
A Method for Directly Deriving a Concise Meta Model from Example Models

Bastian Roth, Matthias Jahn, Stefan Jablonski

Chair for Databases & Information Systems

University of Bayreuth

Bayreuth, Germany

{bastian.roth, matthias.jahn, stefan.jablonski} @ uni-bayreuth.de

Abstract—Creating concise meta models manually is a complex

task. Hence, newly proposed approaches were developed which

follow the idea of inferring meta models from given model

examples. They take graphical models as input and primarily

analyze graphical properties of the utilized shapes to derive an

appropriate meta model. Instead of that, we accept arbitrary

model examples independent of a concrete syntax. The

contained entity instances may have assigned values to

imaginary attributes (i.e., attributes that are not declared yet).

Based on these entity instances and the possessed assignments,

a meta model is derived in a direct way. However, this meta

model is quite bloated with redundant information. To increase

its conciseness, we aim to apply so-called language patterns like

inheritance and enumerations. For it, the applicability of those

patterns is analyzed concerning the available information

gathered from the underlying model examples. Furthermore,

algorithms are introduced which apply the different patterns to

a given meta model.

Keywords-meta model derivation; meta model inference;

conciseness of meta models; pattern recognition; language

patterns; inheritance

I. INTRODUCTION

Manually creating domain-specific languages (DSL),
especially with a concise meta model as abstract syntax, is a
complex task [1]. Besides an abstract syntax, a typical DSL
also consists of a concrete syntax and a set of semantic rules
(constraints) [1]. In this paper, the focus lies on the abstract
syntax defined by a meta model. For defining such a meta
model, new development methods have emerged. Those
methods focus on deriving or inferring a meta model from a
given set of example models [2, 3]. However, they only
marginally consider the conciseness aspect of the resulting
meta model (if at all). According to [4], this is a very important
quality criteria of meta models. Therefore, our primary goal is
to obtain a meta model with a high degree of conciseness. To
achieve this, a typical solution is to apply language patterns
like single inheritance, multiple inheritance and enumerations
to a constellation of meta model entities (for more information
about conciseness see section III).

Since the resulting meta model should represent the
abstract syntax of a DSL another important goal of our
approach is to derive a meta model which highly corresponds
to concepts describing the domain. Hence, we have to gain the
domain entities’ instances from the model examples. Such
instances directly can be modeled when using the Open Meta
Modeling Environment (OMME) introduced by Volz et al. in
[5]. Consequently, the paper at hand originates in the context

of OMME. In the following sub section, we shortly explain
the relevant characteristics of this platform.

A. The Open Meta Modeling Environment

OMME is an Eclipse-based meta modeling tool [6] that
allows developers to define their own modeling language. It
goes far beyond the capabilities of competing tools with
respect to its support for advanced language patterns (e.g.
Powertypes [7]). Its implementation is based on the
Orthogonal Classification [8] and uses Clabjects [9] for
representing concepts of a model (the term “concept” in the
context of OMME always means a Clabject). Hence, OMME
provides a Linguistic Meta Model (LMM) and interprets
(meta) models at runtime in order to emulate a concrete textual
syntax.

Below, we predominantly limit ourselves to concepts
which can act as both, types and instances. As a type (also
called a meta concept), a concept declares attributes whereas
as an instance (also called an instance concept), a concept
contains assignments each of which may be associated with
an attribute. If such an association exists the target attribute
must be declared by the type (meta concept) of the
assignment’s owner. Attributes and assignments can be
divided into literal and referential ones depending on their
respective type. OMME supports the following literal types:
boolean, integer, double and string. In our understanding,
enumerations are regarded as literal types, too. That is
tolerable because enumerations can also be represented by
integers with a highly restricted range of values. Each defined
concept, however, may be used as a referential type. While
modeling using the LMM, the applicable language patterns
can be selected according to a user’s needs (e.g., enabling or
disabling multiple inheritance). Below, each suchlike
configuration is called a modeling context.

