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Abstract—The temporal control of the execution of multi-
media processes is a crucial point for a number of application
fields. We propose a formalism for authoring multimedia
scripts that involves dynamic triggerings. In addition, we
propose an abstract machine able to execute these scripts, by
adapting the temporal organization of the processes according
to the dynamic triggerings. This machine must implement
some temporal features such as fast forward or GOTO
functionalities. We present some algorithms performing these
functionalities. A last, we mention some evaluation by users
and possible future works.

Keywords-Musical Processes; Petri network; Real-Time;
Flexible time; Iscore

I. I NTRODUCTION

Controlling the temporal unfolding of multimedia pro-
cesses is a useful but challenging task for several kinds of
applications. Software systems likeFlash are quite useful
for creating multimedia contents for animation but they
fail at precisely specifying synchronization between several
processes. From live-performance to composition of inter-
active music or even oral presentations, the conception of a
complex script implies controlling the temporal sequence of
several processes as well as their coordination.

In most applications from the musical domain, time
control is often performed by introducing continuous control
giving the tempo of a score. In such systems, durations of
musical events are defined according to a time unit that is
stretched in order to fit real-time purposes. For example, a
score-follower [1] or a real-time accompaniment system [2]
is listening to a performer playing a score, which is known.
By analyzing the sound played by the musician, the system is
able to extract the notes and to follow the fluctuations of the
tempo played by the musician. In consequence, the system
can use those fluctuations of tempo to control the time unit of
the score that he must play to accompany the musician. But
such systems often fail at synchronizing precisely processes
beginning or ending.

In the VIRAGE project [3], we addressed the problem of
executing a script of multimedia processes for controlling
light, sound or video, for live-performance while adapting
the launching of the processes according to the play of actors

on the stage. We introduced and implemented theIscore
system that uses discrete controls to precisely synchronize
multimedia processes according to a script [4].

In this paper, we present added features to theIscoresys-
tem that permit real-time temporal control. The innovation
of this system lies in the melding of discrete and continuous
controls over temporal unfolding of the processes. With this
system, the user can firstly place processes on a time-line and
specify temporal constraints between starting or ending dates
of processes. Secondly, he can specify interactive points that
will come during execution flow of the system. The link
between those two paradigms, that is time-line and time-
flow, holds thanks to temporal relations that are verified by
the system both at writing and execution time. At last, during
execution, the user can modify the speed of the processes
execution in a continuous way and he is also able to use a
GOTO feature enabling him to skip or repeat some parts of
the script.

In Section II, we briefly introduce theIscoresystem and
the implementation of the management of discrete events
thanks to an abstract machine constituted of a Petri Net. In
Section III, we present the new features, that is modification
of the execution speed and GOTO, and how they are
implemented in the context of the abstract machine.

II. I SCORE SYSTEM

The Iscoresystem has been fully described in [5], let us
remember the bases of its conception and implementation.

The main question addressed by theIscoresystem is the
authoring and interpretation of musical scores of electro-
acoustic music. This problem has been enlarged to a more
general model for interactive multimedia scripts. TheIscore
has typically two sides : the authoring side allows an
author to design a multimedia script that can be modified
during its execution, while the performance side executes
the multimedia scripts and allows a performer to take benefit
from the interaction possibilities. We studied the case in
which the interaction possibilities consists in modifyingthe
date of some steps of the multimedia processes involved in a
script, as well as the speed of execution of these processes.
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In order to prevent excessive modifications of a script
during its execution, an author can define some boundaries
that a performer must always respect. Since we only con-
sider temporal modifications as interaction possibilities, the
limits upon the interaction possibilities consist in temporal
relations that must be respected during each performance.

