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Abstract—In this paper, we propose a method to predict
gene knockout effects for the cell growth by utilizing bi-
ological databases such as KEGG and EcoCyc, in which
biological knowledge and experimental results have been col-
lected. At first, biological networks are constructed from such
databases and configure experimental conditions by giving
source metabolites, target metabolites, and knockout genes.
All minimal active pathways are then enumerated, which are
minimal subsets of a given network using source metabolites
to produce target metabolites. Finally, the effects of gene
knockouts are predicted by measuring the difference of mini-
mal active pathways between original networks and knockout
ones. In the experiments, we applied it to predict the single
gene knockout effects on the glycolysis pathway and amino
acids biosynthesis in Escherichia coli. We also analyze which
pathways are important to Escherichia coli and predict lethal
pairs of knockout genes. In the results, our method predicted
three out of four essential genes, which agree with the biological
results of the Keio collection containing comprehensive cell
growth data. In addition, predicted lethal pairs of genes also
agree with the biological results of double gene knockouts.

Keywords-metabolic pathways; gene knockout; prediction
method; minimal pathway; Keio collection.

I. INTRODUCTION

This paper is an extended version of the previously
published conference paper [1]. While the earlier paper only
considered effects of single gene knockouts, this paper pro-
ceeds the analysis of those effects and shows the prediction
result of double gene knockouts, which is compared with
biological results of [2].

Living organisms, such as bacteria, fishes, animals, and
humans, are kept alive by a huge number of intracellular
chemical reactions. In systems biology, interactions of such
chemical reactions are represented in a network called a
pathway. Pathways have been actively researched in the
last decade [3]–[5]. In addition, it is a biologically impor-
tant subject to reveal the function of genes, which affect
the phenotype of organisms. For model organisms such
as Escherichia coli (E. coli), it has been approached by

†This work has been done while affiliated with Transdisciplinary Re-
search Integration Center, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan.

various methods. Constructing gene knockout organisms is
an example of such methods [6]–[8]. However, it generally
involves high costs and is limited by target genes and
organisms.

In this paper, we propose a computation method to pre-
dict gene knockout effects by identifying active pathways,
which are sub-pathways that produce target metabolites from
source metabolites. We particularly focus on minimal active
pathways [9], which do not contain any other active path-
ways. In other words, all elements of each minimal active
pathway are qualitatively essential to produce target metabo-
lites. To predict gene knockout effects by the enumeration of
minimal active pathways, at first, extended pathways, which
include relations between enzymatic reactions and genes,
are introduced. Then, the problem of finding minimal active
pathways on the extended pathway with gene knockouts is
formalized. After computing the solution of the problem,
our method predicts gene knockout effects by collecting
minimal active pathways that are still active under given
gene knockouts.

To evaluate our method, E. coli is chosen as our target
organism, since it has been studied and much information is
available on public resources such as KEGG [10] and Eco-
Cyc [11]. The proposed method is applied to predict gene
knockout effects on E. coli utilizing biological databases
KEGG and EcoCyc, in which biological knowledge and
experimental results have been collected. In the experiments,
we compare our prediction with the cell growth of every
single gene knockout E. coli strain, which was obtained from
the Keio collection [6]. In addition to the above experiments,
using the biological results of [2], we analyze which minimal
active pathways are important and predict lethal pairs of
gene knockouts for E. coli. We also apply our method to
predict the gene knockout effects on amino acid biosynthesis
and discuss which reactions are suspected to be lacked in
databases.

This paper is organized as follows. At first, databases used
in this paper and our research framework are explained in
Section II. The extended pathway is defined in Section III.
Then, Section IV formalizes the problem of finding minimal
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Figure 1. Used Databases and our Research Framework

active pathways on the extended pathway. The effect of gene
knockouts is formalized in Section V. Following that, our
computational method is shown in Section VI. In Section
VII, computational predictions are compared with results of
biological experiments, and we have discussions. Following
Section VIII of related work, this paper is concluded in
Section IX.

II. USED DATABASES AND RESEARCH FRAMEWORK

This section explains used databases and our research
framework shown in Figure 1. In this paper, we particularly
focus on E. coli. The metabolic pathway has been revealed
by biochemical, molecular, and genetic studies, and E. coli is
the organism in most detail. A large number of E. coli studies
has contributed to several kinds of biological databases. In
particular, we used the following two databases to construct
our input network, called an extended pathway.

One is EcoCyc [11]. It is a bioinformatics database that
describes the genome and the biochemical machinery of E.
coli K-12 MG1655. The EcoCyc project performs literature-
based curation of the entire genome, metabolic pathways,
etc. Specifically, it has been doing a literature-based cura-
tion from more than 19,000 publications. We constructed
metabolic pathways with EcoCyc. The other one is Kyoto
encyclopedia of genes and genomes (KEGG) [10], which is
a database resource that integrates genomic, chemical, and
systemic functional information. In particular, gene catalogs
in the completely sequenced genomes, from bacteria to
humans, are linked to higher-level systemic functions of
the cell, the organism, and the ecosystem. A distinguished
feature of KEGG is that it provides useful application
program interfaces (API). We connected enzymatic reactions
of metabolic pathways to genes with this API.

Figure 1 shows our research framework using the two
databases. At first, the input network called extended path-
way is constructed from those databases. Then the problem
of finding minimal active pathways is constructed by giving

source metabolites, target metabolites, knockout genes, and
the extended pathway. Then, we compute minimal active
pathways using source metabolites to produce target metabo-
lites. In the case of wild cells, we usually obtain multiple
minimal active pathways including bypass pathways. How-
ever, in the case of knockout cells, we lose some (or all) of
them. In brief, we predict the effects of gene knockouts from
how many pathways are lost from the case of wild cells.

