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Abstract—As longer lifespans become the norm and modern 

healthcare allows individuals to live more functional lives despite 

physical disabilities, there is an increasing need for personal 

assistance robots.  One of the barriers to this shift in healthcare 

technology is the ability of the human operator to communicate 

his/her intent to the robot.  In this paper, a method of 

interpreting eye gaze data using fuzzy logic for robot control is 

presented.  Simulation results indicate that the fuzzy logic 

controller can successfully infer operator intent, modulate speed 

and direction accordingly, and avoid obstacles in a target 

following task relevant to personal assistance robots.  The fuzzy 

logic approach is then validated through navigation experiments 

using a small humanoid robot.  
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I. INTRODUCTION 

With lifespans increasing worldwide due to advancements 
in healthcare and related technologies, the importance of care 
for the elderly and disabled is increasing.  In particular, there is 
a shifting emphasis in technology development towards 
improving quality of life in the face of diminishing physical 
capabilities.  One of the burgeoning areas of this trend is 
personal assistance robotics.  In a typical scenario, a robot 
assistant may be present in the home to help with basic day-to-
day tasks (e.g., object retrieval), especially those tasks 
requiring navigation throughout the home, since age- or 
disability-related mobility limitations may keep an individual 
from performing all these tasks personally.  In extreme 
circumstances, it can even be challenging to give instructions 
to the robotic assistant, as in the case where the individual is 
not physically able to type, speak, or otherwise provide clear 
inputs to the human-robot interface.  Here, we build on work 
presented in [1] and present progress towards a robotic 
assistance system which relies on gaze tracking, including eye 
blinking patterns, to infer a person’s intent and thereby create 
instructions for the robot.  In this paper, we specifically focus 
on the intelligent inference of intent based on gaze and 
blinking input. 

This problem is an extension of the task of robotic target 
following and path planning.  Significant work has been done 
in this area of service robotics, where a robot is to follow a 
moving target.  For instance, some have used computer vision, 
using optical flow algorithms to track the target [2][3].  Other 
computer vision-based approaches have used Kalman filters for 

improving the accuracy of tracking [4].  Other tracking 
methods include the use of depth images with verification via a 
state vector machine [5], or following acoustic stimuli [6].  
Control approaches in these target-following scenarios include 
potential field mapping [7] and a variety of other techniques.  
Of particular interest are fuzzy logic controllers [6][8][9], 
which tend to be used primarily for steering, but can easily be 
adapted to handle various types of linear and nonlinear systems 
[10].  Here, we will describe a fuzzy logic controller which not 
only determines the robot’s heading based on the location of 
the target, but also avoids obstacles and modulates speed based 
on the perception of intent from the combined gaze direction 
and blink frequency inputs.  The authors believe this 
perception of intent combined with heading, speed, and 
obstacle avoidance to be unique with respect to the state of the 
art in robot guidance.  This is conceptually based in part on 
recent work demonstrating how such a combined input using 
operator gaze could be used for automatic control of endoscope 
positioning in surgical tasks [11] using a commercially 
available eye tracking system, which is also similar to the work 
described in [12]. Existing examples of robot control using 
gaze input are relatively scarce. In [13][14][15], specially 
identified eye movements, such as looking up, down, left and 
right, were mapped to wheelchair steering commands to drive 
it  forward, backward, left and right. In [16], on-screen buttons 
were created to activate joint rotation of an articulated robot 
arm such that a user could steer the arm by gazing at the 
buttons. However, steering a robot arm in this manner is very 
inefficient and can be exhausting for the user, as he/she has to 
explicitly control every movement of the arm. In [17], the 
user’s gaze vector was estimated and served as a pointing line 
along which the robot could search to retrieve the first found 
object. However, as the exact location of the object was not 
calculated, extensive searching had to be carried out along the 
gaze vector to locate the object. The gaze-based robot control 
approach proposed in this article extends beyond the most 
typical uses of eye gaze, which tend to be for two-dimensional 
human-computer interfaces [18], to interacting in the three-
dimensional context using gaze tracking for activities of daily 
living, i.e., using personal assistance robots.  Although the 
robotic assistance scenario clearly would involve more 
subtasks (such as object manipulation), we limit our treatment 
in this paper to development of controllers which modulate 
robot heading and speed while avoiding obstacles, for 
navigating in a potentially cluttered environment using gaze as 
the input data stream. 
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The remainder of this paper is organized as follows.  In 
Section II, the eye gaze data and the fuzzy logic controller are 
described.  In Section III, simulation results are presented, 
followed by experimental validation using a small humanoid 
robot platform.  Section IV includes conclusions and 
recommendations for future work. 