B. Fundamental assumption on equally named elements

The most important assumption we take is that equally
named elements (types of concepts on the one hand,
assignments and attributes on the other hand) always relate to
the same semantic object at domain side. One could imagine
a meta model containing two different concepts each with
exactly one string attribute labeled as owner. When trying to

make this meta model more concise, both concepts are
deemed to be candidates for generating a common super
concept because of the two equally named attributes.

This assumption is mandatory. Otherwise, neither a meta
model can be derived from one or more example models nor
the conciseness of a given meta model can be enhanced. Both

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

approaches presented in section V infer graphical DSLs and
follow a comparable principal. They state that two shapes
correspond to each other if their graphical properties are
identical.

II. EXAMPLE MODEL

As an example model we constructed the process shown
in Fig. 1 using two different concrete syntaxes. The top part
shows the graphical representation with nodes and directed
edges. It is just depicted for a better comprehensibility since a
graphical process model is easier to understand than a textual
one. In the right, the same model is written down using the
concrete textual syntax given by the LMM.

Below, we focus on the textual representation because it
directly uses constructs of the LMM. Since the LMM syntax
is quite similar to the one of popular object-oriented
programming languages it is easy to read for software
developers and modelers. The mapping rules between both
representations lie beyond the scope of this paper, so the
following mapping is taken for granted: The circle node on the
left is considered as Start concept with identifier S. It

contains an assignment next which refers to concept P1 and

represents a successor relationship. P1 to P4 are specified as

Process concepts. Each of them has a title and also a next

assignment. A1 and A2 represent instances of concept And.
Both again contain a next assignment. However, assignment
next of A1 holds two references to P3 and P4. The last circle

on the bottom represents the process models Exit. It contains
no further assignments. The arrows between the different
nodes can be seen as successor relationships which are always
mapped to according next assignments.

III. CONCISE META MODEL USING LANGUAGE PATTERNS

One important goal in meta modeling is keeping meta
models concise [4]. Therefore, models need to be as small as
possible, i.e., they should completely describe their according
domain with as few constructs as possible. Achieving this is a
general problem when building meta models. For instance, the
authors of the newly published version 2.5 of UML have
focused on simplifying the corresponding meta model [10].

Making a meta model concise can be accomplished by
applying so called language patterns to suitable constellations
of meta elements [11]. In literature, it is not exactly specified
how a suitable constellation looks like. There are only
suggestions in form of best practices or guidelines when to
apply a certain pattern (comparable to the applicability of
design patterns [12]). Because these guidelines are
suggestions they are mostly formulated quite imprecise with a
subjective touch. Most guidelines base on domain-specific
background knowledge (e.g., the “is a”-statement mentioned
in the following sub section A for using single inheritance). In
general, such information is not available. Hence, we have to
rely on the information provided by the model examples as
well as the structure of the derived meta model (i.e., attributes
and their referential or literal types).

In the following, three typical language patterns that are
supported by OMME and partially many different other
modeling frameworks (e.g., EMF, MetaGME, eMOFLON)
are presented. For enumerations, we do not elaborate further
because their usage is straightforward. They basically allow
for restricting the value range of an attribute to a few
predefined literals.

A. Single inheritance

Single inheritance is a well-known and widespread
language pattern stemming from the field of object-oriented
programming languages. There, it allows for introducing
generalization/specialization hierarchies on classes. The key
feature necessary for our approach is that a specialized class
inherits all fields of its super class.

The most common rule for introducing a specialization
relationship is: if an “is a”-relationship can be identified
between two classes [13] (or entities like stated in [14]) the
source of this relationship specializes the target. To identify
this kind of relationship, background knowledge about the
domain is required which cannot be directly expressed
through the model example(s). Therefore, we follow the
proposal of [15] and interpret a set of shared attributes as
indicator for an inheritance relation. In some cases, for a given
model example the introduction of a specialization
relationship is indispensable. This occurs if an attribute is
intended to reference two or more different classes. Then,
those referable classes need a common super class which has
to be the type of the aforesaid attribute. An example for that is
demonstrated in section IV.B step 3. This additional
information can only be retrieved from the model examples
and not directly from the meta model. That is the case because
merely in instances different concepts may be assigned to
attributes (according to their respective types). A referential
attribute, however, always expects exactly one type.