A. Authoring side

One can find an example of a script on Figure 1. In this
representation, the time-line is horizontal and left-to-right
oriented. The author can temporally organized sometem-
poral objects, which are represented as boxes. Atemporal
object can besimple, i.e., it represents the execution of a
multimedia process such as the objectssoundand red on
the example ; or it can becomplex, i.e. it represents the
execution of a group oftemporal objectssuch as thelights
object. Each complex temporal objects holds its own time-
line with a specific time speed. Therefore, a script can be
performed with heterogeneous time speeds in its complex
temporal objects.

A temporal objectpresents somecontrol points, repre-
sented by circles on the top and bottom borders of the
objects.Control pointsrepresent some particular moments
of the execution of thetemporal object. The beginning and
the end of an object are naturally considered as particular
moments. Other intermediate moments can also be consid-
ered. The author can temporally organize a script by adding
some temporal relations between the control points of the
objects involved in this script.

Since these relations can be defined between points, they
can be of two types :precedenceandposteriority. Formally,
a temporal relationtr can be defined by a 6-uple :

tr =< t, p1, p2,∆min,∆max >

• t is a type (Pre or Post)
• p1 andp2 are control points
• ∆min and∆max are real values in[0,∞]

If tr is a precedence relation, then it imposes the inequality
:

∆min ≤ d(p2)− d(p1) ≤ ∆max

whered(pi) is the date ofpi.
The inequalities imposed by the temporal relations must

be respected during each execution.
The possibilities of interaction are expressed through

interaction points, represented by red circles. Aninteraction
point turns a control point into a dynamic one. A dynamic
control point must be explicitly triggered by the performer
during the execution. On the contrary, the other control
points (the static ones) are triggered by the system.

In order to execute interactive scripts, we had to design
an abstract machine that can trigger the static control points,
accept the triggering of the dynamic control points and
respect the temporal relations.
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Figure 1. An example of an interactive script

B. ECO machine

We call the abstract machine designed for executing
the interactive scripts theECOMachine, for Environment,
Controls and Outputs. One can find a representation of
this machine on Figure 2. The termEnvironmentmust be
understood astemporal environment. It carries all temporal
information specified in the script. This information is repre-
sented in a time-stream Petri net [6]. One can see an example
of such a net on Figure 3. To generate the environment
associated to a script, we transform the script into a Petri
net according to the following method. Each control point
is turned into a transition. If a temporal constraint imposes
the simultaneity of different control points, their transitions
are merged. If a precedence relation is specified between
a control point p1 and a control pointp2, a sequence
arc/place/arc is added between the transition ofp1 and the
transition ofp2. The type of Petri net that we use accepts
a time range on each arc. This time range allows us to
represent the possible values for a time interval between
control points. In addition, the crossing of a transition
that represents a dynamic control event is conditioned by
receiving an external control message.

Then, the termControls represents the flow of control
messages that trigger the dynamic control points. When a
control point of a temporal object is triggered, the associated
step of the process represented by the object is triggered. The
part of the machine, which runs the multimedia process, is
called theprocessor. It receives messages from the Petri
net and sends the data produced by processes through the
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Controls
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Figure 2. The ECOmachine

Outputsflow.
The structure of this machine allows us to temporally

control the triggering of the control points, as well as the
speed of execution.

III. R EAL-TIME TEMPORAL CONTROL

We present theIscoresystem without speed modification,
we provide some algorithms to manage this system in an
efficient way, and then we introduce what modifications are
needed to allow speed modification as well as the GOTO
feature.

A. Discrete Temporal Control System

For the discrete temporal control, we apply the petri
network crossing rules.

1) Static And Dynamic Transitions:A script without
trigger points, i.e., without interaction, only contains static
transitions. These transitions are triggered by the system.
When an interaction is needed, the compositor can decide
to add a trigger point on a processes start or end, the
transition becomes dynamic [3]. He can also decide a time
range in which this event can be triggered.

In the Petri network, this mechanism is implemented by a
transition, which is waiting for an event. Each of its ingoing
arcs has minimum and maximum values that match the
time range decided by the compositor. The minimum value
corresponds to the minimum time after which we can cross
the transition. The maximum value corresponds to the time
when the transition will be crossed, whether the event was
received or not.