To evaluate our prediction method, we usually need
additional biological experiments. However, Baba et al.
comprehensively experimented on the cell growth of every
single gene knockout strain [6]. Thanks to this research, we
can evaluate our method with comparative ease. We briefly
explain this research as follows. The E. coli K-12 single gene
knockout mutant set, named Keio collection, is constructed
as a resource for systems biological analyses. Excluding
repetitive genes, e.g., insertion sequences related genes,
4288 protein coding genes are targeted for the systematic
single gene knockout experiments. Of those, 3985 genes are
successfully disrupted, and those of single gene knockout
mutants are constructed as the Keio collection. On the other
hand, 303 genes are not disrupted and they are thought to
be essential gene candidates. Those single gene knockout
mutants have the same genome background, which results in
an advantage for distinct functional analysis of the targeted
gene. The genome-wide relationship between the genome
structure, i.e., genotype, and the phenomena, i.e., phenotype,
which are analyzed by using the Keio collection has become
available. In addition to the Keio collection, results of double
gene knockouts by the literature [2] is also used.

After the above evaluation, some differences between
prediction results and biological results of [6] and [2] will be
found. Those differences are used to found lacked reactions,
bypass pathways actually used in cells, and improvements
for pathway model, which refine extended pathways.

Although Figure 1 shows specific databases for E. coli,
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Figure 2. Example of an Extended Pathway

the research framework itself can be applied for other organ-
isms whose pathway information is available. For instance,
although there is a large difference between E. coli and mice,
the central metabolism is similar and it could be a potential
application.

III. EXTENDED PATHWAYS

In this section, we explain how to represent metabolic
pathways and their relations to genes. We then define the
extended pathway.

To represent metabolic pathways, we commonly use bi-
partite directed graph representation as follows. Let M be a
set of metabolites and R be a set of reactions. For M and
R, M ∩R = ∅ holds. Let AM ⊆ (R×M)∪ (M ×R) be a
set of arcs. A metabolic pathway is represented in a directed
bipartite graph GM = (M ∪ R,AM ), where M and R are
two sets of nodes, and AM is a set of arcs. In addition to the
metabolic pathway, we consider relations between enzymatic
reactions and genes. Let G be a set of genes and AG be a
set of arcs such that AG ⊆ (G×R). That is, AG represents
relations between enzymatic reactions and genes. Let N be
a set of nodes such that N =M ∪R∪G and A be a set of
arcs such that A = AM ∪AG. Then, the extended pathway
is represented in a directed graph G = (N,A).

Figure 2 shows an example of the extended pathway. As
the figure shows, it consists of two layers: the metabolic
layer and the genetic layer. The genetic layer is the dif-
ference between the metabolic pathway and the extended
pathway. In this example, the pathway consists of nodes
of M = {m1,m2, . . . ,m6}, R = {r1, r2, . . . , r7}, and
G = {g1, g2, . . . , g8}. Each arc represents relations between
elements. For instance, the activation of the reaction r6 needs
the production of metabolites m3 and m4 and the expression
of g6. We will explain the interpretation of the extended
pathway in detail in the next section.

IV. MINIMAL ACTIVE PATHWAYS WITH GENE
KNOCKOUTS

In this section, we explain the notion of producible,
activatable and minimal active pathway on the extended

pathway, while the minimal active pathway is introduced
only on the metabolic pathway in the literature [9].

We here define MS ⊂ M as a set of source metabolites
and MT ⊂M as a set of target metabolites such that MS ∩
MT = ∅. An extended pathway instance is represented in a
four tuple π = (N,A,MS ,MT ), where N = M ∪ R ∪ G,
A = AM ∪AG. Let K be a set of genes such that K ⊆ G.
We use K as a set of knockout genes in a given pathway.
A knockout instance is represented in a five tuple πK =
(N,A,MS ,MT ,K). If K = ∅ then πK corresponds to π.

Let m, r be a metabolite and a reaction such that m ∈M
and r ∈ R, respectively. A metabolite m ∈ M is called a
reactant of a reaction r ∈ R when there is an arc (m, r) ∈
A. On the other hand, a metabolite m ∈ M is called a
product of a reaction r ∈ R when there is an arc (r,m) ∈ A.
Furthermore, a gene g ∈ G is called a corresponding gene
of a reaction r ∈ R when there is an arc (g, r) ∈ A.

A reaction is called a reversible reaction if it can occur
in both directions between reactants and products. In this
paper, we distinguish a reversible reaction as two reactions.
Suppose that there is a reversible reaction r1 that has m1

and m2 as reactants and m3 and m4 as products. In this
case, we split the reaction r1 into two reactions r1a and r1b
such that one of them has m1 and m2 as products and m3

and m4 as reactants.
Let s : R → 2M be a mapping from a set of reactions

to a power set of metabolites such that s(r) = {m ∈
M | (m, r) ∈ A} represents the set of metabolites that are
needed to turn the reaction r to be active. Let p : R→ 2M be
a mapping from a set of reactions to a power set of metabo-
lites such that p(r) = {m ∈ M | (r,m) ∈ A} represents
the set of metabolites that are produced by the reaction r.
Let c : R → 2G be a mapping from a set of reactions to a
power set of genes such that c(r) = {g ∈ G | (g, r) ∈ A}
represents the set of genes that are corresponding genes of
the reaction r. Let p′ : M → 2R be a mapping from a
set of metabolites to a power set of reactions such that
p′(m) = {r ∈ R | (r,m) ∈ A}. Let c′ : G → 2R be a
mapping from a set of genes to a power set of reactions
such that c′(g) = {r ∈ R | (g, r) ∈ A}.