Another important topic when using inheritance is a rather
flat generalization hierarchy. Otherwise, the meta model gets
quite complex and thus its comprehensibility suffers.

B. Multiple inheritance

Multiple inheritance is often criticized as risky because of
potentially occurring problems as stated by Singh in [16] (e.g.,
name collision and repeated inheritance). Hence, we only
utilize multiple inheritance to meet addressability constraints

Start S {
next = P1

}

Process P1 {
title = "Conference Search"
next = P2

}

Process P2 {
title = "Travel request"
next = A1

}

And A1 {
next = P3, P4

}

Process P3 {
title = "Conference registration"
next = A2

}

Process P4 {
title = "Book hotel"
next = A2

}

And A2 {
next = E

}

Exit E {
}

Travel
request

Conference
registration

Book hotel

Conference
search

represented using LMM syntax

Figure 1. Example model visualized using two different concrete syntaxes

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

found within the original model example(s). Addressability
means the two possible referencing aspects, namely “a
concept is referenced by another one” and “a concept refers to
another concept”. An adequate example can be found in
section IV.C.2) where an algorithm is proposed for applying
the multiple inheritance language pattern to a given meta
model. This restriction protects also from over-generalizing
the resulting meta model.

IV. META MODEL DERIVATION

When deriving a meta model from a model example, the
directly recognizable constraints need to be softened in some
way. Otherwise, solely the provided model example can be re-
modeled without any differences. This softening behavior
needs to be highly configurable since the statement whether a
meta model is concise or not is always subjective. Therefore,
our prototypical implementation provides many according
parameters which allow for fully customizing the derivation
behavior. However, the given default settings represent the
notion of a concise meta model based on our experiences and
best practices.

In the following, we introduce our direct method for
deriving a concise meta model out of one (or more if
available) model example(s). Direct method means that we
directly work with constructs given by the LMM. In the first
instance we refer to concepts, assignments and attributes. The
whole method can be divided into two main parts, according
to the necessity whether applying language patterns is
required or not:

 Bottom-up part: for each found unique type a separate
meta concept is created with all required attributes.
After that, language patterns are applied that are
mandatory for obtaining a valid meta model as defined
by the LMM’s semantics.

 Conciseness part: analysis of the generated meta model
to find constellations of concepts to which further
language patterns can be applied. These constellations
are identified according to the statements about the
particular patterns in section III.

A. Reusable sub algorithms

Below, three sub algorithms are presented that are reused
at different places. So, their functionality is described once
and referenced wherever needed.

1) Merging a set of types using generalization

The sub algorithm “merging types using generalization”
has the task that for a given set of types, one common super
type has to be determined (without moving contained
attributes from the input types to a new common super type).
Its functionality correlates to the one provided by the model
evolution operations “extract super class” and “fold super
class” described in [17]. Nevertheless, both operations always
base on at least one common feature (in our terms: one
common attribute) which is not the case for our algorithm.

The algorithm works as follows: Receiving a set of input
types ITs, for each type IT the routine collects its super types

and add them to the set STs. Those super types STs are

analyzed whether each one of their specializations SPs (sub

types) is contained by the set of input types ITs. If so the

particular super type ST is a merging candidate C. After

processing the input types, all found candidates Cs are merged

to one common super type CST (disjunction). In case no super

type candidates Cs are found, a new common abstract super

type CST is generated. Finally, over ITs is iterated again.

Thereby all specialization relationships from the type to any
candidate C are removed. In place of that, a new specialization

relationship is inserted from the type IT to the new common

super type CST. As a cleanup, each super type ST that is no

longer specialized is removed from the meta model.
Furthermore, all references to the former super types STs (if

exists) are replaced by according references to the new
common one (CST). In addition to this informal description of

the algorithm’s functionality, Figure 2 gives an overview by
means of a corresponding flow diagram.

After performing this algorithm, the resulting common
super type may contain attribute duplicates. They may appear
when merging several super type candidates to one common
super type. Due to reusability reasons, it is not in the scope of
this algorithm to resolve this inconsistency. That has to be
done afterwards.