2) Priority FIFO Algorithms: During the editing process,
the time taken by each user action is not really important.
However during real time execution, we cannot allow a
procedure to be time consuming. The most many-time called
procedure is the one, which decides if a transition should be
crossed or not. It is impossible to check all the transitions

Time=1000
[100; 250]

Figure 3. Here is a part of a Petri net produced by the transformation of
an interactive score. During the execution, a token is produced in the left
place at absolute time 1000. This leads to the creation of a START action
labeled with the date 1100, as well as an END action labeled with date
1250. These two actions are put in the priority FIFO.

Time=1000

event1

S(A)

[100; 15
0]

[120; 200]

Figure 4. An example of a dynamic control point

all time because it would be a long process. So we decided
to use a priority FIFO that can be filled with priorityActions.

PriorityAction

A PriorityAction is defined by a transition, a date, a type
(START or END) and a boolean stating if the action is still
enabled. The type is START when a transition could be
crossed (for example when we just wait for the event to
come), and END when a transition must be crossed whether
the event was received or not.

Filling and updating the FIFO

These actions will be the elements of a chronologically
priority FIFO.

Filling the FIFO is not an easy procedure. If fact, START
and END actions should be computed in real time, but
they depend on how the tokens arrived in the places before
the transition. The Figure 4 shows a simple example. In
this example, the considered transition represents a dynamic
control point. This means that during the execution, the
system will wait for receiving a external trigger message
called event1. When this message is received, the system
crosses the transition, which leads to start a process called
A. The system must respect the time ranges introduced
by the user. Therefore, if the two tokens are produced
simultaneously at absolute time 1000, the transition can be
crossed between time 1120 and time 1150. Then the system
will ignore a messageevent1 that would arrive before time
1120 and it will automatically crossed the transition if no
message has been received at time 1150.

One can find a more complex example on Figure 5.
A transition knows at every time, which ones of its

ingoing arcs are active, i.e., when a token is present in the
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[100;
250]

[110; 150]

(a) The considered transition is preceded by two
arcs with different time ranges.

Time=1000

[100;
250]

[110; 150]

(b) At the absolute time 1000, a token is pro-
duced is one of the preceding places. This will
create a END action at 1250.

Time=1005

[100;
250]

[110; 150]

(c) At absolute time 1005, a token is produced
in the second place. This will create a START
action labeled with date 1115 (the maximum of
1000 + 100 and 1005 + 110) and a update the
END action labeled with date 1155 (minimum of
1005 + 150 and 1000 + 250)

Figure 5. An example in which, two tokens arrive at differenttimes. This
implies that the system needs to update the date of an action

place linked by this arc. When the incoming arcs are not all
active, we can only calculate and update the END action.
When all arcs are actives, we can add the START action.
When we update an action, we just disable the previous
one and add a new one, for efficiency purpose.

When a token arrives in an empty place, all the outgoing
arcs are stated as active. At this moment, the END and
START actions are computed. (See the Algorithm 1).

Computing the FIFO elements

At each ECO Machine cycle, the makeOneStep procedure
(Algorithm 2) is called. It handles all the actions, which
dates are lower or equal to the current date. If an action
is disabled, it simply removes it. If an action is END, it
forces the transition to be crossed (if it is impossible, an
exception should be thrown). If an action is START, it fills
a list of sensitized transition, i.e., transition waiting for an
event. After that, it handles all the sensitized transitions. A
transition that can finally not be triggered will be removed

event1

event2

(a) The two transitions can be crossed

event1

event2

(b) The messageevent1 is received, the
corresponding transition is crossed. The
second transition cannot be crossed any-
more.

Figure 6. In this example, the crossing of a transition leadsto the
impossibility to cross another transition.

from the list (for example if a place is involved in two
or more transitions, and another transition was previously
crossed, consuming the token).