Let t be an integer variable representing time. In this
paper, the time is used to represent order relation between
reactions to produce target metabolites from source metabo-
lites. In the following, we explain important notions related
to production of metabolites, activation of reactions, and
expression of genes. Since we focus on gene knockouts,
we suppose that almost all genes exist in the cell of a given
organism. We also suppose that if genes exist, then they
are expressed and available to construct enzymes needed for
enzymatic reactions. The reason for this condition is that we
want to simulate how the lack of corresponding genes affects
metabolic pathway rather than how the existence of genes
affects other elements. Although our pathway modeling is
simple, it allows us to analyze a whole cell scale pathway.
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Let πK = (N,A,MS ,MT ,K) be a knockout instance,
where N = M ∪ R ∪ G, A = AM ∪ AG. Let G = (N,A)
be an extended pathway. Let M ′ ⊂ M be a subset of
metabolites. A metabolite m ∈ M is obviously producible
at time t = 0 from M ′ on G if m ∈ M ′ holds. A
reaction r ∈ R is activatable at time t > 0 from M ′ on
G if the following two conditions are satisfied: (i) for every
m ∈ s(r), m is producible at time t − 1 from M ′, (ii) at
least one corresponding gene g ∈ c(r) is not included in K.
A metabolite m ∈ M is producible at time t > 0 from M ′

on G if there is at least one activatable reaction r at time t
such that m ∈ p(r). If r is activatable at time t, then r is
activatable at time t+ 1. If m is producible at time t, then
m is producible at time t+ 1.

Let G′ = (N ′, A′) be a sub-graph of G, where N ′ =
M ′ ∪R′ ∪G′ and A′ = A′

M ∪A′
G. Then, an active pathway

of πK = (N,A,MS ,MT ,K) is defined as follows.
Definition 1: Active Pathway of Knockout Instance

A bipartite directed graph G′ is an active pathway of πK if
it satisfies the following conditions:

• MT ⊂M ′

• M ′ =MS ∪ {m ∈M | (m, r) ⊆ A, r ∈ R′} ∪ {m ∈
M | (r,m) ⊆ A, r ∈ R′}

• A′ = {(m, r) ∈ A | r ∈ R′} ∪ {(r,m) ∈ A | r ∈
R′} ∪ {(g, r) ∈ A | g ̸∈ K, r ∈ R′}

• G′ = {g ∈ G | (g, r) ∈ A′, r ∈ R′}
• For every m ∈M ′, m is producible from MS on G′

From Definition 1, active pathways include a set of
metabolites, reactions, and genes, which are producible and
activatable from MS on G′ such that all target metabolites
MT become producible. The number of active pathways
depends on the combination of MS and MT but an extended
pathway generally has a large number of active pathways.
We thus particularly focus on minimal ones rather than active
pathways. We give the definition of minimal active pathways
of πK as follows. Let G and G′ be extended pathways. We
say that G is smaller than G′ and represented in G ⊂ G′ if
R ⊂ R′. An active pathway G is minimal active pathway of
πK iff there is no active pathway of πK , which is smaller
than G. As this definition shows, we only need to see sets of
reactions to compare two pathways. Thus, in the rest of this
paper, we sometimes represent a minimal active pathway as
a set of reactions.

Any reactions included in a minimal active pathway
cannot be deleted to produce target metabolites. Intuitively,
this indicates that each of the elements of a minimal active
pathway is essential. In practice, minimal active pathways
including a large number of reactions are considered to be
biologically inefficient. We thus introduce a time limitation z
and pathways that can make all target metabolites producible
by t = z. In the following, we consider the problem of
finding minimal active pathways with respect to πK and z.

V. KNOCKOUT EFFECTS

This section provides how to predict knockout effects. In
the following, we give some definitions for the prediction.
Let π = (N,A,MS ,MT ) and πK = (N,A,MS ,MT ,K)
be an extended pathway instance and a knockout instance,
respectively. In addition, we denote the number of minimal
active pathways of π as |π| and the number of minimal active
pathways of πK as |πK |. Obviously, |πK | ≤ |π| holds. Then,
the gene knockout effect, i.e., the prediction by the proposed
method, is given by EK = |π|−|πK |. Let Ka and Kb be sets
of knockout genes. If EKa > EKb

holds, then we say that
the gene knockout effect of Ka is stronger than that of Kb.
If |πK | = 0, i.e., EK = |π|, then we say that the knockout
effect of K is critical to produce target metabolites. Various
metabolites are known as vital metabolites, which means
organisms cannot survive without them. That is, if some
gene knockouts are critical to produce such metabolites, then
a given organism cannot grow any more or dies. If |K| = 1
and its effect is critical to produce vital metabolites, then
we say that the gene g ∈ K is essential.

In the following, we explain the above definition with
a specific example. Suppose that we are given a path-
way instance π = (N,A,MS ,MT ), where N and A
are from the extended pathway shown in Figure 2, and
the source metabolite is MS = {m1} and the target
metabolite is MT = {m6}. Obviously, |π| = 3 and the
minimal active pathways of π are specifically as follows:
{r1, r5, r7}, {r2, r3, r6, r7}, {r2, r4, r6, r7}. Then, we con-
sider the following knockout instances πK1 and πK2 , where
K1 = {g1} and K2 = {g6}. For πK1 , minimal active
pathways including r1 can no longer be solutions, i.e.,
|πK1 | = 2. For πK2 , minimal active pathways including
r6 can no longer be solutions either. Thus, {r2, r3, r6, r7}
and {r2, r4, r6, r7} are deleted from the solutions of π, i.e.,
|πK2 | = 1. Consequently, we can say that the knockout
effect of K2 is stronger than that of K1. Moreover, suppose
that K3 = {g7}. Then, there is no minimal active pathway
of πK3 and we say that the knockout effect of K3 is
critical to produce m6. If m6 is a vital metabolite, we can
simultaneously say that g7 is an essential gene.

In addition to the number of remaining minimal active
pathways after knockouts, an important factor in the pre-
diction is the gain of ATPs. This is because pathways that
are inefficient with respect to energy consumption will not
be used in organisms. Let |πa+|, |πa+

K | be the number of
minimal active pathways of π and πK , which gain ATPs,
respectively. Then, the gene knockout effect with respect
to ATP production is given by Ea+

K = |πa+| − |πa+
K |. In

particular, it is important when we consider the glycolysis
pathway since one of its main functions is to gain ATPs.
However, we cannot find any pathways producing ATPs on
some other pathways, i.e., minimal active pathways on them
must consume ATPs. In this case, the number of minimal
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active pathways, which consume fewer ATPs, should be
considered instead of |πa+| and |πa+

K |.