2) Elimination of attribute duplicates

Another frequently reused sub routine is “eliminating
attribute duplicates”. This algorithm takes a concept with
inconsistent content as input. Inconsistency is enunciated by
several equally named attributes which need to be merged to
one single attribute.

For each super type:

typesStart
collect all

super types
super
types collect all

sub types
each sub type

is in types?

remember
super type as
candidate

yes

Stop

merging
candidates

merging
candidates

found?

merge candidates
to one common

super type

create common
super type for

input types
no

common
super type

update all
references

yes

Figure 2. Flow diagram for “merging types using generalization” algorithm

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Handling different cardinalities is quite easy. They are
always widened to flexibility and consequently less
limitations (e.g., 1 and 1..* turn to 1..*, 0..1 and 1..* to 0..*).

However, before addressing the type merging part,
attributes have to be split up according to their kind, namely
referential or literal. It is important to notice again that
enumerations are regarded as literal attributes, too. The fork is
necessary because referential attributes may lead to an
indispensable introduction of a generalization hierarchy.

For instance, imagine a source concept with two equally
named attributes whose types are referring to two different
target concepts. In order to maintain the possibility of
referencing instances of both target concepts within an
instance of the source concept, the target concepts need a
common super type. Thereby, for a set of equally named
attributes the attribute types are extracted. If these types refer
to different meta concepts for all those concepts a common
abstract super concept is created and specialized by them
(using sub algorithm 1)). Afterwards, only one of the original
attributes is kept and its type (the referenced meta concept) is
changed to the new common super concept. For another
concrete example, see Figure 4 and Figure 5.

Eliminating or at least handling several equally named
literal attributes happens in a different way. For it, we
conceive three alternative strategies which may be configured
as mentioned at the beginning of this section. The first one just
informs the user about these ambiguities. The second strategy
renames all duplicate attributes by means of a predefined rule
(e.g., appending ascending numbers to the attributes’ names).
That also leads to small modifications within the model
example(s) because the respective assignments must be
updated as well. Using the third and last alternative conforms
to our overall intention to a greater extent. We stated above
that equally named constructs are considered to correspond to
the same artifacts at domain side. Therefore, the third strategy
merges the duplicate literal attributes based on type widening.
This concept is comparable to the one of popular
programming languages like Java and C#. Hereby, we allow
type widening for all literal data types (enumerations
included). When applying it to two different types then always
the one with a greater value range is chosen. The ascendant
order of the literal types according to their value range is as
follows: boolean, enumeration, integer, double, string.

It may also occur that there are equally named referential
and literal attributes at the same time. In this case it is obvious
that only the first two strategies are expedient (i.e., inform the
user or rename the concerning attributes and assignments).
Due to the different inherent intents of literal and referential
attributes, merging is not a valid option.

3) Elimination of multiple inheritance

Executing the task “eliminating multiple inheritance” is
required if some concepts specialize more than one super type
but multiple inheritance is not available in the current
modeling context. At first, the according algorithm looks for
concepts Ts which specialize at least two other concepts (set

of all super types STs). Next, it iterates over all found

concepts STs. For each concept ST, it selects all concerning

sub concepts SPs that extend one or more super types

specialized by T. Moreover, algorithm 1) is called by

delivering all specializations SPs (T incl.) as input data.

Merging types this way may lead to attribute duplicates.
They have to be eliminated by algorithm 2). Since its
execution could again produce more than one super type per
concept cyclic invocation of both algorithms may be
necessary. This cycle will definitely terminate. At the latest
this occurs when one global super type is found which is used
as generalization for all other concepts.

For eliminating multiple inheritance, extending the
inheritance hierarchy about a further level is another
conceivable solution. However, the solution is not universally
valid (like the chosen solution stated above) because it cannot
be applied to each constellation of concepts. For instance, that
is the case if there are many different attributes which are
mutually used within various concepts.

B. Bottom-up algorithm

The initial bottom-up algorithm (Figure 3) is considered
as obligatory for deriving an initial meta model. For this
algorithm, the (instance) concepts of one or more example
models are taken as input data. The algorithm itself can be
divided into four main steps.