Updating transition state

The last algorithm (Algorithm 3) handles a transition
crossing. It consumes and produces token in the correspond-
ing places, executes the external actions (i.e., the start or end
of a processes), and resets the transition state. In fact, when
a token is consumed, it could destabilize the system (for
example when a token is involved in two or more transitions,
as seen in the Figure 6).

B. Continuous And Discrete Temporal Control System

It is very useful to have the possibility to accelerate or
decelerate the script. For example if we need to accelerate
the fade out for music and light. But these features could
not be possible without the concept of numbered tokens.

1) Deceleration: Decelerating is not a complex part of
the speed modification. In fact, if all the time values are
set in a millisecond precision, the precision of the Petri
network time is in microsecond. So for decelerating, a simple
multiplication of the next computed delta time by a factor
between 0 and 1 is sufficient.

2) Acceleration:Accelerating is much more challenging.
A first idea could be to call makeOneStep more often,
but this would too much computation time, and it would
be unsafe in real-time processing. Our solution is to use
stamped tokens, but it is not straight forward solution. Each
number on a token represents the remaining time to be
handled.
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Algorithm 1 setArcAsActive
Require: arc transition petriNet

1: transition.labelInGoingArcAsActive(arc)
2: currentDate← petriNet.getCurrentDate()
3: startDate← arc.getMinDate() + currentDate

4: endDate← arc.getMaxDate() + currentDate

5: if startDate > transition.getStartDate() then
6: transition.setStartDate(startDate)
7: end if
8: if endDate < transition.getEndDate() then
9: transition.setEndDate(EndDate)

10: petriNet.addPriorityT ransitionAction(transition,
END, endDate)

11: end if{/* if an END action already exist for this
transition, it will be disabled */}

12: if transition.allInGoingArcAreActive() then
13: petriNet.addPriorityT ransitionAction(transition,

START, startDate)
14: end if{/* if an START action already exist for this

transition, it will be disabled */}

15 [10; 10] [20; 20]

(a) The token is labeled with a value 15

5 [20; 20]

(b) After the crossing of the first transition, the token is label-led
with the value 5

Figure 7. An example of the spreading of a label-led token

• The makeOneStep algorithm will precise a token value
when a transition is crossed, matching the remaining
time after the crossing (currentTime - actionTime).

• When an arc is stated as active, the token value must be
subtracted from the minimum and maximum arc values.
See Figure 7.

• If this subtraction makes the transition crossable (for
example if the value on the second arc on the Figure 7 is
[15; 20]), this transition should be added to a transition
list, handled at the end of the makeOneStep algorithm.
And this should be repeated as often as the numbered
token are disseminated in the Petri network.

3) Processes:The new speed must also be given to all
currently running processes for them to adapt their com-
putation, and must be provided to each processes launched
next.

4) GOTO: The GOTO currently implemented can be seen
as a very fast acceleration, where all dynamic transitions are
turned into static transitions. It was an acceptable solution
for a first version of the VIRAGE sequencer, but it has
several limits.The artists using the VIRAGE sequencer made

Algorithm 2 makeOneStep
Require: petriNet

1: transitionActionFIFO ←
petriNet.getT ransitionActionFIFO()

2: currentDate← petriNet.getCurrentDate()
3: while

(transitionActionFIFO.size() 6= 0)
∧
(transitionActionFIFO.top().date() ≤
currentDate) do

4: topAction← transitionActionFIFO.top()
5: topT ransition← topAction.getT ransition()
6: transitionActionFIFO.pop()
7: if topAction.isEnable() then
8: if topAction.getT ype() = START then
9: topT ransition.declareAsSensitized()

10: else if topAction.getT ype() = END then
11: if topT ransition.allInGoingArcsAreActive()

then
12: topT ransition.crossT ransition()
13: else
14: throw incoherentStateException