II. METHODS 

A. Test Dataset and Simulation 

A gaze dataset was artificially generated to have 
spatiotemporal characteristics similar to those described in 
[11], in a planar workspace.  The data were arbitrarily assumed 
to be sampled at 10 Hz and included a logical blink data 
channel in addition to the x and y gaze target channels on the 
interval [-0.5 0.5], providing a total of over 23 seconds of 
simulated robot tracking.  Due to the noisy nature of gaze data, 
the target X was determined by a linear weighted average of the 
previous n data points P, with n = 20: 

𝑋𝑘 =
2

𝑛
∑ (1 −

𝑘−𝑖

𝑛
) 𝑃𝑖

𝑘
𝑖=𝑘−𝑛 .    (1) 

In this particular dataset, there are five intended target 
locations, characterized by dwelling gaze and higher blink 
frequency, and it is assumed that a supplementary action such 
as object placement or retrieval would follow target acquisition 
(although this supplementary action is beyond the scope of this 
preliminary study).  Within the workspace, three round 
obstacles were defined to test the ability of the simulated robot 
to avoid obstacles while seeking a target.  The data were 
imported into MATLAB (The MathWorks, Natick, MA) for 
simulation of gaze-based robotic target tracking. 

B. Fuzzy Logic Controller 

A Mamdani-type fuzzy logic controller [19] with five 
inputs and three outputs was created using the Fuzzy Logic 
Toolbox in MATLAB; the Mamdani-type model handles 
multi-input, multi-output (MIMO) problems better than the 
Sugeno-type alternative.  The inputs, shown in Table I, were 
intended to take into account the control objectives: to track a 
target at an appropriate speed based on uncertain data while 
avoiding obstacles.  Distance to the target is captured by target 

x and target y, the degree of uncertainty of the target’s 
position is expressed by the target variability, and the presence 
of obstacles in the path from the robot’s position to the target is 
quantified by the obstacle distance.  The blink frequency is 
used to capture operator intent and desired speed.  The outputs, 
also shown in Table I, were used to control the speed and 
heading of the robot, including steering adjustments for 
obstacle avoidance.  All of the membership functions were 
triangular, as shown in Fig. 1, and their parameters were tuned 
by hand using a minimal amount of trial and error. 

The target was determined using a weighted average of the 
gaze data as in (1), the target and obstacle distance variables 
were then calculated using the Pythagorean theorem, and target 
variability was represented by the standard deviation of the 
gaze input data over the averaging window.  (It is noteworthy 
that target variability is likely to be the input parameter most 
sensitive to individual characteristics, and therefore would 
need to be tuned for each individual’s gaze “signature.”  In this 

case, it was tuned to accommodate the characteristics of the 
dataset described in Section II.A.)   

TABLE I.  FUZZY CONTROLLER VARIABLES AND THEIR TRIANGLUAR 

MEMBERSHIP FUNCTIONS EXPRESSED IN MODAL FORM [LOWER BOUND, 
MODE, UPPER BOUND] 

Input/ 

Output 

Variables 

Name Units Membership Functions 

I Target x distance 

negative [-1, -0.5, 0] 

zero [-0.1, 0, 0.1] 

positive [0, 0.5, 1] 

I Target y distance 

negative [-1, -0.5, 0] 

zero [-0.1, 0, 0.1] 

positive [0, 0.5, 1] 

I Target variability distance 

zero [-0.1, 0, 0.1] 

low [0.05, 0.25, 0.45] 

high [0.35, 1, 1.4] 

I 
Blink frequency 
(normalized) 

- 

zero [-0.4, 0, 0.4] 

low [0.1, 0.5, 0.9] 

high [0.6, 1, 1.4] 

I Obstacle distance distance 
zero [-0.2, 0, 0.2] 
low [0, 0.3, 0.6] 

high [0.35, 1, 1.4] 

O Speed 
distance/ 

time 

zero [-0.4, 0, 0.4] 
low [0.1, 0.5, 0.9] 

high [0.6, 1, 1.4] 

O Heading rad 

up [0.125, 0.25, 0.375] 
up/right [0, 0.125, 0.25] 

right [-0.125, 0, 0.125] 

down/right [0.75, 0.875, 1] 
down [0.625, 0.75, 0.875] 

down/left [0.5, 0.625, 0.75] 

left [0.375, 0.5, 0.625] 
up/left [0.25, 0.375, 0.5] 

O 
Heading 

adjustment 
rad 

zero [-0.4, 0, 0.4] 

low [0.1, 0.5, 0.9] 
high [0.6, 1, 1.4] 

 

 

Figure 1.  Membership functions for target variability (zero, low, and high). 