 Within the first step, for each uniquely identified type in
the model example(s) a separate meta concept is created.
Applied to the example from section II the unique meta
concepts Start, Process, And and Exit are derived.

The second step infers attributes according to the
assignments specified in the particular instantiating concepts.
Hereby, for each assignment a corresponding attribute is
created. This attribute takes over the name, the type and the
cardinality of the assignment. In doing so, the cardinality’s
lower bound is set to 1 if each instance of the same type
contains such an assignment, otherwise to 0. The upper one is
set to 1 if every time only one value is assigned, else * is
chosen. For literal assignments, the type can be directly read
off because this recognition task is carried out by the LMM’s
parser. Handling referential assignments is more complex. If
solely one concept is referenced then its type is directly
borrowed from it. Otherwise, for each referenced concept its

Create unique
meta concepts

Start
instance
concepts

Create
attributes for all

assignments

meta
concepts

attributes

multiple
inheritance
available?

Stop

yes

no

1 2

eliminate
attribute

duplicates

3
eliminate
multiple

inheritance

4

Figure 3. Coarse-grained flow diagram for the bottom-up algorithm

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

type is detected individually. In case different outcomes occur,
for every type a separate attribute is generated.

After finishing step 2, the meta model for the
aforementioned example looks like the one depicted in Figure
4. Therein, the two next attributes of Process as well as the

two of And must be merged in some way. This is done by

invoking sub algorithm IV.A.2).
Thereby, two abstract super concepts are generated,

namely ProcessOrExit and ProcessOrAnd. The so

modified meta model is shown in Figure 5. The style of the
arrows symbolizing the referential next attributes is the same

as the style of the arrows which represent their sources in
Figure 4.

Step 4 is merely required if multiple inheritance is disabled
for the current modeling context. Then Process may only

specialize one super concept. To achieve this, sub routine
IV.A.3) is invoked. When applying it to the meta model from
Figure 5, ProcessOrAnd and ProcessOrExit are merged

to ProcessOrAndOrExit as depicted in Figure 6. Beyond

that, the specialization relationships of Process, And and

Exit must now point to ProcessOrAndOrExit. The same

is true for the referential next attributes which refer to
ProcessOrAnd respectively ProcessOrExit.

C. Technical applicability of language patterns

Below, for each supported language pattern a separate
conciseness algorithm is presented that applies this pattern to
a given meta model. Every conciseness algorithm requires so
called “corresponding attributes” as input data. Thereby, two
different correspondences need to be distinguished. As stated
in the introduction, equally named attributes are intended to
have the same meaning according to the particular domain. In
other words, different attributes which correspond to each
other always carry an identical name. The second
correspondence bases upon the first one because sets of such
corresponding attributes may be again subsumed to a superior
set. In contrast, this correspondence does not base on the
attributes’ names but on their owners. Hence, two sets of
corresponding attributes correspond only if each attribute of
one set has a counterpart in the other set which both exhibit
the same owner.

Before applying any language pattern, these
corresponding attributes have to be determined and the
according data structure must be built up. For it, all equally
named attributes are put into appropriate sets. Depending on
the underlying configuration, the attributes’ types and
cardinalities are regarded or ignored. Afterwards, the superior
sets are created by extracting subsets from the former ones
whose attributes meet the aforementioned owner criterion.
This calculation task can be simplified by sorting the attributes
within the former sets by their owners.

1) Single inheritance

The conciseness algorithm that applies single inheritance
(Figure 7) can be split up into two variants. The first variant
(yes-path) takes one of the input attributes’ owner as common
super type, whereas using the second variant (no-path) a new
common super type is built up.

Choosing the particular variant bases on information
gathered in step 1. Herein, the incoming attributes’ owners are
scanned for a concept which can be taken as common super
type. Such a concept must declare all common attributes
which can then be inherited by any sub concept (step 3).

In step 4, all corresponding attributes from the sub
concepts are moved to the common super concept. This results
in an inconsistent meta model because several equally named
attributes occur within the super type. Then, step 5 invokes
sub routine A.2) which resolves this inconsistency. However,
execution of step 5 may bring multiple inheritance to the meta
model (see section IV.B and especially Figure 5 for an
according example). This potential problem is addressed by
step 6 that encapsulates sub routine A.3).

