
163

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TREMA: A Tree-based Reputation Management Solution for P2P Systems

Quang Hieu Vu

ETISALAT BT Innovation Center (EBTIC)

Khalifa University, UAE

quang.vu@kustar.ac.ae

Abstract—Trust is an important aspect of Peer-to-Peer (P2P)
systems, because in such systems, peers are usually anonymous.
A popular method for evaluating trust in P2P systems is to use
reputation, where the reputation of a peer is determined based
on its prior transactions with other peers. Since no peer has
easy access to global knowledge in a decentralized system, the
main challenge of this reputation-based method is how to collect
and distribute reputation scores of peers efficiently. While
several solutions have been proposed to address this challenge,
most of them rely on a gossiping algorithm, which is costly and
communication-intensive. In this paper, we propose TREMA,
a tree-based reputation management solution in which we
present a trust model between nodes in the tree, and explain
how trust is established and maintained between pairs of nodes.
We show that, compared to existing solutions, TREMA allows
for scalability and efficient algorithms with low overhead.
We present two possible implementations of TREMA, and
explain how they could be made stable and robust to network
dynamism, thus addressing the greatest weakness of a tree
structure. We also analyze each implementation for its security
against various adversarial scenarios, and suggest further
improvements that are possible for general tree-based systems.

Keywords-Peer-to-Peer; Security; Trust Evaluation; Reputa-
tion Management; Tree Structure.

I. INTRODUCTION

Over the last decade, Peer-to-Peer (P2P) systems have

received more and more attention from both computer

users and researchers. They have become the first choice

for large-scale distributed systems due to their scalability.

Nevertheless, there are still problems that need to be solved

before P2P systems can be truly ubiquitous, one of which

is security. Since peers are usually anonymous, security is

a problem of greatest concern among people using P2P

systems. A popular method for evaluating trust in distributed

systems as well as in P2P systems is to base on reputation,

where the reputation of a peer is summarized from opinions

of all peers who have participated in previous transactions

with that peer. For examples, users of eBay [1] and Amazon

Auctions [2] are provided a separate channel for feedback.

After each transaction, both sellers and buyers can rate

each other and the score is kept for a later reference. In

this way, from the reputation score of a person, others can

decide easily if they can trust that person or not (e.g., a

high reputation score is an indicator of having had many

successful and trustworthy transactions).

The main challenge of the reputation-based method for

trust evaluation in P2P systems is how to collect opinions

of all peers in the system about a particular peer, and to

provide access to the reputation score to all who request it.

In existing reputation-based systems like eBay and Amazon

Auctions, the solution to both challenges is to use servers.

However, this solution suffers from problems of server-based

systems such as network bottlenecks and a single point of

failure. An alternative solution is to employ a gossiping

algorithm [3], [4], [5], [6] for exchanging knowledge among

peers in the system. In this way, after a sufficient number of

knowledge exchange steps, every peer should have a global

knowledge about reputations of all peers in the system.

The gossiping algorithm can be implemented in two ways.

In the first way, each peer itself has to maintain global state

and knowledge of the whole system. After each transaction

or after some interval time, peers report the score of their

partners in new transactions to all other peers in the system.

Based on this report, peers update their global state. This

method requires that peers keep and maintain reputation

scores for all peers, which is inefficient. The second way

avoids this problem by letting each peer keep track of the

reputation of peers that it has been in transactions with

previously. Whenever a peer wants to retrieve the reputation

of another peer, it can apply the gossiping algorithm to ask

for that peer’s reputation from its neighbors, the neighbors

of its neighbors, and so on. Combining the feedback with

its local knowledge, it can determine the trust value of that

peer. Even though these two ways are different, they share

the same drawback of the gossiping algorithm: both are

expensive in terms of computation and communication costs.

Instead of using gossiping, in this paper, we present

TREMA, a Tree-based REputation MAnagement solution. In

TREMA, we organize nodes at different positions in a tree-

based on their reputation, with peers of higher reputation at

higher levels. In this tree structure, reputation of a peer is

maintained at its parent. A peer always trusts its ancestors

while it is answerable for its descendants. When two peers

execute a transaction, a trust route is formed between them.

If the transaction succeeds, a reward is given to all nodes in

the route. On the other hand, if the transaction fails, all nodes

in the route are penalized. The main advantage of TREMA

is that it does not incur a high cost in reputation management

compared to methods that use the gossiping algorithm for

164

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reputation distribution. Furthermore, the flexible design of

TREMA allows us to develop a complete system for trust

management to use in any existing decentralized P2P system.

To sum up, our paper makes the following contributions in

the area of P2P security:

• We present TREMA, a general solution for trust man-

agement in P2P systems based on a tree structure.

Besides, we expose a set of APIs that allows P2P

applications to work on top of TREMA.

• We show how to augment a tree with extra links

to create robustness and to allow nodes to exchange

queries without overwhelming the root. These extra

links help to eliminate the problems of bottlenecks and

single points of failures in the tree structure.

• We present two possible implementations of TREMA.

One is an extension of BATON [7], an existing tree

structure. The other is HICON, a novel tree structure.

We compare these two systems and show how to

improve the weaknesses of both systems.

• We conduct an experimental study on the implementa-

tion of TREMA in BATON to evaluate the effectiveness

and efficiency of our proposed solution.

This paper is an extended version of a previous paper [8].