 

Blink frequency was normalized to the interval [0 1] by 
assuming that four blink events within the 20-sample averaging 
window was high (achieving a value of 1), and lower blinking 
rates in the same window of time receive a proportionally 
smaller membership value.  If no obstacles were detected in the 
direct path between the robot and target, the obstacle distance 
was set to its maximum value of 1.  The other distance-based 
variables did not need to be explicitly normalized since the 
workspace was set up as a unit square.  It should also be noted 
(referring to Table I) that in certain cases (e.g., the “zero” 
membership functions for target variability, obstacle distance, 
and blink frequency), negative values (which do not have 
physical meaning) were used in order to create membership 
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functions for which the lower bound is also the mode, without 
causing errors in the software.  

Concerning the output variables, the maximum speed was 
constrained to a value of 0.25 (covering one-fourth the 
workspace in one second at maximum speed), and the 
maximum heading adjustment for obstacle avoidance was set 
at ±100°.  The heading variable was scaled to allow the robot 
to steer within the full 360° range. 

Fifteen rules were defined to characterize the influence of 
the five input variables on the three outputs.  In particular, four 
rules capture the influence of the inputs on the output variable 
speed, eight rules accommodate the division of heading into 
eight regions in polar coordinates, and the remaining three 
rules govern obstacle avoidance.  The rules defining the fuzzy 
logic controller are as follows: 

1. IF blink IS high THEN speed IS high 

2. IF target x IS positive OR  target x IS negative OR  

target y IS positive OR  target y IS negative THEN 
speed IS high 

3. IF target x IS zero AND  target y IS zero THEN 
speed IS zero 

4. IF target variability IS high OR  blink IS low THEN 
speed IS low 

5. IF target x IS positive AND target y IS zero THEN 
heading IS right 

6. IF target x IS positive AND target y IS positive 
THEN heading IS up/right 

7. IF target x IS positive AND target y IS negative 
THEN heading IS down/right 

8. IF target x IS negative AND target y IS zero THEN 
heading IS left 

9. IF target x IS negative AND target y IS positive 
THEN heading IS up/left 

10. IF target x IS negative AND target y IS negative 
THEN heading IS down/left 

11. IF target x IS zero AND target y IS positive THEN 
heading IS up 

12. IF target x IS zero AND target y IS negative THEN 
heading IS down 

13. IF obstacle distance IS zero THEN heading 
adjustment IS high 

14. IF obstacle distance IS low THEN heading adjustment 
IS low 

15. IF obstacle distance IS high THEN heading 
adjustment IS zero 

The first four rules govern the robot’s speed.  Higher blink 
rates imply a more focused operator intent and cause increased 
speed (rule 1).  Conversely, high gaze variability or low blink 
rate imply a less sure target and lead to lower speed (rule 4).  
The higher the distance to the target, the higher the necessary 

speed to reach it in a timely manner, and speed should drop to 
zero as the target is reached (rules 2-3).  It should be noted that 
lower speeds are sometimes desirable to conserve energy either 
when the goal is unclear or has been reached. 

Rules 5-12 pertain to heading.  These are relatively 
straightforward and use the four cardinal directions and the 
four semi-cardinal directions to navigate in the planar map 
based on the relative target distance in the x and y directions.  
This can be thought of as a fuzzy calculation of inverse tangent 

for the heading angle using target x and target y as inputs. 

The remaining three rules (rules 13-15) constitute the 
robot’s obstacle avoidance behavior.  The closer the obstacle, 
the larger the heading adjustment applied to go around it.  
Whether this adjustment is added or subtracted from the 
heading variable is determined by whether the obstacle 
centroid is to the right or the left of the straight line along the 
robot’s heading. 

C. Experiments 

In addition to simulation, the fuzzy logic controller was 
implemented on a commercially available small humanoid 
robot (NAO, Aldebaran Robotics).  This platform was chosen, 
in part, because it has computer vision and sonar sensors 
suitable for obstacle detection as a built-in feature, so it is 
expected to scale well towards more advanced demonstrations 
in the future.  The overall architecture, illuminating the concept 
and the correlations of components in the system, is shown in 
Fig. 3. The system contains four parts: an eye tracking system 
which can track where the user is looking on a monitor, a 
camera which provides video feedback to the user and 
functions as a global tracking system, the host system which is 
responsible for collecting and interpreting the gaze data into 
robot motion commands and sending these motion commands 
wirelessly to the robot for navigation, and the NAO robot. A 
rectangular workspace area (3m x 4m) was defined, with two 
round obstacles marked, similar to the setup of the simulation 
experiments. 