+title : string

ProcessStart ExitAnd
+next

1

+next1

+next

1

+next 1..*

+next

1

Figure 4. Meta model for the above example after executing step 2

+title : string

ProcessStart ExitAnd
+next

1

+next

1

+next

1..* ProcessOrExitProcessOrAnd

Figure 6. Meta model for the above example after executing step 3

+title : string

ProcessStart Exit And
+next

1

ProcessOrAndOrExit

+next

1

+next

1..*

Figure 7. Meta model for the above example after executing step 4

corresponding
attributes

Start
look for owner

as common
super type

common super
type found?

merge owners
using

generalization

no

common
super type

yes

move attributes
to common
super type

eliminate
duplicate
attributes

insert
generalization
relationships

1

2

3

45

Stop
eliminate
multiple

inheritance

6

Figure 5. Flow diagram for the conciseness algorithm that applies single inheritance

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Following the second variant (no-path) will be done if in
step 1 no common super type is found and hence, one has to
be determined. Then, step 2 calls the aforementioned sub
routine IV.A.1). Applying it (the subsequent steps included)
to the final meta model generated by the bottom-up algorithm
(section IV.B), all three next attributes are delivered as input

to the algorithm described above. Since none of the attributes’
owners can be used as common super type those owners have
to be merged accordingly. This has led to a new super type
called StartOrProcessOrAnd. Afterwards, the next

attributes are moved to this new super concept and merged
(their common type is set to ProcessOrAndOrExit). Now,

Process as well as And specialize two concepts, namely

StartOrProcessOrAnd and ProcessOrAndOrExit. Due

to the requirement of using single inheritance, both super
concepts are merged to a single concept named
ProcessOrAndOrExitOrStart and all references to the

former ones are updated.
Apparently, Exit may also have a successor now, which

was not intended by the model example. As explicated in
section IV.A.3) (third sub algorithm), that is a negative side
effect when restricting to single inheritance. This problem
typically is solved by integrating a constraints system. When
using a suchlike system, however, the brought constraint
language needs to be studied first. All in all, that decreases the
comprehensibility of the generated meta model and thus has a
negative impact on its conciseness.

2) Multiple inheritance

Due to the aforementioned restriction to addressability
constraints, the algorithm for applying multiple inheritance
only has to consider referential attributes. Consulting the
example from section II, concepts of type Start may never

be “referenced by” any other concept. In doing so, an instance
of Exit may not be able to have a successor by “referring to”

any target concept (via next). However, reducing the number

of equally named attributes is still our base intent. Keeping
those two objectives in mind and applying them to the meta
model depicted in Figure 5, the resulting meta model will look
like the one visualized by Figure 8. Here, the two different
concerns mentioned above (“references by” and “refer to”) are
implemented by means of a separate generalized concept. The
first one is represented by ProcessOrAndOrExit, while the

“refer to” aspect is established via StartOrProcessOrAnd.

Consequently, an appropriate algorithm needs to regard
both aspects. However, utilizing the knowledge about the
algorithm for applying single inheritance, the solution for
multiple inheritance is similar. We directly take the algorithm
for single inheritance and remove some superfluous steps.

These superfluous steps are marked in Figure 7 by a dashed
border. So, the resulting algorithm merely contains steps 2, 4
and 5. Besides, it only accepts referential attributes as input.

3) Enumerations

The conciseness algorithm for inferring enumerations is
simpler than the two for applying single or multiple
inheritance. Nevertheless, it requires more information as
input, namely all assignments belonging to an attribute or a set
of corresponding attributes. The selection whether to choose a
single attribute or a set of corresponding attributes must be
taken by the user in a previous configuration step. However,
this has no impact on the main flow of the algorithm. Using a
set of attributes just means to process more according
assignments than with only one single attribute. From these
assignments, the values are used to determine the resulting
enumeration’s literals. Hence, only literal attributes of type
string are supported as input.