VI. COMPUTATIONAL METHOD

This section explains how to compute |πK |. In this paper,
we use the method of computing all minimal active pathways
of π by Soh and Inoue [9]. This method computes pathways
through propositional encoding and minimal model genera-
tion. An advantage is that this method is flexible for adding
biological constraints, which is explored in [9]. Moreover,
we can utilize SAT technologies, which have been developed
actively in recent years.

In the following, we briefly explain the propositional
encoding to compute minimal active pathways of π. Let
i, j be integers denoting indices for metabolites and reac-
tions. Let t be an integer variable representing time. Let
π = (N,A,MS ,MT ) be an extended pathway instance,
where N =M ∪R ∪G, A = AM ∪AG. We introduce two
kinds of propositional variables. Let m∗

i,t be a propositional
variable, which is true if a metabolite mi ∈M is producible
at time t. Let r∗j,t be a propositional variable, which is true
if a reaction rj ∈ R is activatable at time t.

The encoding of the problem of finding minimal active
pathways with respect to πK and z is as follows.

ψ1 =
∧

0≤t<z

∧
mi∈M

(
m∗

i,t → m∗
i,t+1

)
ψ2 =

∧
0≤t<z

∧
rj∈R

(
r∗j,t → r∗j,t+1

)

ψ3 =
∧

1≤t≤z

∧
rj∈R

r∗j,t → ∧
mi∈s(rj)

m∗
i,t−1



ψ4 =
∧

1≤t≤z

∧
rj∈R

r∗j,t → ∧
mi∈p(rj)

m∗
i,t



ψ5 =
∧

mi∈(M\MS)

∧
1≤t≤z

(
m∗

i,t → m∗
i,t−1 ∨

∨
rj∈p′(mi)

r∗j,t

)

ψ6 =
∧

mi∈MS

m∗
i,0 ∧

∧
mi′∈M\MS

¬m∗
i′,0

ψ7 =
∧

mi∈MT

m∗
i,z

The formulas ψ1 and ψ2 represent that once a metabolite
(or a reaction) is made to producible (or activatable), then it
remains in the producible (or activatable) state. The formula
ψ3 represents that if a reaction rj is activatable at time t then
its reactants must be producible at time t− 1. The formula
ψ4 represents that if a reaction rj is activatable at time t
then its products must be producible at time t. The formula

ψ5 represents that if a reaction mi is producible then either
two states hold: the metabolite mi is producible at t − 1
or at least one reaction rj is activatable. The formulas ψ6

and ψ7 represent source metabolites and target metabolites.
We denote the conjunction of ψ1, . . . , ψ7 as Ψz . Then, we
can enumerate minimal active pathways with respect to πK
and z by computing minimal models of Ψz with respect to
V z = {r∗i,z|ri ∈ R}.

The computation for π is always needed to compare a wild
cell and its mutant. We thus explain a method to compute all
minimal active pathways of πK for a set of knockout genes
K. Actually, when the minimal active pathways of π are
obtained, we do not need much additional computation. All
minimal active pathways of πK are obtained by selecting
pathways that do not contain some r ∈ RK , where RK =
{r ∈ c′(g) | g ∈ K}. The procedure is given as follows:
(i) enumerate all minimal active pathways with respect to π
and z, (ii) delete minimal active pathways including some
r ∈ RK , where RK = {r ∈ c′(g) | g ∈ K}. As well
as the above procedure, there is another way to compute
all minimal active pathways with respect to πK and z. The
same is achieved by adding constraints, which inhibit the
activation of each reaction in RK , to the formula Ψz .

VII. EXPERIMENTAL RESULTS

This section provides experimental results and discus-
sions. At first, we describe experimental conditions. Then,
we show the results of our prediction of knockout effects
for glycolysis and amino acids biosynthesis.

A. Experimental conditions

We constructed extended pathways from EcoCyc [11]
and KEGG [10]. Specifically, we use EcoCyc to construct
metabolic pathways, which consists of 1222 metabolites
and 1920 reactions. Moreover, we use KEGG to construct
relations between enzymatic reactions and genes. The en-
tire extended pathway we used is constructed from these
two databases. In the following experiments, we denote a
reversible reaction in EcoCyc as two differently directed
two reactions by adding suffixes a and b, respectively. In
addition, some reactions such as 6PGLUCONDEHYDROG-
RXN can accept different metabolites as its input, e.g.,
6PGLUCONDEHYDROG-RXN is considered to be able to
use NAD+ and NADP+. In this case, we distinguish it as two
different reactions by adding suffixes 1 and 2, respectively.

Each experiment has been done using a PC (3.2GHz CPU)
running on OS X 10.6. For computation, we use a SAT
solver Minisat2 [12]. Koshimura et al. proposed a procedure
computing minimal models with SAT solvers [13]. We
follow their procedure to generate minimal models by using
a SAT solver.

To evaluate our method, we use the Keio collection as is
described in Section II. In particular, we use their results
on the MOPS medium whose main nutrient is glucose.
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Figure 3. The Number of Minimal Active Pathways for each Gene Knockout on Glycolysis

Table I
SINGLE GENE KNOCKOUTS FOR GLYCOLYSIS

Symbols “*” denote genes predicted as critical and “a” to “l” denote genes constructing isozymes or sharing the same pathway reactions.