 

 

Figure 2.  Interaction in the gaze-based system for robot navigation. 

 

In the presented system, the user, sitting in a chair, watches 
the live video fed from the camera (shown in Fig. 3). The 
user’s gaze on the video is sensed, from which the user’s visual 
attention is detected. The detected visual attention represents 
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the target position that the user wants the robot to approach. 
Then the visual attention position as well as the online 
collected gaze and blink data are interpreted by the fuzzy 
controller into a series of control commands to generate the 
optimal trajectory for the robot to approach the target position. 
The response of the NAO robot was recorded. 

 

 

Figure 3. User control interface of the system. 

 

A GP3 Eye Tracker (GazePoint) is used to track where the 
user is looking on a monitor. GP3 is a video-based remote eye 
tracking system which allows head movement of a user in a 
volume of 25×11×30cm

3
, without significant degradation of 

the tracking accuracy. It can report the gaze data at 60 Hz with 
an accuracy of 0.5˚ - 1˚ and drift of less than 0.3˚. Calibration 
is required before it can provide accurate eye tracking.  
(Although the long-term objective is to track 3D gaze rather 
than planar gaze on a screen, and hardware is under 
development to achieve such 3D gaze tracking, the work 
presented here is focused on validation of the control concept, 
and as such, planar gaze tracking consistent with the simulation 
approach presented in Section II.A-B is appropriate for these 
experiments.) 

Human eyes are capable of making many different 
movements. Some are involuntary, such as rolling, nystagmus, 
drift or microsaccades; these involuntary movements are 
superimposed on the voluntary eye movements such as gaze 
fixation. The gaze data estimated from human eye movements 
will thus include noise from the superimposed involuntary eye 
movements, and must therefore be filtered to extract the gaze 
data that is related to the attentional processes of the viewer. An 
adaptive sliding window filter is employed to eliminate this 
noise, and a dwell time method is utilized to extract visual 
attention.  Due to the complexity of human eye movement, this 
filter is slightly more complex than the one used in simulation 
(Eq. (1)). 

The adaptive sliding window filter is illustrated in Eqs. (2) 

and (3).  𝑁 is the size of the sliding window. 𝑃𝑖  and �̃�𝑖 are the 

𝑖𝑡ℎ gaze point before and after filtering, respectively. 𝐸𝑖 is an 
influence coefficient, calculated using Eq. (3), which indicates 
the degree of influence a newly received gaze point has on the 
attention extraction. The influence coefficient of a gaze point is 
determined by the relative distance from that point to the mean 

of all the gaze points in the current sliding window. The output 
of the filter is the mean of all the weighted gaze points. This 
filter is intended to remove the effects of blinking, attention 
shifting, and tracking failure. At the same time it can smooth 
the gaze points by eliminating effects of involuntary eye 
movements such as rolling, nystagmus, drift and 
microsaccades. 

�̃�𝑖 = 
1

∑ 𝐸𝑖−𝑘+1
𝑁
𝑘=1

{∑ �̃�𝑖−𝑗 ∗ 𝐸𝑖−𝑗

𝑁−1

𝑗=1

+ 𝑃𝑖 ∗ 𝐸𝑖}       (2) 

𝐸𝑖 =

{
  
 

  
 
1,‖𝑃𝑖 − 

1

∑ 𝐸𝑖−𝑘
𝑁
𝑘=1

∑�̃�𝑖−𝑗 ∗ 𝐸𝑖−𝑗

𝑁

𝑗=1

‖ ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, ‖𝑃𝑖 − 
1

∑ 𝐸𝑖−𝑘
𝑁
𝑘=1

∑�̃�𝑖−𝑗 ∗ 𝐸𝑖−𝑗

𝑁

𝑗=1

‖ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

      (3) 

Using gaze as an input signal for human-robot interaction 
requires the differentiation of normal behavioral eye 
movements and intentional eye “commands,” which is known 
as the Midas touch problem [20]. The “select” or “click” 
command is usually derived from either blink or gaze dwell 
time, which is used as a confirmation of a specific command 
from the eyes. The dwell time method is derived from the fact 
that a person’s eyes stay focused on a target when he/she 
concentrates on a visual target. In this paper, a dwell time of 2 
seconds was used. Once the user stares at an object for more 
than 2 seconds, the system considers that object as the visual 
attention point of the user, and this triggers a series of motion 
commands of the robot.  