In the previous paper, we introduced a secure protocol for

trust management in P2P systems based on BATON [7], a

tree structure. In this paper, we extend the idea to support

all tree structures and also provide further design discussion.

The rest of the report is organized as follows. In Section II,

we introduce related work in the area of trust management

in P2P systems. In Section III, we explain the basic design

of TREMA in terms of the trust and security models. In

Section IV, we discuss some issues of our basic design, and

suggest possible solutions to improve it. In Section V, we

describe the general APIs that we are proposing. In Section

VI, we first use our design to extend an existing tree structure

(BATON) to support reputation management. After that, we

present our own tree structure design (HICON). We suggest

potential applications of TREMA in Section VII. Section

VIII describes our experimental study and its results. Finally,

in Section IX, we summarize the important contributions of

our design and its potential.

II. RELATED WORK

Trust management in P2P systems can be classified into

two main categories: credential-based and reputation-based

management. Credential-based management systems employ

the classical method where a peer trusts another peer after

examining the other peer’s credentials. If the credentials

satisfy the peer’s policy, that peer can be trusted in a

transaction. Otherwise, the peer would refuse to be in

a transaction with the other peer. The weakness of this

method is that it has to rely on servers for keeping every

peer’s credentials, which is not entirely a scalable method.

Moreover, since credentials are usually generated once and

stored, past transactions of peers, both good and bad, are

not considered. As a result, this method is only suitable for

specific kinds of systems with fixed credentials, like access

control systems. Examples of systems that apply this trust

model include X.509 [9], PGP [10], PolicyMaker [11] and

its successors, REFEREE [12] and KeyNote [13].

On the other hand, reputation-based management systems

rely on reputation to evaluate the trustworthiness of a node.

In general, the reputation of a node is computed based on

its previous transactions with other nodes in the system

and how they rated these transactions. Reputation-based

management systems can be further classified into two sub-

categories. One type of system considers only the reputation

of an individual, like those in [3], [4], [5], [6], [14], [15],

[16], while the other takes into account social relationships

between nodes in addition to individual reputation, such as

[17], [18]. Since no nodes know of all nodes in the system,

reputation of nodes have to either be collected and stored

on servers for reference or distributed to all nodes in the

network by the gossiping algorithm. Both of these methods

are not viable for large networks because the first method is

not scalable while the second method is expensive.

In the field of data structures, the structure of a tree

has a very important role. NICE [19] can be used to do

scalable application layer multicast [20] by using the idea of

overlay trees for efficient content distribution. However, very

few networks proposed so far uses the topology of a tree.

In this kind of structure, if the standard query processing

algorithm is used, nodes near the root will be accessed many

times more compared to nodes near the leaves, and hence

congestion at the root or nodes near the root may happen.

This is not acceptable in P2P systems. To avoid this problem,

P-Tree [21] suggests a use of partial tree structure. In this

method, each leaf node in the tree is represented by a P2P

node while internal nodes are all virtual. Each P2P node

maintains a path from the index root to the leaf node. As a

result, queries can be processed at any node without pushing

all queries to a special node. Note that, however, if a node

has to maintain the whole tree structure, the maintenance

cost is very expensive and not suitable for P2P systems.

Alternatively, BATON [7] creates links between nodes at

the same level in the form of routing tables. Consequently,

queries can be processed at any node in the tree without

going through the root. Nevertheless, these systems focus

only on range query processing, and not trust management.

III. BASIC DESIGN

A. Trust Model

TREMA consists of peers arranged by their reputation.

Peers of higher reputation occupy positions at higher levels

in the tree, with each parent having a higher reputation

score than its children, and so the root node is the peer

with the highest reputation. Peers of higher reputation are

accorded higher privileges of some kind, to provide incentive

165

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D F

C E

B

A Arbiter

Connector

ProviderRequester

Request

R
e
q
u
e
st

e
r
ch

a
in P

ro
vid

e
r ch

a
in

Figure 1. Trust relationships in a trust route

for nodes to increase their own reputation. We develop the

following terminology and use it to present the model of

trust relationships between nodes in the tree.

• Trust link. A link exists between a peer and its child,

and this denotes a link of trust. We say that (1) the child

peer in this link trusts its parent because the parent has

a higher reputation than itself, and (2) the parent is

answerable for the child. The latter point means that

any misbehaved action on the part of the child reflects

poorly on the parent as well, and the parent is also

held accountable for any misbehavior of the child. This

is desirable because it is every peer’s responsibility

to minimize the presence of malicious peers entering

the network as children. Trust links are inherently

transitive, because a child that trusts its parent would

also trust its parent’s parent of higher reputation, while

a parent is accountable for its children and thus its

children’s children as well.

• Trust chain. A chain of trust is formed by consecutive

trust links. In such a chain, we say that the lowest peer

trusts the highest peer, based on transitivity of trust in

our model.

• Trust route. A trust route is the path between any two

peers in the tree. It is composed of one or two trust

chains that meet at a common ancestor of the two

nodes. We call that ancestor the connector of the route.

The trust route also includes the connector’s parent,

which we label as the arbiter of the route. A trust

route is formed when a peer requests content from

another peer in the system. The former peer is known

as the requester, and the latter is the provider. The trust

chain from the requester to the connector is called the

requester chain, and that from the provider is called

the provider chain. Figure 1 illustrates the relationships

mentioned here.

• Transaction. A transaction is initiated by a requester, by

sending a request through the tree to a chosen provider.