Whether an enumeration is generated or not depends on
the diversity of values held by the different assignments. If
there are merely a few values which are repeatedly assigned
to that attribute(s) a new enumeration is derived. The varied
values are taken as unique literals for this enumeration.
Accordingly, the assignments have to be updated with the new
literal values as well. So, when applying the enumeration
language pattern the underlying model examples suffer small
modifications. That is why this algorithm has to be executed
before running the two others (for single or multiple
inheritance).

V. RELATED WORK

As mentioned in the introduction, deriving a meta model
from a set of model examples is not a totally new approach.
Depending on their purpose, the available related work can be
classified into two categories: meta model reconstruction and
meta model creation.

Meta model reconstruction stems from the field of
grammar reconstruction and grammatical inference [18].
Thereby, many textual sentences (ideally positive and
negative samples) are analyzed to infer a grammar [19].

In current research, the Metamodel Recovery System
(MARS) is one prominent representative for meta model
reconstruction [20]. It receives a set of model samples and
transforms them to a representation that can be used by a
grammar inference engine. The output of this engine (a
grammar) is then converted back to an equivalent meta model.
As the title suggests, MARS focuses on the recovery of meta
models (e.g., if a meta model got lost). To obtain a meta model
which corresponds as much as possible to the original one, a
large number of positive model samples is required.
Otherwise the resulting meta model is strongly restricted in its
capabilities. Since we mostly receive only one or at least a
small set of model examples this approach is not practicable
for us.

Up to our knowledge, there are only two research groups
that generate a meta model by deriving it from very few model
examples. BitKit as one representative has a rather different
intention [21]. Its authors aim at supporting the pre-
requirements analysis of software products by allowing to

+title : string

ProcessStart ExitAnd

+next

1..*

ProcessOrAndOrExitStartOrProcessOrAnd

Figure 8. Meta model after applying the multiple inheritance

language pattern

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

model in a freeform way just like with general purpose office
tools. The resulting meta model is merely a means to an end.
Primarily, BitKit semantically combines equally looking
elements by deriving a common associated entity. After a
meta model is inferred and, for instance, the color of such an
element is changed the color of every other (equally looking)
element is adapted accordingly. Due to the office tool
intention of BitKit, the generated meta model is not intended
to be processed in any further way. Consequently, its quality
is not considered as well.

Another approach is proposed in [22]. Like BitKit, it is
also restricted to graphical DSLs. Nevertheless, we adopt their
general idea for applying patterns when inferring a meta
model. That meta model (which represents the abstract syntax
as stated by the author) highly corresponds to the concrete
syntax as well. This correspondency is obvious when
investigating another publication of Cho and Gray. In [23]
they introduce some design patterns well suited for meta
models. However, the presented patterns are very specific for
graphical DSLs and hence not universally valid. That can be
verified when comparing these patterns to the meta models for
visual languages defined in [24]. In contrast to our approach,
they mix the two identified main parts (section IV) when
inferring a meta model. Hence, applying design patterns is
strongly enmeshed in the bottom-up part. Thus, using our
conciseness algorithms instead of their proposed “design
pattern”-based approach is not possible without great effort.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for directly deriving
a concise meta model from a small set of example models. To
increase the conciseness of the resulting meta model, language
patterns are applied to an appropriate constellation of meta
concepts. Due to page limitations, we focused on widespread
language patterns like inheritance and enumerations. As
mentioned in section I.A, there are further language patterns
(e.g. Powertypes) supported by OMME. Thus, we currently
develop or extend the above conciseness algorithms for those
patterns. Afterwards, we explore design patterns that can be
applied similar to the way described above (but not only for
visual languages like in existing solutions).

Our approach of automatically applying language patterns
to meta concepts can also be reused for refactoring activities
in modern IDEs like Eclipse or Visual Studio. Hereby, classes
are considered as concepts whereas their fields are regarded
as attributes. Taking the same assumptions as described in
section I.B and providing appropriate configuration options,
the presented conciseness algorithms can be taken for
applying particular language patterns to a collection of
classes. In future research, we also will deal with this topic in
more detail.