Gene
#Minimal Active Pathways Keio Collection [6]

Total ATP Gain MOPS24hr MOPS48hrplus others
wild 75 14 61 0.219-0.392 0.216-0.480
pgi 20 2 18 0.137 0.542

mgsA 27 14 13 0.293 0.371
dlda 27 14 13 0.303 0.366

ldhAa 27 14 13 0.357 0.393
nadk (yfjB) 41 12 29 N.A. N.A.

tktBb 46 12 34 0.311 0.315
tktAb 46 12 34 0.317 0.327

gapA* 47 0 47 N.A. N.A.
zwf 49 12 37 0.231 0.223

pgk* 50 0 50 N.A. N.A.
eno* 50 0 50 N.A. N.A.
gldA 57 14 43 0.255 0.351
glpK 57 14 43 0.283 0.409
rpe 57 14 43 0.347 0.335

pgl(ybhE) 57 12 45 0.551 0.686
tpiA 60 14 46 0.345 0.321
amn 61 14 47 0.330 0.342

gpmIc 62 2 60 0.303 0.292
ytjCc 62 2 60 0.339 0.378

gpmAc 62 2 60 0.383 0.240
serA 63 12 51 0.007 0.021
gpsA 64 14 50 N.A. N.A.

pykAd 64 8 56 0.266 0.299
pykFd 64 8 56 0.310 0.320

gnd 64 12 52 0.251 0.282
nudC 66 14 52 0.445 0.518
fbaAe 67 10 57 N.A. N.A.
fbaBe 67 10 57 0.371 0.447
pfkBf 67 10 57 0.270 0.258
pfkAf 67 10 57 0.087 0.554

Gene
#Minimal Active Pathways Keio Collection [6]

Total ATP Gain MOPS24hr MOPS48hrplus minus
rpiBg 68 12 56 0.326 0.394
rpiAg 68 12 56 0.340 0.372
adk 69 14 55 N.A. N.A.

guaB 69 14 55 0.005 0.020
hyi 69 12 57 0.191 0.197

ycdW 69 14 55 0.255 0.301
manA 69 8 61 0.334 0.355
pgm 71 13 58 0.169 0.158
yeaD 71 13 58 0.233 0.289
nudF 71 14 57 0.376 0.373
glxRh 71 12 59 0.226 0.231
garRh 71 12 59 0.400 0.368
pntAi 72 14 58 0.220 0.288
pntBi 72 14 58 0.317 0.513
agp 72 13 59 0.319 0.528
epd 72 14 58 0.321 0.344
sthA 72 14 58 0.271 0.515
cyaA 72 14 58 0.455 0.295
eda 73 14 59 0.211 0.205
ade 73 14 59 0.246 0.304
edd 73 14 59 0.269 0.282

yagSj 73 14 59 0.273 0.125
yagRj 73 14 59 0.295 0.306
xdhBj 73 14 59 0.324 0.447
xdhAj 73 14 59 0.433 0.488
idnKk 74 14 60 0.230 0.140
gntKk 74 14 60 0.303 0.303
glgC 74 14 60 0.304 0.327
talBl 74 14 60 0.254 0.169
talAl 74 14 60 0.316 0.345
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Figure 4. Glycolysis and Pentose Phosphate Pathways of E. coli from the literature by Ishii et al. [8]

In addition, we use the results of the literature [2] for
a comparison for double gene knockouts. For the former
results, i.e., Keio collection, we consider that the set of
knockout genes K consists of one gene. The cell growth of
the wild cell is ranged from 0.216 to 0.480 in Keio collection
and 0.378 in the literature [2]. For both data, if cell growth
is less than 0.1, which is less than half of them, we then say
that the cell is strongly affected by a gene knockout.

B. Results for Glycolysis Analysis

First, we analyze the glycolysis pathway of E. coli. In ac-
cordance with the MOPS medium of the Keio collection [6],
a set of source metabolites MS is chosen as follows: {β-
D-glucose-6-phosphate, H+, H2O, ATP, ADP, phosphate,
and NAD+}. In addition, pyruvate is given as the target
metabolite to analyze glycolysis, i.e., MT = {pyruvate}. We
then compute all minimal active pathways from the entire

metabolic pathway of E. coli. As we can see in biological
literature such as the work of Ferguson et al. [14], glycolysis
is known to a pathway constructed by eight steps. However,
if some reactions are disabled, then E. coli is expected to
use other bypass pathways by using additional reactions. In
this experiment, we consider four additional reactions, i.e.,
the number of reactions included in each pathway is limited
to less than or equal to 12 as well as z = 12.

At first, we computed all minimal active pathways with
the above conditions and obtained 75 minimal active path-
ways from the entire reactions database, which consists of
1920 reactions. We then connect 61 genes to reactions by
API on KEGG. Since there is no data, some reactions are
remaining unconnected. Next, we computed minimal active
pathways with each gene knockout. This experiment was
done within four seconds. Figure 3 shows the results of 61
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gene knockouts. The x-axis denotes each gene knockout and
the y-axis denotes the number of minimal active pathways.
As is shown in the figure, we compute minimal active
pathways of πK1 , . . . , πK61 such that K1 = {pgi},K2 =
{mgsA}, . . . ,K61 = {talA}. However, since some of the
61 genes construct isozymes, such single gene knockout
Ki does not affect the number of minimal active pathways
|πKi |. However, for reference, we compute the effect of the
gene knockouts that disables all of isozymes. For instance,
tktA and tktB construct isozymes. In this case, the number
of minimal active pathways in the figure shows the case
of the gene knockout of both tktA and tktB. For each
gene knockout, we computed the gain of ATP in each
minimal active pathway, which is calculated by counting the
number of both reactions with the coefficient of ATP: ones
consuming ATP and the other ones producing ATP. Minimal
active pathways that produce the positive number of ATPs
are more important than the others because producing ATP
is a main function of glycolysis.

From the figure, we can see that E. coli keeps almost all
minimal active pathways even by more than half of single
gene knockouts. This is considered to indicate the robustness
of E. coli. However, some gene knockouts dramatically
reduce the number of minimal active pathways. In particular,
the single gene knockouts of gapA, pgk, and eno destroy all
minimal active pathways producing ATPs. Thus, they are
predicted to strongly affect the glycolysis of E. coli.