The provider responds with the appropriate content to

the requester. Transactions occur over a trust route in

our tree, and they have a transaction outcome in the

form of a report sent out by the requester. A positive

outcome indicates a successful transaction when the

requester is satisfied with the received information.

Conversely, a negative outcome indicates a failed trans-

action when the requester is not satisfied with some part

of the received information.

• Rewards and punishments. To give a reward means a

peer increases the reputation score of a child peer, and a

punishment is the converse, a decrease in the reputation

score of the child peer. Rewards and punishments are

managed based on the transaction outcomes reported

by requesters.

B. Trust Management

This subsection describes how trust in our model can be

managed. There are two possible outcomes of transactions

each of which is dealt with in a separate way.

• Successful transactions: if a successful transaction oc-

curs between two nodes via a trust route, parent nodes

would reward the child nodes. The rationale is that

rewarding a child would allow it to be trusted by more

nodes, and hence to increase its potential for bringing

in more transactions for itself. This would lead to

more opportunities for the parent node to earn its own

rewards. In general, after a successful transaction, the

arbiter rewards the connector, the connector rewards

both the children in the requester and the provider

chains, and so on, downward both trust chains. The

only exception is the requester, which does not get any

reward for initiating a request, since it adds no value

to the network.

• Failed transactions: for a failed transaction, the con-

verse happens. The arbiter punishes the connector,

which in turn pushes the blame downward the tree from

parents to children in both chains. The requester again

is unaffected by the punishments because it has nothing

to gain or lose for accurately reporting the outcome

of the transaction. A truthful report would, however,

increase the effectiveness of the whole network. To

prevent the malicious scenario of a node deliberately

reporting multiple failed transactions, a parent might

keep track of node failure reports, and identify any

nodes that are misbehaving in this way. The parent

could then terminate trust links with any evil node,

deeming it to be deliberately causing trouble by ei-

ther requesting content from reputably bad nodes, or

inaccurately reporting many failed transactions.

This design leads to two main implications. On the one

hand, nodes will try to maximize the number of successful

transactions and minimize the number of failed ones, in

order to optimally increase their reputation. This selfish and

self-centered behavior, however, allows for optimal gains for

the system as a whole, because each node selfishly seeks to

maximize its own rewards and to do so, it has to shrewdly

monitor its children and their behavior in transactions. On

the other hand, a node would quickly break off links with

children that result in many failed transactions and refuse

to forward transactions from such nodes, because it is being

166

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D F

C E

B

A Arbiter

Connector

ProviderRequester

)(, MM
D

σ

)(, MM
D

σ

))(,(MM
DC

σσ

Figure 2. Message forwarding over a trust route. For brevity, we only
show the first two of a chain of signed messages.

held accountable for the behavior of its children. At the

same time, a node would be willing to forward requests and

content from reputable nodes or new nodes because doing

so would give it the potential to increase its reputation.

C. Security Management

We claim that two nodes in TREMA can exchange mes-

sages over a trust route in an accountable and authenticated

manner as follows. When the requester sends a request,

the request is forwarded via the requester chain of trust.

Forwarding a message means signing the message and

sending it over a trust link. Here, a child node always trust its

parent to forward the request properly, and a parent node is

willing to be accountable for its children because it stands to

gain in reputation if the transaction is successful. Note that

if the transaction fails, the parent could always terminate the

link to its children.

In case of the arbiter, when it receives a message that is

signed by one of its children, which is the connector of the

trust route. The arbiter signs that message, indicating it has

seen the request and is willing to trust that the connector

child will do a proper job forwarding that request. The

signed request is then sent back down to the connector,

who continues forwarding it down the provider chain to

the provider. At the provider chain, each node is willing

to forward the message down the tree because the message

has been signed by its parent, whom it trusts. The provider

upon receiving the request can obtain the entire trust route by

observing the signatures on the request. When the provider

responds with content, it sends both the original multiply-

signed request and the content signed by itself. This message

is forwarded back via the same trust route, and the reverse

happens, with each node signing the message and forwarding

it, including the arbiter again. The incentive for forwarding

remains the same: a node could stand to gain from aiding

a successful transaction, and is able to exert control on any

misbehaving children.

Finally, once the requester receives the requested content,

it first evaluates the transaction and assigns the transaction

either a positive or negative score, and then sends this

score in an encrypted message to the arbiter, via a direct

connection. Based on the received score, the arbiter will give

the appropriate reward or punishment for the transaction.

D E F G

B C

A

Figure 3. Swapping positions between nodes

Figure 2 shows an example of message forwarding over

a trust route. Note that requests and complaints are also

communicated securely and authentically by encrypting then

signing the messages. This design ensures that only the

correct nodes would be able to read the messages.

D. Node Ranking Management

If we want to know reputation score of a node, we have

to ask its parent, since the parent in our tree is of higher

reputation and is thus more trustworthy. If an internal node

cannot accomplish its task or turns malicious, we should

replace it with a better node. Since a node may never want

to step down from its position, we have to exert control over

that node through its parent.

Additionally, reputation scores of a node is not only

stored at the parent but also at the grandparent. Consider

the situation where a node now has a reputation lower than

that of its child, implying that the tree is currently not well-

formed. The solution to this situation is to swap the positions

of these two nodes through a swap operation, and that can

only be done from the position of the parent of the ill-placed

node. By changing positions, these nodes also exchange

knowledge information of their children and reputation of

these children they are keeping.