REFERENCES

[1] T. Clark, P. Sammut, and J. Willans, “Applied metamodelling: a
foundation for language driven development,” CETEVA, 2008.

[2] H. Ossher, R. Bellamy, I. Simmonds, D. Amid, A. Anaby-Tavor, M.
Callery, M. Desmond, J. de Vries, A. Fisher, and S. Krasikov,
“Flexible modeling tools for pre-requirements analysis: conceptual

architecture and research challenges,” in Proceedings of OOPSLA
2010, vol. 45, 2010, pp. 848–864.

[3] H. Cho, “A demonstration-based approach for designing domain-
specific modeling languages,” in Proceedings of SPLASH 2011,
2011, pp. 51–54.

[4] M. F. Bertoa and A. Vallecillo, “Quality attributes for software
metamodels,” Proceedings of QAOOSE, 2010.

[5] B. Volz and S. Jablonski, “Towards an open meta modeling
environment,” Proceedings of the 10th Workshop on Domain-
Specific Modeling, 2010, pp. 17-1–17-6.

[6] B. Volz, Werkzeugunterstützung für methodenneutrale
Metamodellierung. PhD thesis: University of Bayreuth, 2011.

[7] J. Odell, Advanced object-oriented analysis and design using UML.
Cambridge University Press, 1998.

[8] C. Atkinson and T. Kühne, “Concepts for comparing modeling tool
architectures,” Model Driven Engineering Languages and Systems,
2005, pp. 398-413.

[9] C. Atkinson and T. Kühne, “Meta-level independent modelling,”
International Workshop Model Engineering in Conjunction with
ECOOP 2000, 2000, pp. 12-16.

[10] S. Covert, “OMG’s Unified Modeling Language (UML) Celebrates
15th Anniversary,” 2012. [Online]. Available:
http://www.omg.org/news/releases/pr2012/08-01-12-a.htm.

[11] C. Atkinson and T. Kühne, “The role of metamodeling in MDA,”
Proceedings of the International Workshop in Software Model
Engineering 2002, 2002, pp. 67-70.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
1995.

[13] Microsoft Corporation, “When to Use Inheritance,” 2008. [Online].
Available: http://msdn.microsoft.com/en-
us/library/27db6csx(v=vs.90).aspx.

[14] M. Gogolla and U. Hohenstein, “Towards a semantic view of an
extended entity-relationship model,” ACM Transactions on Database
Systems, 1991, pp. 369-416.

[15] R. Elmasri and S. B. Navathe, Fundamentals of database systems, 3.
A. Amsterdam: Addison-Wesley Longman, 2000.

[16] G. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, 1994, pp. 30-39.

[17] M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” Software Language Engineering, pp. 163–
182, 2011.

[18] M. Mernik, D. Hrncic, B. R. Bryant, A. P. Sprague, J. Gray, Q. Liu,
and F. Javed, “Grammar inference algorithms and applications in
software engineering,” in Proceedings of the 9th International
Colloquium on Grammatical Inference, 2009, pp. 1–7.

[19] F. King-Sun and T. L. Booth, “Grammatical Inference: Introduction
and Survey - Part I,” IEEE transactions on pattern analysis and
machine intelligence, vol. 8, 1986, pp. 95-111.

[20] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: A
metamodel recovery system using grammar inference,” Information
and Software Technology, vol. 50, 2008, pp. 948–968.

[21] M. Desmond, H. Ossher, I. Simmonds, D. Amid, A. Anaby-Tavor, M.
Callery, and S. Krasikov, “Towards smart office tools,” FlexiTools
Workshop, 2010.

[22] H. Cho, J. Gray, and E. Syriani, “Creating visual Domain-Specific
Modeling Languages from end-user demonstration,” Modeling in
Software Engineering, 2012, p. 22-28.

[23] H. Cho and J. Gray, “Design patterns for metamodels,” Proceedings
of SPLASH 2011, 2011, pp. 25-32.

[24] P. Bottoni and A. Grau, “A Suite of Metamodels as a Basis for a
Classification of Visual Languages,” in Symposium on Visual
Languages and Human Centric Computing, 2004, pp. 83–90.

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