To evaluate the above predictions, we compare them with
the Keio collection. Table I compares all gene knockouts
shown in Figure 3 regarding the number of lost minimal
active pathways. Column 1, Gene, shows gene names except
wild, which denotes an empty set of knockout genes, i.e.,
K = ∅. Other rows denote the result of single gene
knockout. Column 2, Total, shows the total number of
minimal active pathways, i.e., |πKi |. Columns 3 and 4 show
the number of minimal active pathways, which gain ATPs,
i.e, |πKi | > 0 and consume ATPs, i.e., |πKi | ≤ 0. Column
7, MOPS24hr, and Column 8, MOPS48hr, show the cell
growth of E. coli after 24 hours and 48 hours, respectively.
Note that N.A. (not applicable) refers to essential genes [6].
As the first row of Table I shows, we found 14 minimal
active pathways that produce the positive number of ATPs
on the wild cell of E. coli while there are 75 in total1.

Distinguished single gene knockouts are K8 = gapA,
K10 = pgk, and K11 = eno. Each gene knockout effect with
respect to ATP production is Ea+

K8
= Ea+

K10
= Ea+

K11
= 14

and it is the strongest gene knockout effect with respect
to ATP production, which is the important function of
glycolysis. For this prediction, the Keio collection shows
“N.A.” for each gene knockout. Thus, in glycolysis, our
predictions successfully agree with the results of the Keio

1Those 75 minimal active pathways are shown in a supporting online
material in http://kix.istc.kobe-u.ac.jp/∼soh/supplement/prediction.html.

collection. However, there are other gene knockouts showing
“N.A.” in the results of Keio collection, that is, gpsA,
fbaA, nadk (yfjB) and adk. For those genes, the number
of minimal active pathways is not so reduced. Then, in
those gene knockouts, it can be considered that E. coli
is damaged in other pathways rather than the glycolysis
pathway, discussing at the following sections.

C. Discussion for Glycolysis Analysis

In this section, we first discuss about the difference of
our prediction and the cell growth of the Keio collection.
Figure 4 shows the glycolysis pathway modified from the
one in the literature [8]. We pick up the figure of glycolysis
and pentose phosphate pathways. Abbreviation is same as
the literature [8]. Each node, e.g., G6P, denotes a metabolite
and edge denote chemical reactions. Labels of edges denote
corresponding genes to reactions. A dotted line denotes the
abstraction of some reactions whose genes are not registered
in the databases. The figure also shows generally known
four essential genes in terms of the glycolysis pathway,
which are also confirmed by the Keio collection. One of
them, fbaA is not predicted to be critical for the cell growth
since the gene knockout cell keeps almost all minimal active
pathways producing ATPs even if we delete both fbaB
and fbaA. Specifically, the knockout lost only four minimal
active pathways producing ATPs (see Table I). Thus, two
hypotheses come up. One is that the four lost minimal active
pathways are the most important pathways in glycolysis. The
other is that the essentiality is caused by the breakdown
of other cell functions. However, the first hypothesis is
considered not to be true by the following discussion.

As the results in the previous section show, our method
predicted three out of four essential genes. Focusing on
minimal active pathways lost by gene knockouts allows us
to find an important part of glycolysis. Table II shows the
minimal active pathways lost by each gene knockouts of
gapA, pgk and eno. Column 1, shows reaction names from
the database of Ecocyc [11]. Reactions in the glycolysis
pathway are collected in the upper part of the table. Column
2, shows corresponding genes to the reaction in Column
1 that are shown in Figure 4. Columns 3 to 16 show the
14 minimal active pathways such as p1, . . . , p14 disabled
by the gene knockouts of gapA, pgk and eno. For each
column, “x” denotes a reaction contained in each minimal
active pathway. In the case that two reactions have the
same corresponding gene, e.g., gnd, we show the lacking
effect of the two reactions respectively for reference. All 14
pathways are producing ATPs. For instance, a minimal active
pathway p8 consists of 8 reactions corresponding to the
following genes: {fbaB, fbaA}, pgk, eno, pgi, {pfkB, pfkA},
{pykF, pykA}, gapA, {gpmA, gpml, ytjC}. This pathway p8
is known as a typical glycolysis pathway and p5 is known as
a bypass pathway using pentose phosphate pathway that is
used when p8 is not available [8]. The glycolysis pathway p8
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Table II
14 PATHWAYS, WHICH PRODUCE ATP, DISABLED BY gapA, pgk AND eno

Symbols “*” denote genes predicted as critical for glycolysis.
Reaction Name Gene 14 out of 75 pathways disabled by the single gene knockout of gapA, pgk and eno

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14
PGLUCISOM-RXN a pgi x x x x x x x x x x x x
6PFRUCTPHOS-RXN pfkB,pfkA x x x x
F16ALDOLASE-RXN a fbaB,fbaA x x x x
GAPOXNPHOSPHN-RXN a gapA* x x x x x x x x x x x x x x
PHOSGLYPHOS-RXN b pgk* x x x x x x x x x x x x x x
3PGAREARR-RXN a gpmA,gpmI,ytjC x x x x x x x x x x x x
2PGADEHYDRAT-RXN a eno* x x x x x x x x x x x x x x
PEPDEPHOS-RXN b pykF,pykA x x x x x x
PHOSPHOGLUCMUT-RXN b pgm x
GLU6PDEHYDROG-RXN a zwf x x
6PGLUCONOLACT-RXN pgl(ybhE) x x
6PGLUCONDEHYDROG-RXN 1 gnd x
6PGLUCONDEHYDROG-RXN 2 gnd x
RIBULP3EPIM-RXN a rpe x x
RIB5PISOM-RXN b rpiA,rpiB x x
1TRANSKETO-RXN b tktB,tktA x x
NAD-KIN-RXN nadk (yfjB) x x
MANNPISOM-RXN b manA x x x x x x
PGLYCDEHYDROG-RXN a serA x x
RXN0-305 a hyi x x
RXN0-5289 b glxR,garR x
TSA-REDUCT-RXN 1 glxR,garR x
GLUCOSE-6-PHOSPHATE-1-EPIMERASE-RXN b yeaD x
MANNKIN-RXN b x x x x x x
GKI-RXN x x
RXN0-6562 x x
RXN0-6418 b x
TRANS-RXN-158 x x
GLUCOSE-1-PHOSPHAT-RXN agp x
RXN0-313 a x x x x x x x x
TRANS-RXN-157 x
TRANS-RXN-158A x x
2.7.1.121-RXN x
TRANS-RXN-165 x x
MANNOSE-ISOMERASE-RXN a x x x x

Total Number of Reactions 7 9 10 10 12 12 7 8 10 11 11 11 11 11
Total Number of Corresponding Genes 6 6 6 6 12 12 5 8 8 8 8 8 8 8

is activated mainly and the activity of the pentose phosphate
pathway p5 is minimized at normal condition, however, p5 is
maximized when p8 is inactivated [8]. It will be difficult to
detect of all gene-expressions or enzymatic activities in the
cell on every conditions, instead of this issue, our minimal
pathway analysis will be a new approach for understanding
of biological robustness and systems.