An example of node swapping is shown in Figure 3 in

which node B has to swap its position with its child E
because E has a higher reputation. Actually, since A knows

reputation of all B, C, D, E, F , G, it can also swap

positions between B and G if G has a better reputation

than both B and E. This sort of swapping can be done if

A wants to assign a node that is known to be trustworthy

from another subtree to be the parent of a subtree that could

possibly contain colluding malicious nodes.

E. Concerns of a Tree Structure

Tree structures are widely used in computer systems. They

are especially good for storing and retrieving data. Among

various data structures, the tree is a dominant structure

used in the area of databases. However, there are usually

some concerns when employing tree structures in distributed

systems. Below are the three greatest concerns.

• Bottlenecks and single points of failure could exist at

the root or at nodes near the root in a tree. If every

query has to reach the root node before it is processed,

the root will become overloaded by queries. As a result,

this would be a problem in large networks.

167

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Usually, the cost of query processing (in terms of the

number of search steps) is bounded by the height of the

tree. Therefore, if the tree is skewed and unbalanced,

the cost of searches might be high.

• In a weakly-connected tree structure, failure of a node

may partition the tree completely. As a result, in dis-

tributed systems, trees are often augmented with extra

links to avoid this problem.

Keeping in mind these concerns, we will design a system

without such problems in Section VI.

IV. AN IMPROVED MODEL

The above basic model works well under an assumption

that the information given by a node to another node about

its children is always correct. In other words, all internal

nodes can be trusted in giving information. This is because

if an internal node is bad, it can return wrong reputation

results about its children to other nodes. For example, a

malicious node could return a good reputation score about

a bad node or a bad reputation score for a good node.

To avoid the problem of the basic model, we introduce

a new type of score called a reference score for internal

nodes. The reference score is used to reflect exactness of

information a node gives to others. Now, the trust value of

a node is based on not only its reputation score but also

the reference score of its parent. In other words, if a node

always gives correct information about its children to others,

we should trust its information. However, if a node often

makes mistakes or gives incorrect information deliberately,

our trust in information provided by that node is reduced.

Similar to reputation score, a reference score of a node is

stored at its parent. So now, as illustrated in Figure 4, before

each transaction, a node y should find not only x’s reputation

score, which is stored at z, the parent of x, but also z’s

reference score, which is stored at t, the parent of z and

after each transaction, y updates scores for both x and z.

The problem now is how to evaluate correctness of

information received from z to give feedback of a score

after a transaction. Here, we propose a simple solution

as follows. When a node is asked about reputation of its

children, in addition to giving the total reputation score, it

also gives the standard variation of the scores calculated

from previous transactions. As a result, the correctness of

received information is evaluated by both the reputation

score and the standard variation. For example, if the result of

the transaction falls far away outside the standard variation,

the node giving information should be rated with a bad

reference score.

That is not all. Assume that in the worst case, x, z, and t
are all malicious peers and they cooperate with each other. If

t gives a wrong reference score for z while z gives a wrong

reputation score for x, y would still be cheated. To further

enhance security, y can also ask reference score of t from

its parent. In general y asks for reference scores of a chain

x

z

t

u

y

What is reputation

score of x

W
hat is reference

score of z
W

h
a
t is

 re
fe

re
n
c
e
 s

c
o
re

 o
f t

k=3

Figure 4. A k=3 reference chain

of k ancestors of x in which k is a configurable parameter

of the system. Note that since these k nodes form a chain,

the cost of lookup algorithm and update algorithm is just

logN + k. By setting k with a large number, the system

becomes strong against collaborative malicious peers. A

worry is that k may have to be large, and hence it may be

costly. However, since nodes in the system cannot determine

the location of them in the tree structure, they have to follow

the join algorithm, which scatters nodes along the system to

make the tree balanced. As a result, forming a long chain of

malicious peers connected by parent-child links is not easy.

An example of a k = 3 reference chain is shown in Figure

4 in which y asks z for reputation score of x, t for reference

score of z and u for reference score of t.

Another technique which can be used by a group of

malicious nodes to trick other nodes is to create fake

transactions and report good results to their parent to in-

crease their reputation score. To avoid this problem, we

just use a simple technique in score calculation as follows.

First, we do not simply consider the number of successful

transactions as the score. Instead, we limit the score at a

maximum value, and the score of a node can only reach that

maximum score. Second, we calculate not only the number

of successful transactions but also the number of different

successful transactions of nodes. By “different”, we mean

that transactions of the node that are done with different

nodes. As a result, even though a node may have many good

transactions with a specific node, it still has a low score if

it has many other bad transactions with other nodes.

V. APIS

Based on the design of TREMA as described in the

previous sections, the general APIs we need to provide can

be divided into three categories. The first category contains

APIs for trust management, which perform the behaviors

discussed in our earlier sections. The second category is

a set of indirection APIs, which are function calls that

applications might need to call. These APIs also provide

indirections to the lower P2P network layer. This design

allows us to keep the underlying layer completely hidden

from the applications that use our framework. Furthermore,

with this separation, it is less likely that applications would

make incorrect calls that have not been secured by the frame-

work. The third set includes APIs of the underlying P2P

168

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network that are augmented with additional functionality

to support TREMA. We respectively discuss APIs in these

three categories in the rest of this section.

