illustrates how the actual model check-
ing process of the Avispa tool automatically translates the
high level protocol model in HLSPL defined in the previous
section and performs a complete state analysis over the
resulting internal Kripke structure representing this model.
The verification is relative to a set of security properties
specifying the goals of the authentication that we will
illustrate first.

E. Security Properties and Verification Process

Given the implementation of the protocol as described in
the previous section, we can now use the inbuilt features of
Avispa to verify security in a push-button manner. Avispa
provides two features for protocol verification: secrecy of
keys and authentication. The secrecy of the server and client
keys and authentication of client and server are given as
verification commands to Avispa as follows.

goal
secrecy_of sec_c_Kcs, sec_s_Kcs
authentication_on kcs

end goal

The meaning of these two formulas can be illustrated more
closely by inspecting their translation into the IF format.
We apply all four back-ends OFMC, CLAtSE, SATMC, and
TA4SP of the Avispa tool to the Radius-256 specification.
For the full IF representation and the performance details
of the analysis see [11]. The main observation is that the
original security guarantees shown for Radius can be carried
over to the protocol Radius-SHA256 by simply replacing the
hash function MD5 by SHA-256 in the specification. The
above secrecy and authentication properties verify just the
same.

To understand the effect that the choice of a particular
hash function, i.e. MD5, SHA-256, or any other crypto-
graphic hash function has on the security guarantees, we
need to inspect the IF version in more detail. First of all,
a hash function application in HLSPL like SHA256(Kcs) is
translated into IF as apply(SHA256,Kcs). According to the
Avispa semantics [2], this apply operator is reserved for the
application of hash functions which manifests itself in the
following type.

apply(F,Arg) apply: message × message → message

However, there seems to be no further semantics attached to
the type. The defining properties of a cryptographic hash
function are provided implicitly by defining the intruder
knowledge for hashes as follows.
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step gen_apply (PreludeM1,PreludeM2) :=
iknows(PreludeM1).iknows(PreludeM2) ⇒
iknows(apply(PreludeM1,PreludeM2))

Since the apply-operator can produce a hash, the intruder
can apply a hash himself but Avispa’s intruder semantics
provides no rule to inverse a hash function nor any rule
enabling collision detection for the intruder.

F. Evaluation and Generalization

Wrapping up the discussed security verification we see
that the verification of Radius-SHA256 yields exactly the
same guarantees as the classical Radius of RFC 2865/6.
In this final section, we show up the consequences of this
mechanized verification.

Primarily, the re-engineered modelling and verification for
the Radius-256 protocol in Avispa shows that the guarantees
of secrecy of keys and mutual authentication that have
already been shown for the classical Radius version MD5
equally hold for Radius-256.

Next, our construction process reveals that the exchange
of MD5 by another hash function in the Avispa model
is simply replacing one (presumably) secure cryptographic
hash function by another. As we have observed in the
previous section, the Avispa semantics of a hash models hash
functions abstractly. Thus, we observe that the verification
depends only on the general assumption that some hash
function is used in the protocol. Therefore the derived result
can be generalized to all secure hash functions.

Theorem 1: The Avispa guarantees of secrecy of keys and
authentication of the Radius protocol hold for all secure
cryptographic hash functions.
Note, however, that this verification does presuppose a
secure hash function. That is, the proved result is not valid
if the assumed cryptographic strength of the hash function
is flawed, like in the case of MD5.

Since the Avispa model cannot cover the implicit part of
the hash function security proof, the analysis does not reveal
possible attacks. However, the aforementioned attack on SSL
[16] could be used as a guideline to produce a similar attack
on the classical Radius protocol based on MD5. On the other
hand, the generalization presented in this paper is not trivial:
its proof relies on the re-engineering of the Radius for SHA-
256 and the observation that this re-engineering is applicable
to any secure hash function.

IV. SECURE SIMPLE PROTOCOL

A. Transport Protocols and Future Network Environments

We are witnessing an explosive change in terms of the
different types of wireless networks being developed and
deployed. Thus, future network environments will primarily
consist of multiple local wireless networks, each with a
different Quality-of-Service (QoS). Users will be always
connected by switching between available networks using
vertical handover techniques [8].

Figure 6. The structure of Ycomm/SP.

In this new world, a connection between two devices
may therefore involve several network interfaces. This reality
is beyond the scope of many TCP implementations and
protocols such as SCTP [12] have been developed to replace
TCP.

Another approach being explored is to keep TCP as a
Wide Area transport protocol, but use another protocol to
handle communication on local networks. Such an approach
is being adopted by the Y-Comm Group [9], [21]. There
are other factors favoring this approach: firstly, the common
tack of tuning TCP to deal with different types of local
networks has not been as effective as initially hoped. TCP
is, in fact, a relatively complicated protocol as it needs
to support different transport features including connection
management, reliability, streaming and congestion evalua-
tion and response. This means that it has been difficult for
TCP to adjust to handover issues [3] without substantial
support from device interfaces; we believe a local transport
protocol should be simpler to use. Secondly, in order make
use of higher speeds that are generally available in local
environments, transport window sizes must be substantially
larger by default. Thirdly there is a need to support different
Qualities-of-Service is an explicit and flexible way. Finally,
the issue of local area network security in terms ensuring that
resources are properly balanced among several users must
be urgently addressed to ensure improved user experience.