15: end if
16: end if
17: end if
18: end while
19: sensitizedT ransitionList ←

petriNet.getSensitizedT ransitionList()
20: for each currentSensitizedT ransition in

sensitizedT ransitionList do
21: if !currentSensitizedT ransition.

allInGoingArcsAreActive() then
22: sensitizedT ransitionList.

remove(currentSensitizedT ransition)
23: else if

(petriNet.hasReceivedEvent(
sentizedT ransition.getEvent()))
∨
(sensitizedT ranstion.isStatic()) then

24: sentizedT ranstion.crossT ransition()
25: sensitizedT ransitionList.remove(

currentSensitizedT ransition)
26: end if
27: end for
28: petriNet.resetEvents()

a lot of feedbacks about it.

The first one is that if all processes are played rapidly,
they are also played integrally. When a GOTO is performed,
the artists usually do not want all the intermediate values,
but only the last state of each processes. For example, if a
processes computes a sound fade-in in a normal execution

16

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-129-8



Algorithm 3 crossTransition
Require: transition petriNet

1: inGoingArcs← transition.getInGoingArcs()
2: for eachinArc in inGoingArcs do
3: inArc.consumeToken()
4: if inArc.nbToken = 0then
5: transitionList =

inArc.getP lace().getSuccessorsT ransition()
6: for each transitionToReset in transitionList

do
7: transitionToRest.resetArcState()
8: end for{/* Resetting a transition arc state means

looking for all predecessors places (after disabling
the END and START action), and activate corre-
sponding arc (with the previous values) if there is
still a token in the place */}

9: end if
10: end for
11: for each externAction in

transition.getExternAction() do
12: externAction.execute()
13: end for{/* an action could be a process start or end */}
14: outGoingArcs← transition.getOutGoingArcs()
15: for eachoutArc in outGoingArcs do
16: outArc.produceToken()
17: end for
18: transition.resetArcState()

; in a GOTO situation, only the last value is useful. A
good solution can be to execute all processes without
sending the results, and only broadcast the last results of
each processes. Another solution can be to regularly save
the ECOMachine state, and its processes, and perform the
GOTO from the closest saved state.

The second one is that some processes can not be
accelerated, for example a light, which need 5 seconds to
be correctly initialized. A solution can be to precise some
processes as GOTO-rigid, and execute them completely
even in a GOTO situation.

Finally, when some processes are in the correct state, for
example the light is correctly initialized by a previous execu-
tion, artists do not want to have a complete reinitialization.
A solution can be to have an interaction with this processes
by asking is current state, and skip the GOTO-rigid part if
the initialization is already performed.

C. Validation

These features were tested and validated by the artists in-
volved in the VIRAGE project. An Agile method (SCRUM)
was set up to improve communication between developers
and artists. A bug tracker allowed fast corrections and

performances were made to test and present these features
during frequent meetings [3].

IV. CONCLUSION

In this paper we presented a novel system for controlling
in real-time the temporal unfolding of multimedia processes.
For that purpose, we mix several temporal paradigms.
Firstly, we use a time-line model to place processes start
and end dates as well as temporal relations between them.
Secondly, the execution uses a time-flow model in which the
processes are executed while holding the temporal relations
stated on the time-line between dates. In this last model,
temporal synchronization is performed thanks to discrete
controls associated to processes dates, while continuous con-
trols can be performed to control the speed of the processes.
The implementation of such continuous controls in a discrete
model as a Petri net was not straight-forward. We proposed
solutions that have to be enhanced. In particular, the GOTO
feature should not execute all processes but only those,
which have a persistent effect on the future. As a matter of
fact, a fade-in, which is followed by a fade-out of the light
can be completely skipped. However, the move of a camera
should be performed before the recording process execution.
Logical relations have to take place between processes in
order to skip processes properly. In the future, we want to
open the scripts in order to give choices to the user, which
can depend on what is going on in real-time. Such a system
should be useful also in the context of museography and
improvisation.
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