A. Trust Management APIs

• Reputation-Query: this API takes in a target node and

returns the reputation of that node by querying its

parent over a trust route. This reputation request is con-

sidered as a transaction and will have an accompanying

transaction outcome report from the requester.

• Reputation-Update: this API is called by a node that

wishes to update the reputation of its child. The update

is done by sending the request up to the k reference

chain, and upon getting the approval proceeding to

change the reputation of the child.

• Reputation-Complaint: this API is called by a node to

lodge an official complaint up to the k reference chain

when the node feels that its reputation has been unfairly

modified.

• Transaction-Report: this API reports the outcome of a

particular transaction to the arbiter of the trust route.

Given the report, the arbiter decides whether to direct

a cascading series of rewards or punishments.

B. Indirection APIs

• Node-Find: in general, when a new node joins the

system, it needs to perform bootstrapping. In most

decentralized P2P systems, this action involves finding

and connecting the node to an existing node in the

system. While this function is usually provided at

the P2P network layer, we use an indirection API to

securely expose it to upper layer applications.

C. Augmented APIs

• Node-Join: this API is called by a node that wishes to

join the network. The API allows the new node to find

its position in the tree structure, and is only triggered

after calling Node-Find described above. Basically,

upon receiving the contact node from Node-Find, the

new node sends a “Join” message to the contact node. If

that node is the correct parent, the new node is accepted

as its child. Otherwise, the contact node forwards the

request to either its parent or a child that is more

suitable. In this manner, the request can be forwarded

through the tree until the correct parent of the new

node is found within O(logN) steps. Note that for

correct forwarding, the tree needs to have positional

determinism, where the position of a node can be

determined given the state of the network. Both our

proposed tree implementations support this.

• Node-Depart. this API is called by a node when it

wishes to leave the network. This allows the system to

establish new tree links and close down old ones where

applicable. In a best-case scenario without failures,

calling this API allows efficient updating of any routing

table and link, and minimizes disruption to the network

due to nodes leaving the system.

• Node-Failure-Discovered: this API is called by a node

that discovers one of its neighbor nodes is not re-

sponding, presumably because that neighbor has failed.

Calling this API would set off the appropriate measures

to confirm that failure and establish new links as if that

failed node had called Node-Depart.

VI. SYSTEM DESIGN

At this point, with the APIs firmly laid out, we are able

to describe in greater detail how to extend TREMA to use

in two tree implementations: BATON, an existing tree-based

framework and HICON, a novel scheme we propose in this

paper. In essence, we try to place TREMA on top of existing

networking frameworks that provide the topology of a tree.

The challenge here is to ensure that we can effectively

and efficiently implement our proposed trust management

APIs above, and also use the desirable properties of these

frameworks to address the weaknesses of the basic tree.

A. BATON

In this section, we first describe the structure of BATON.

After that, we introduce the way to deploy TREMA on it.

1) Basic Structure

In BATON, each peer participating in the network is

responsible for a node in the tree structure. The position

of a node in the tree is determined by a pair of a level and

a number. The level specifies the distance from the node

to the root while the number specifies the position of the

node within the level. BATON uses three kinds of links

to make connections between nodes: parent-child links are

used to connect children and parents; adjacent links are used

to connect adjacent nodes; and neighbor links are used to

connect neighbor nodes at the same level having a distance

2i from each other. Neighbor links are kept in two special

sideways routing tables: left routing table and right routing

table. An example of a BATON tree is shown in Figure 5.

Note that in this figure, only neighbor links of the grey node

are shown.

BATON controls the balance of the tree by forcing that

if a node has a child, it has to have a maximum number of

possible neighbor links within its level, or in other words,

have full routing tables. As a result, when a node receives

a join request from a new node, it can only accept the new

node as its child if it has full routing tables. Otherwise,

depending on the condition, the request is forwarded to

either its parent, its neighbor or its adjacent node. In case

of node departure, if a node is a leaf node and none of its

neighbors has children, it can leave the network. Otherwise,

if it is either an internal node or a leaf node, whose neighbors

have children, it has to find a replacement node, which is

169

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Neighbor linkParent-child link Adjacent link

Figure 5. BATON structure

a node in the previous case to replace its position in the

tree structure. In particular, by employing sideways links,

BATON does not suffer any of the tree issues discussed in

Section III-E.

2) TREMA Deployment

Since the most important issues in deploying TREMA are

how reputation of a node is looked up and how transaction

results are reported to responsible nodes, we focus our

discussion of these issues.

• Reputation lookup: before each transaction, nodes ex-

change information about their location in the tree to

each other. Knowing the location of a node x, its partner

y can infer the location of x’s parent, which is z as

below:

zlevel = xlevel − 1

znum =

{

xnum/2 if xnum is even

(xnum + 1)/2 if xnum is odd

Note that in the tree structure, the level is setup

increasingly from the root to the leaf starting at 0

while the number is assigned from the left to the

right of each level starting at 1. Now, knowing the

location of z, y can issue a query to lookup x’s

reputation towards z. The algorithm of sending a query

towards a node knowing its location is represented as in

Algorithm 1. Since at each step, this algorithm makes

the search space reduce by half, it is guaranteed that

after maximum O(logN) steps, the query should reach

the destination node z. When z receives the query, it

returns the reputation score of x to y. Note that if x
does not tell a truth about its location, and hence when

y issues the query either z can not be found or z is not

the parent of x. As a result, x can be considered as a

bad node.