B. The Simple Protocol

The Simple Protocol (SP) [10] is being developed by the
Y-Comm Group for Local area communications. The SP
diagram is shown in Figure 6 with a brief explanation of
the various fields shown in Figure 7.

As can be seen from Figures 6 and 7, SP is a message-
based protocol where messages are broken down into a
number of blocks. Unlike TCP, SP supports the concept of
packet types and uses explicit phases: connection setup, data
exchange and close; this allows the protocol to be quickly
processed. It also supports a 4 MB window size, leading
to improved transfer rates for large data exchanges. In SP,
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Figure 7. Explaining what the fields mean.

acknowledgments can also be monitored leading to faster
recovery times.

C. Support for Servers

Because SP is a message based protocol, it allows the
application and the protocol stack to operate in a more
asynchronous manner using an event-driven interface for
receiving packets. Hence the interaction between the appli-
cation and SP for reception revolves around the application
being made aware of four key events:

1) A new connection has been established
2) A new message has been received on a connection
3) The connection has been reset by the network or other

side
4) The other side has closed its connection, i.e. it is

finished sending all its data.
Since it is possible to attach call back functions to each
event, it is possible to build local servers that are totally
event-driven. This leads to much more efficient server im-
plementations. In addition, the application can tune SP so as
to optimize the local environment. Thus a local transaction
server can tune SP to suppress transport level acknowledg-
ment requests since the reply by the server of the client’s
request will also be interpreted by the client transport system
that the original request was correctly received. This too is a
significant optimization for efficient server implementations.
SP is therefore a powerful local protocol and hence the need
to look at a secure version of SP.

D. Security Mechanism in SP

Because SP uses a connection phase, we can use this
to improve the security of the system and to enhance

communications. When connecting to servers, the concept of
scope is supported. So a server can only be accessed using a
scope which is defined by its functionality [1]. Four scopes
are supported using 2 bits: Scope 00 means that the server
can only be connected to processes on the same machine.
Scope 01 means that the server can only be accessed by
machines on the same LAN, while scope 10 indicates that
access to the server is only accessible by machines on the
same site while a scope of 11 shows that the server may be
globally accessed. The connection phase of SP can be used
to set up keys which are formed using local area parameters
to ensure secure communication between machines in the
local area.

The protocol SP consists of two parts: the connection part
and the data transmission. The connection part establishes
a communication between processes A and B to prepare a
data transmission according to these established connection
parameters. Thereby, a “connected” state is reached during
which data may be transmitted before the connection is
closed again. During data transmission, SP uses synchro-
nization numbers (SYNC_NO) for each message and acknowl-
edgments replying those message numbers to ensure safe
transmission. This sequential message numbering can be
used as well to secure the protocol against replay attacks, i.e.
resending of previously intercepted messages by adversaries.
However, to ensure this security, we need to keep the
message numbers secret. To do that, we establish a session
key in the connection part of SP. We assume that a global
public key infrastructure provides certified identities, that
is for every principal X on the network we have a signed
pair (KX , X)K−1

C
of a public key KX associated to the

principal’s identity (for example the MAC of his device).
This key-identity pair is signed with the secret key of the
certification authority K−1C and can be verified by both
parties A and B even off-line.

Now given this setup, the secure-SP connection part
extends the basic exchange of request and reply (REQ, REP)
by additional time stamps T , nonces N (where indices
∈ {A,B} indicate the sender and receiver), sender, and a
symmetric session key KS for the future data transmission.
The contents of the following two messages are encrypted
using the public keys KA and KB so that only the intended
recipient A or B can read the message contents.

A 7→ B : REQ+ {SYNC_NOA, TA, A,NA}KB

B 7→ A : REP+ {SYNC_NOB , TB , B,NB , NA,KS}KA

If this two step challenge response protocol succeeds, a
connection between A and B is established. In the course
of that connection, A and B can now exchange messages
whose SYNC_NO and shared secrets NB and TA are cryp-
tographically protected by the symmetric key KS that has
been exchanged.

A 7→ B : {SYNC_NOA, NB , TA, A}KS
+ data message
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Note, that the authentication of A to B is only complete
after the third step, i.e. the first data transmission, where
A shows possession of the private key K−1A by decrypting
and re-encrypting NB , TA, and KS . This protocol has been
formalized and successfully verified with Avispa (for details
see the following section). Confidentiality and integrity of
the data communication part holds as long as the session
keys are not broken. This additional assumption is necessary
and explicit in Avispa: it is beyond the scope of the protocol
verification since we abstract from key length and duration
of use. The same applies for the above mentioned public
key infrastructure.

The secured SP protocol’s communication part bears a
strong resemblance to the (corrected) Needham-Schroeder
asymmetric authentication protocol. This is no surprise,
as the NS-asymmetric protocol (NSPK) is the essence of
remote authentication.

E. Formalizing and Verifying SP in Avispa

The SP protocol resembles a lot the improved version
(not susceptible to man-in-the-middle attacks) of the NSPK
protocol.