From Table II, we also can easily read which gene
knockout disable which minimal active pathways. Note that
minimal active pathways are disabled even if only one
of its components is lacked. For instance, gapA, pgk and
eno are contained in all 14 minimal active pathways and
it means that the knockout of each of them immediately
disables all 14 minimal active pathways. Then, the following
is observed: considering all minimal active pathways of
glycolysis from a whole reaction database of E. coli, those
pathways producing ATPs always include known essential
genes. In other words, the importance of 14 minimal active
pathways are confirmed. In addition, it is also confirmed that
even if there are computationally feasible pathways, they
cannot be bypass pathways in E. coli. We thus can expect
that E. coli cannot survive without those 14 pathways. This
assumption allows us to predict the effect of multiple gene
knockouts. The knockout of pgi disables 12 pathways but the
Keio collection shows that E. coli is still alive with this gene
knockout. In this case, it is supposed that E. coli manages

to survive with only 2 out of 14 pathways, i.e., p5 and
p6. In other words, those remaining pathways are supposed
to be used as bypass pathways. For instance, pgi encoding
glucosephosphate isomerase gene of glycolysis pathway that
transfer D-glucose 6-phosphate to D-fluctose 6-phosphate.
However, pentose phosphate pathway is available as a bypass
pathway from D-glucose 6-phosphate, resulting in the gene
knockout slow-growth at starting MOPS24hr and same level
of the final growth of the wild cell at MOPS48hr. Then,
what will happen if we additionally knockout rpe, zwf, gnd
or pgl(ybhE)? Each of those gene knockouts disable both
p5 and p6. Thus, the following double knockouts disable all
14 pathways: (a) zwf and pgi, (b) rpe and pgi, (c) gnd and
pgi, and (d) pgl(ybhE) and pgi. Then, we can predict that
they are critical for E. coli. As well as the Keio collection,
Nakahigashi et al. measured the growth rate of E. coli with
some combinations of double gene knockouts including the
above (a), (b) and (c) [2]. Table III shows their results
and both double gene knockouts of (a) and (b) affect so
strong that the growth rate of E. coli becomes less than 0.1.
Thus, as well as the prediction of single gene knockouts, our
prediction agrees with the biological results for (a) and (b).
However, for the knockouts of (c), our prediction disagrees
with it. For this issue, comparing more combinations of
genes to be critical is needed and biological evaluations for
them are necessary future work.
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Table III
GROWTH RATE OF E. coli WITH DOUBLE GENE KNOCKOUTS [2]

Knockout genes Growth Rate [2]
24 hours 48 hours

(a) zwf, pgi 0.033 0.070
(b) rpe, pgi 0.001 0.140
(c) gnd, pgi 0.199 0.322

As Table II shows, four minimal active pathways disabled
by the knockout of fbaA are also disabled by the knockout of
pgi that is not an essential gene. Thus, the first hypothesis
discussed in the former part of this section is not true. A
gene nadk (yfjB) is similar to fbaA. Our method predicts
that this knockout does not affect the cell growth in terms
of glycolysis. However, the Keio collection shows that this
is an essential gene for E. coli. In the case of nadk (yfjB),
we found that this gene knockout affects other function of
E. coli. In relation to this, we have additional experiments
for amino acid generation in the following section.

D. Results for Amino Acids Generation

We also applied our prediction method to predict gene
knockout effects of the cell growth in terms of amino acid
biosynthesis. Since we want to involve more genes for
our prediction, we particularly focus on essential amino
acids for humans, whose synthesis needs more reactions
than others. In the experiments, we separately constructed
pathway instances, each of which consists of the following
eight amino acids as a target metabolites: L-valine (VAL), L-
leucine (LEU), L-phenylalanine (PHE), L-isoleucine (ILE),
L-threonine (THR), L-lysine (LYS), L-tryptophan (TRP)
and L-methionine (MET). In addition, to produce the
above amino acids, we added the following metabolites
to the source metabolites used in the glycolysis analysis:
coenzyme-A and sulfite. For each of the eight amino acids,
the computation time is on average 255 seconds and the
longest computation time is 877 seconds.

In contrast to the result of glycolysis, we found there are
11 single gene knockouts that destroy all minimal active
pathways without the limitation of z. That is, no pathway
can synthesize each target on the entire metabolic pathway
of E. coli with those single gene knockouts. Obviously, they
are predicted to be critical to produce each amino acid. Table
IV shows the cell growth of Keio collection. Column 1, gene,
shows knockout genes predicted as critical by our prediction.
Column 2, unsynthesized target, shows target amino acids,
which cannot be synthesized with the knockout of the gene
in Column 1. Columns 3 and 4 show the cell growth of
E. coli after 24 hours and 48 hours, respectively. At first,
the gene knockout of nadk (yfjB) is predicted as critical for
the cell growth in terms of six amino acids biosynthesis.
This result is also supported by the Keio collection. We
thus consider the essentiality of nadk (yfjB) to be caused by
its knockout effect in amino acids biosynthesis rather than
glycolysis. Table IV also shows that our method predicts

Table IV
CRITICAL GENE KNOCKOUTS FOR AMINO ACIDS BIOSYNTHESIS

Gene Unsynthesized Target Keio Collection [6]
MOPS24hr MOPS48hr

wild - 0.219-0.392 0.216-0.480
folE MET N.A. N.A.