• Transaction result report: after each transaction, a simi-

lar process is done to report the result of the transaction

between partners to their parent. In particular, each

peer rates the transaction by giving its partner a score

in a range of [-1.0, 1.0]. Depending on the level of

satisfaction or dissatisfaction, a value is given in which

Algorithm 1 :Query (level l, number n, node z)

lnode = level of the current node

nnode = number of the current node

if lnode = l then

t = the nearest node to z
t.Query(l, n, z)

else

if lnode > l then

t = a child of the current node

t.Query(l, n, z)

else {lnode < l}
t = parent of the current node

t.Query(l, n, z)

end if

end if

a positive score is used to indicate a good transaction

while a negative score indicates a bad transaction.

B. HICON

In this section, we first introduce the basic design of

HICON. After that, we show how to deploy TREMA on

HICON.

1) Basic Structure

HICON stands for Hierarchical IP Clustering Overlay

Network. Nodes in a HICON tree are arranged such that we

have the following condition hold for every pair of nodes x
and y in the network:

• x is an ancestor of y if and only if, for their common IP

prefix P, x has the highest reputation among all nodes

with the same IP prefix P.

This condition ensures that for a given state of all nodes in

the network, there is a fixed and logical tree structure based

on the IP addresses and the reputation scores of nodes, and

each node will have its own fixed position in the tree. We

call this hierarchical IP clustering because we can build this

tree by first clustering all nodes into groups with the same

prefix, and then appointing a parent node with the highest

reputation as the leader in each cluster. This process can be

repeated for clusters of other prefix lengths until we get a

complete tree.

By varying the lengths of the prefixes considered, we can

change the expected height of the tree and the maximum

number of children a node might have. As an example,

Figure 6 shows nodes in a HICON tree where we have

considered prefixes of 1, 2, 3 and 4 bytes, i.e., 8-bit

increments. We see that the node A with IP address 18.4.6.5

has reputation 1000 and is the ancestor of all nodes with IP

prefix “18.*”. Node B is a child under node A but is the

parent of the cluster of nodes with IP prefix “18.4.*”, which

includes nodes E and F.

In general, in IPv4, if we consider prefixes of B-bit

increments, the expected height of the tree will be 32/B

170

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E F

CB D

A
18.4.6.5

(1000)

18.5.7.7

(700)

18.4.5.2

(800)
18.4.6.9

(600)

18.4.5.3

(200)

18.4.5.1

(300)

Figure 6. Nodes in a HICON tree

and the maximum fan-out would be 2B+1. This is useful

because the height and fan-out of this tree is configurable

based on the parameter B. In IPv4, having B = 8 gives a

very short tree of height 4, but in IPv6, this would give a

reasonable height of 16.

The basic structure in HICON gives us the properties

of scalability, and some efficiency that a tree inherently

has. However, in order to achieve robustness to network

dynamism, we introduce the idea of successor nodes and

links. In the improved design, in addition to links a node x
has to its parent and children, x has a successor link to the

child node that has the highest reputation among its children.

This child y is the successor node of x. When x departs or

fails, y will take over the position of x. Besides, successor

links are also maintained among y and its siblings (other

children of x), and between y and its potential parent z,

which is the parent of x (z will be the parent of y if y
comes to replace the position of x). Note that within the

trust model, all these successor links are also trust links

over which communication can happen, and are recognized

and acknowledged by nodes on both sides of the links.

3) TREMA Deployment

For TREMA to work with HICON, we need to implement

the augmented network APIs in the following way.

• Node-Join: to implement the Node-Join procedure, we

first ignore the reputation score of x and determine the

position of a new node x simply based on its IP address.

In particular, when a node y receives a join request

from x, if x has some common IP prefix P with y and

P is within the cluster that y is the leader of, x is a

descendant of y. In this case, y searches its children to

find the one whose IP has the longest matching prefix

with the IP of x, and forwards the join request of x
to that node. If no such child exists, y accepts x as its

child. In the other case, if x does not have common

IP prefix with y or x does not belong to the cluster of

y, y forwards the join request of x to its parent node,

who has a broader view, to process the request. Finally,

once x is accepted as a child of a node z in the tree,

the reputation score of x is used to compared to the

scores of other children of z so that x is put it at the

correct position.

• Node-Depart: when a node x is leaving, x informs its

neighbor nodes of its intended action, so that they can

update their link information. The successor child of

x at this point proceeds to take over the position of

x, and uses successor links to establish connections

with its new parent and children. Links from x are then

removed from the network.

• Node-Failure-Discovered: when the failure of a node

x is discovered, the discovering node confirms this

with the parent of x, who can then proceed to find

the successor child of x to take over the position of x.

This reduces to the situation of a node departure, with

the successor child taking over the position of x.

Additionally, we need to implement these methods for

trust management.

• Reputation-Query: given a target node x, the requester

formulates its query and forwards the query to the

parent of x. This is done in a method similar to Node-

Join where we try to find the position of a node. The

same procedure is used here to determine who is the

parent of x and how to forward the query to that node.

In particular, when a node y receives a query for the

reputation of a node x, if x is a descendant of y (i.e.,

x has a common prefix P that is within the cluster of

y), the parent of x must be in the subtree of y. In this

case, y chooses the appropriate child node to forward

the query to. Otherwise, y forwards the query to its

parent, who can continue to forward the query to the

correct parent of x. Finally, once the query reaches the

parent of x, a trust route is established, and that route

can be traversed in reverse to get the response back to

the requester.