1. A → B : {NA, A}KB

2. B → A : {NA, NB , B}KA

3. A → B : {NB}KB

Due to this resemblance and the fact that NSPK is available
in the Avispa library, we can reuse in large parts the Avispa
formalisation of that NSPK protocol as a starting point
adapting it to SP.

The formalization has two roles alice and bob. We first
consider alice.

role alice (A,B : agent,
Ka,Kb : public_key,

Ks: symmetric_key,
Snd,Rcv : channel (dy)) played_by A def=

local
State : nat,
Na,Nb : text,
Ta,Tb : text,
REQ,REP : message,
SN,MN,AMN : text
init State := 0
transition
1. State = 0 ∧ Rcv(start) ⇒

State’:= 1 ∧ Na’ := new()
∧ Snd(REQ.SN.Ta.A.Na’_Kb)

∧ witness(A,B,na,Na’)
∧ secret(Na’,na,A,B)

2. State = 1 ∧ Rcv(REP.SN.Tb.B.Nb’.Na’.Ks_Ka) ⇒
State’:= 2 ∧ Snd(SN.Nb.Ta.A_Ks)

∧ wrequest (A,B,nb,Nb’)
end role

Alice’s role specifies the protocol from here point of view,
i.e., it comprises the initial sending step as a send, followed
by waiting to receive the step two, and finally sending out
the third step that already used a symmetric key for efficient

transport level encryption. Complementing this the role for
bob is as follows.

role bob (B,A : agent,
Kb,Ka : public_key, Ks: symmetric_key,
Snd,Rcv : channel (dy)) played_by B def=

local
State : nat,
Na,Nb : text,
Ta,Tb : text,
REQ,REP : message,
SN,AMN : text
init State := 0
transition
1. State = 0 ∧ Rcv(REQ.SN.Ta.A.Na’_Kb) ⇒

State’:= 1 ∧ Nb’ := new()
∧ Snd(REP.SN.Tb.B.Nb’.Na’_Ka)

∧ witness(B,A,nb,Nb’)
∧ secret(Nb’,nb,A,B)

2. State = 1 ∧ Rcv(SN.Nb.Ta.A_Ks) ⇒
State’:= 2 ∧ wrequest(B,A,nb,Nb)

end role

Similar to before for the Radius protocol, the two roles are
now instantiated into a session.

role session (A,B: agent,
Ka, Kb : public_key, Ks : symmetric_key)

def=
local SA, RA, SB, RB: channel (dy)
composition

alice(A,B,Ka,Kb,Ks,SA,RA)
∧ bob(B,A,Kb,Ka,Ks,SB,RB)
end role

Also an environment is defined that sets up the intruder.

role environment() def=
const ta,tb,sn,mn,amn : text,
a, b, i : agent,
na, nb : protocol_id,
ka, kb, ki : public_key,

ks,ksi: symmetric_key
intruder_knowledge =

{a,b,i,ka,kb,ki,inv(ki),ta,tb,mn,amn,sn}
composition
session(a,b,ka,kb,ks) ∧ session(a,i,ka,ki,ksi)
end role

The goal we check is as follows (equal to the guarantees in
NSPK).

secrecy_of na, nb
authentication_on alice_bob_nb
authentication_on bob_alice_na

The checking of this goal succeeds and provides a fully
automated verification of the authentication process of our
specified SP protocol. The engineering of this secure SP
protocol has been a process of reuse (reusing the NSPK-
Avispa specification in large parts) and also composition:
the SP protocol – as such rather a transport protocol – has
been composed into secure SP by prepending the above
authentication steps. This is a composition process.
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V. CONCLUSIONS

In this paper we have shown that an adapted version of the
Radius protocol using SHA-256 instead of MD5 provides
exactly the same security guarantees as the RFC version
based on MD5. The verification is a fully automatic analysis
in the Avispa toolkit, a specialized model checker for secu-
rity protocols. We could generalize this result to guarantee
security for Radius protocols using secure hash functions,
even other than SHA-256. We furthermore illustrated on the
example of the simple protocol SP that modelchecking can
be used to stepwisely introduce security to a transport layer
protocol. The verification process has shown the feasibility
of model checking as an engineering tool.

Although the authors of [15] provide a model for the
Radius protocol as defined in the RFC, they have failed
to sufficiently generalize their results. In some sense, our
approach resembles a refactoring of the formal model: refac-
toring is a technique from software engineering supporting
the change in software without affecting desired properties;
we change the formal model of Radius by replacing MD5 by
SHA-256 without losing desired security properties. In the
process of following the earlier design, we discovered that
the model is by no means limited to the classical Radius
but can indeed be generalized to a more secure Radius-
SHA256, and that this generalization can be extended to
arbitrary hashes.

The generalization or refactoring could be an interesting
concept to explore because for the working security engineer
it provides an easy to use extension making the rather
complex model checking process easy to access and provide
a practical tool to allow more flexibility in network security
engineering. Apart from facilitating the process of protocol
engineering, this could also advocate the use of formal
specification and automated model checking in the domain
of network security.
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