nadk (yfjB) VAL, LEU, THR, ILE,
LYS, MET N.A. N.A.

thrC THR 0.000 0.000
thrB THR 0.004 0.010
glnA TRP, MET 0.005 0.015
aroC TRP, PHE, TRP 0.009 0.020
lysA LYS 0.012 0.021
aroB PHE, TRP, MET 0.010 0.032
leuA LEU 0.026 0.034
folP MET 0.283 0.293
metH MET 0.357 0.509

that no way to produce target metabolites with each single
gene knockout: folE, thrC, thrB, glnA, aroC, lysA, aroB, and
leuA. However, except folE and thrC, the Keio collection
shows that E. coli survives with very low cell growth. One
explanation for the results is that they are suspected to keep
living by consuming unsynthesized amino acids from other
individual cells. In this case, since the amino acids cannot
be sustainably produced, those genes are recognized to be
almost essential for E. coli.

Furthermore, the result of the Keio collection shows that
the knockouts of folP and metH are not critical, although
our method predicts them to be critical. We have detailed
discussions on those gene knockouts in the following sec-
tion.

E. Discussion for Amino Acids Generation

The difference between folP and metH in terms of amino
acid biosynthesis also introduces interesting issues. At first,
we consider metH, which constructs an enzymatic reac-
tion methionine synthase. Its conversion is as follows: 5-
methyltetrahydrofolate + L-homocysteine = tetrahydrofo-
late + L-methionine.

In both KEGG and EcoCyc databases, two alternative
reactions exist to the above reaction. Figure 5 shows standard
reaction and those two alternatives. An alternative reac-
tion r3, homocysteine S-methyltransferase, uses S-methyl-L-
methionine (m4) instead of 5-methyltetrahydrofolate (m1).
On the other hand, another alternative reaction r2, 5-
methyltetrahydropteroyltriglutamate–homocysteine methyl-
transferase, uses 5-methyltetrahydropteroyltri-L-glutamate
(m2). However, both metabolites cannot be synthesized from
the source metabolites. Specifically, S-methyl-L-methionine
(m4) can be synthesized only from methionine (m7), which
is the target amino acid, and there is no reaction in
the metabolic pathway of EcoCyc that can synthesize 5-
methyltetrahydropteroyltri-L-glutamate (m2), meaning that
reactions are lacking in the database. The gene folP is
on folate biosynthesis and there is no alternative in the
databases. For the results of above genes, two hypotheses
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are as follows: there are unknown complementary genes, or
there are unknown bypasses. For the above issues, we need
further analyses or researches on biological and computa-
tional level that would be creating new systems biology.

VIII. RELATED WORK

There are several researches on metabolic pathway analy-
ses. Schuster et al. proposed a method based on elementary
mode analysis [15]. They focused on metabolic flux dis-
tributions corresponding to sets of reactions in metabolic
pathways. A different point from our method is that their
approach needs to define source metabolites strictly with a
fixed amount that must be consumed in flux. In contrast,
our method treats them as candidates that will be utilized;
thus, we can flexibly give source metabolites. Handorf et
al. proposed the inverse scope problem [16]. This is the
problem of finding necessary source metabolites from target
metabolites. The two differences between their problem and
our proposal are as follows. One is that they only computed
the cardinality minimal solution. Unlike their approach, we
can generate subset minimal solution by minimal model
generation. Another one is that each of their solutions
includes all reactions, which are activatable from source
metabolites needed to generate target metabolites. For in-
stance, if there are two ways to produce a metabolite from
source metabolites then both are mixed in one solution, that
is, we cannot distinguish between them. On the other hand,
our method can distinguish between the two ways, and we
think that it is important to identify functionally minimal
active pathways. Schaub and Thiele applied answer set
programming (ASP) to solve the inverse scope problem [17],
while we use propositional encoding and minimal model
generation to compute minimal active pathways.

There are other researches using ASP [18], [19]. The
literature [19] consider the most likely states of a reaction
network with respect to given constraints and signaling
pathways are analyzed with ASP. In [18], Ray et al. report
a method using ASP to compute the steady states of a
given pathway and complete lacking reactions. Unlike their

approach, we use minimal model generation to compute
essential reactions to produce target metabolites.

Küffer et al. report an approach using a Petri net [20].
Although their approach considers producibility and acti-
vatability of metabolites and reactions, they do not consider
subset minimality of solutions.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to predict gene
knockout effects by enumerating minimal active pathways.
We formalize the extended pathway and show the definition
of minimal active pathways on it. In addition, we present
a computation method for the prediction. An advantage of
our method is that it allows us to trace the reason for the
prediction results, e.g., we can suggest the reason for the
essentiality of three genes in the glycolysis pathway. This is
an important feature that other methods do not have.

In the experiments, we applied our method to extended
pathways of E. coli and made comparisons using the Keio
collection. For the prediction of the knockout of 61 genes in
the glycolysis pathway, our method predicted three essential
genes, which correspond to the results of the Keio collection.
Moreover, we analyze lethal 14 minimal active pathways and
predict lethal pairs of gene knockouts, which also agree with
the result of the literature [2]. In addition to the experiments
in glycolysis, we found three essential genes and six almost
essential genes in amino acids biosynthesis. We also discuss
the reason for the difference between our prediction and
results of the Keio collection with regard to the knockout of
metH and folP. Although we treat relations between genes
and enzymatic reactions that have one-to-one relations, we
intend to extend them to relations that are more complex
such as multiple relations and consider interactions among
genes. Following that, we plan to apply our method to other
organisms such as mice. In addition to E. coli, mice are well
known model organisms for human study, and information
available on them has been accumulated in the last decade. In
particular, chromosome substitution strains are used to reveal
the function of genes [21]. In addition to gene knockouts,
we could adapt our method to such strains. Although there
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is a large difference between E. coli and mice, the basic
metabolism is same. This fact tells us that our method can
also be a potential prediction method for mice.
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