• Reputation-Update: there is no special implementation

needed for this tree, we just need to follow the general

APIs’ specification.

C. Comparison of BATON and HICON

In this section, we make a comparison about the two tree

structures presented above. In general, there are three main

differences between these structures, as described below.

• HICON is based on a multi-way tree structure whose

fanout is 32 for prefixes of 4-bit increments, while

BATON is based on a binary tree structure whose

fanout is fixed at 2. As a result, in terms of reputation

lookup boundary, HICON is better.

• In HICON, reputation is looked up through a chain

from child to parent to child. As a result, if nodes are

in different branches of the tree, the query has a high

potential to be forwarded to the root or nodes near the

root, and hence bottlenecks as well as single points of

failure may still be problems (even though it is not as

severe as in centralized servers based systems). On the

other hand, BATON employs sideways routing tables

in the process of reputation lookup, which can avoid

forwarding the request to higher level nodes.

• In HICON, nodes are grouped by their IP address while

in BATON, nodes are distributed randomly to guarantee

the balance of the tree.

171

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Further Improvements for Tree Structures

From the above comparison between BATON and

HICON, we can see the advantages and disadvantages of

each tree structure compared to the other. As a result, in

this section, we propose further techniques to improve the

two tree structures.

• BATON can employ a higher fanout tree structure as

that in HICON. The reason why BATON is based on

a binary tree structure is because a higher fanout tree

structure makes it more difficult to manage tree nodes

to support range queries, which is the main motivation

of BATON. In our system, since our target is to support

reputation management, it is possible to extend BATON

to support a higher fanout tree structure. On the other

hand, HICON could leverage the idea of sideways links

(routing tables) in BATON to provide sideways travel of

reputation messages, and hence it can totally eliminate

the problem of bottleneck and single point of failure as

BATON does.

• Another technique, which can be used for both systems

is to allow a node to have multiple parents. This

technique makes the system less susceptible to being

partitioned in case of a massive failure.

• An interesting feature of HICON is that nodes are

grouped by their IP address. Based on this feature, we

can employ a special kind of reputation called social

reputation in HICON. As pointed out in [18], [17], the

reputation of a node is affected by the reputation of

the society it belongs to and vice versa. The design

of HICON is very suitable to employ this kind of

reputation scheme since all nodes in the same group

have the same prefix IP address, and hence they usually

come from the same organization or region.

VII. POTENTIAL APPLICATIONS

A. General P2P Applications and File-sharing Systems

Currently, file-sharing applications are dominant in P2P

applications. All well-known P2P applications such as

Gnutella [22], Napster [23], BitTorrent [24] are file-sharing

systems. A security challenge in these systems is that when

a peer wants to download a file, it issues a query and may

receive a lot of answers from other peers. What is a good

peer that the peer issuing the query wants to download the

file from? How can a peer be guaranteed that it does not

download a wrong file or a file containing virus from another

peer? A reputation management system like TREMA can be

used in this case to answer these two questions. Furthermore,

reputation can also be used to evaluate the quality of

services. As an example, a node with high reputation is not

only a trustee node but also a node which can provide high

bandwidth for downloading.

B. Spam Reporting Systems

If anyone wants to build a distributed spam reporting

system that is similar to Blue Frog [25], developing from

TREMA will be a good start. In general, this system will

consists of two basic operations: spam reporting and spam

lists forwarding. In particular, when a node receives a spam,

it will report the spam and the contact information to a subset

of nodes in the network. The recipient nodes will then decide

for themselves if the given thing is really a spam and if the

contact information is matched, given both the message and

the reputation of the claimant. If the report is correct, they

will add the spam to their spam lists and forward these lists

to other nodes, together with the identifier of the one who

claimed it. Finally, they will update the reputation of the

sender. Usually, these spam lists could be sent around, and

some way of compounding reputations will be worked out.

In this way, every node has a list of email addresses it thinks

spams, and the contact information thereof. It is interesting

to note that without a careful management of reputations,

this system may devolve into a way to DDoS any website a

malicious node wants to.

VIII. EXPERIMENTAL STUDY

To evaluate the performance of our proposal, we have

implemented an extension of BATON [7] to support our

security protocol. We tested our system in a network of

1,000 nodes, where exists two kinds of nodes: good nodes

and malicious nodes. We just make a simple assumption that

that good nodes always do good transactions and give correct

answers if they are asked for reputation of their children. On

the other hand, malicious nodes always do bad transactions

and give incorrect answers about reputation of their children.

A. Effect of Varying Number of Malicious Nodes

We first evaluate the effect of varying number of malicious

nodes on the strength of the system. The result is displayed

in Figure 7(a) in which the x-axis presents the percentage

of bad nodes in the system while the y-axis presents the

percentage of correct answers about reputation of nodes.

The length of reference chain in this experiment is fixed

at 3. The result shows that our system can suffer up to 20%

of malicious nodes while still provide good answers for a

reputation of nodes: more than 80% of answers is correct.

It is because in order to fully cheat other nodes, malicious

nodes have to form a subtree height greater than 3. However,

it is difficult to do that since nodes are distributed equally

in the leaf level to keep the tree balance.

B. Effect of Varying Length of Reference Chain

In this section, we vary length of reference chain from 1 to

5 while keeping the percentage of malicious nodes at 30%.

The result is displayed in Figure 7(b). The result confirms

that the system increases its strength with the increasing

length of reference chain.

172

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

g
e

 o
f

c
o

rr
e

c
t

a
n

s
w

e
rs

Percentage of malicious nodes

TREMA

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

g
e

 o
f

c
o

rr
e

c
t

a
n

s
w

e
rs

Percentage of malicious nodes

TREMA

(a) Effect of varying number of ma-
licious nodes

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
e

rc
e

n
ta

g
e

 o
f

c
o

rr
e

c
t

a
n

s
w

e
rs

Length of reference chain

TREMA

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
e

rc
e

n
ta

g
e

 o
f

c
o

rr
e

c
t

a
n

s
w

e
rs

Length of reference chain

TREMA

(b) Effect of varying length of refer-
ence chain

Figure 7. Experimental results

IX. CONCLUSION

In conclusion, in this paper, we proposed TREMA, a

general solution for reputation management in Peer-to-Peer

systems based on a tree structure. By using a tree structure,

TREMA can avoid the high cost of broadcasting messages

that is seen in gossiping-based solutions. At the same time,

TREMA does not suffer the problem of bottlenecks and sin-

gle points of failure as seen in server-based solutions through

the employment of extra links in the tree structure. We came

up with two specific tree structures to implement TREMA

on. One is extended from BATON [7]. The other, HICON,

is a novel design. We made a comparison between these

tree structures, showing their advantages and disadvantages.

From there, we suggested further improvements to both.

Finally, we conducted experiments on the implementation of

TREMA on BATON to show the effectiveness and efficiency

of our proposed solution.

REFERENCES

[1] eBay, “http://www.ebay.com/ (last accessed: Jan 09, 2012).”

[2] Amazon Auctions, “http://auctions.amazon.com/ (last ac-
cessed: Jan 09, 2012).”

[3] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “EigenRep:
Reputation Management in P2P Networks,” in Proceedings
of the 12th WWW Conference, 2003, pp. 123–134.

[4] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative
peer groups in nice,” in Proceedings of the 22nd INFOCOM
Conference, 2003, pp. 1272–1282.

[5] B. Dragovic, B. Kotsovinos, S. Hand, and P. R. Pietzuch,
“Xenotrust: Event-based distributed trust management,” in
Proceedings of the 2nd International Workshop on Trust and
Privacy in Digital Business, 2003, pp. 410–414.

[6] L. Xiong and L. Liu, “Peertrust: Supporting reputation-
based trust for peer-to-peer electronic communities,” IEEE
Transactions on Knowledge and Data Engineering, no. 7, pp.
843–857, 2004.

[7] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “Baton: A balanced
tree structure for peer-to-peer networks,” in Proceedings of
the 31st VLDB Conference, 2005, pp. 661–672.

[8] Q. H. Vu, “SPP: A Secure Protocol for Peer-to-Peer Systems,”
in Proceedings of the 2nd International Conference on Ad-
vances in P2P Systems (AP2PS), 2010, pp. 1–6.

[9] International Telegraph and Telephone Consultative Com-
mittee (CCITT), The Directory - Authentication Framework,
Recommendation X. 509, 1993 update.

[10] P. Zimmermann, PGP Users Guide. MIT Press, 1994.

[11] M. Blaze and J.Feigenbaum, “Decentralized Trust Manage-
ment,” in IEEE Symposium on Security and Privacy, 1996,
pp. 164–173.

[12] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss, “REFEREE: Trust management for Web applica-
tions,” Computer Networks and ISDN Systems, vol. 29, no.
8–13, pp. 953–964, 1997.

[13] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, The
KeyNote Trust Management System, Version 2. RFC-2704.
IETF, 1999.

[14] K. Aberer and Z. Despotovic, “Managing Trust in a Peer-2-
Peer Information System,” in Proceedings of the 9th Interna-
tional Conference on Information and Knowledge Manage-
ment, 2001, pp. 310–317.

[15] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati, “Choosing Reputable Servents in a P2P
Network,” in Proceedings of the 11th WWW Conference,
2002, pp. 376–386.

[16] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante, “A reputation-based approach for choosing
reliable resources in peer-to-peer networks,” in Proceedings of
the 2002 ACM Conference on Computer and Communication
Security, 2002, pp. 207–216.

[17] J. Pujol and R. Sanguesa, “Extracting reputation in multi
agent systems by means of social network topology,” in
Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), 2002,
pp. 467–474.

[18] J. Sabater and C. Sierra, “REGRET: A Reputation Model for
Gregarious Societies,” in Proceedings of the 4th Workshop
on Deception, Fraud and Trust in Agent Societies, 2001, pp.
61–69.

[19] NICE, “http://www.cs.umd.edu/projects/nice/ (last accessed:
Jan 09, 2012).”

[20] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,” SIGCOMM Comput. Commun.
Rev., vol. 32, no. 4, pp. 205–217, 2002.

[21] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram, “Querying peer-to-peer networks using P-Trees,” in
Proceedings of the 7th WebDB, 2004, pp. 25–30.

[22] Gnutella, “http://www.gnutella.com/ (last accessed: Jan 09,
2012).”

[23] Napster, “http://www.napster.com/ (last accessed: Jan 09,
2012).”

[24] BitTorrent, “http://www.bittorrent.com/ (last accessed: Jan 09,
2012).”

[25] Blue Frog, “http://sourceforge.net/projects/bluefrog/ (last ac-
cessed: April 12, 2006).”