Due to the challenges in implementing the proposed control 
method on a real robot, a few changes were made to the 
simulated control flow.  In particular, since the NAO robot 
travels relatively slowly and it would be cumbersome for a user 
to have to continuously focus on a target location until the 
robot reached it, the target location was acquired at the 
beginning of each movement by fixating on a single location 
for two seconds.  Once the target was known, NAO would first 
turn towards the target and then begin moving. At this point, 
the fuzzy rules took over, controlling the heading based on the 
current location of the robot, and the speed based on the 
distance from the target, the gaze variability, and the blink rate.  
Note that the user is not required to focus on the target the 
whole time so if he/she is looking at many different locations 
while the robot is moving, the gaze variability will be high and 
rule 4 above will be invoked.  On the other hand, if the user is 
engaged with the task at hand and focused on the robot or the 
target, the gaze variability will be low.  Additional differences 
are in the speeds used.  The output from the fuzzy logic rules 
was calculated and sent to the robot at 8 Hz while the gaze data 
were collected at 60 Hz with an averaging window size of 70 
data points. 

III. RESULTS 

The simulations described in Sections II.A-B and the 
experiments described in Section II.C generally produced 
similar outcomes validating the approach.  These outcomes are 
described as follows. 
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A. Simulation Outcomes 

Simulation in MATLAB revealed the ability of the fuzzy 
logic controller to simultaneously determine human intent from 
the combined gaze location and blink data, use this intent to 
modulate robot speed, follow a moving target, and avoid 
obstacles.  In Fig. 4, it can be observed that the robot (whose 
position is indicated by red diamond markers) can start at a 
location somewhat removed from the initial target, quickly 
acquire the target, and then follow it consistently without 
colliding with obstacles in the workspace.  It can be noted that 
filtering the raw gaze data (black dot markers) smoothes but 
does not significantly alter the target path (blue circle markers), 
and that the robot follows the target reasonably closely when it 
is not engaged in obstacle avoidance. 

 

Figure 4.  Target following behavior: robot (red diamond markers) follows 
target (blue circles) while avoiding fixed environmental obstacles.  Green 
circles indicate target location with a blink event.  Targets of definite interest 
(based on dwell duration and blink frequency) are at approximately (-0.3, 0.3), 
(0.1, 0.3), (0.3, 0), (-0.1, -0.3), and (0, 0).  Raw gaze data are shown as black 
dots. 

The more interesting outcomes of the simulation are 
highlighted in Figs. 5-8, in which the input/output model 
parameters from the simulation of Fig. 4 are plotted separately 
to elucidate the effects of the fuzzy rule set.  In Fig. 5, one can 
see that robot speed tends to increase with blink frequency, as 
intended (rules 1 and 4).  High speed at low blink value can be 
attributed to the effects of target distance (particularly at the 
beginning of the simulation, rule 2).  Note that the results in 
Fig. 5 are striated at discrete levels, since blinking is a discrete, 
logical event; this could be smoothed by applying an averaging 
method similar to that used in target determination.   

 

Figure 5.  Output speed as a function of blink membership function value: a 
positive correlation is noted. 

 

Figure 6.  Output speed as a function of target distance: a positive correlation is 
noted. 

 

Figure 7.  Output speed as a function of distance to current gaze location: 
correlation is much less pronounced. 

-0.5 0 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

robot start

target start

x

y

end

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

blink value

s
p
e
e
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

target distance

s
p
e
e
d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gaze point distance

s
p
e
e
d

trend 

trend 



82

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

Figure 8.  Modulation of heading adjustment based on obstacle distance 
demonstrates effective obstacle avoidance. 

Target distance also has an important effect on speed (rule 
2), as shown in Fig. 6.  In contrast, Fig. 7 illustrates that the 
relationship between robot speed and distance from the robot to 
the actual gaze point is less pronounced, since the target is 
based on a weighted average of the gaze point and is thus a less 
noisy signal.  The interdependence of speed on multiple input 
parameters is evident in Figs. 5 and 6.  The effectiveness of the 
obstacle avoidance behavior (rules 13-15) is shown in Fig. 8 by 
the clean heading adjustment curve. These results illustrate the 
suitability of the fuzzy controller for satisfying the control 
objectives noted in Section I. 

B. Experimental Outcomes 

The experimental setup is shown in Fig. 9.  It includes the 
NAO robot with a unique marker, and two obstacles with a 
different unique marker, in a rectangular area.  The target gaze 
position is indicated by a small blue square on the figure.  
Feedback to the control computer (not shown in the figure) is 
done through overhead camera capture of the scene.  In this 
experiment shown, there are two target locations at which the 
gaze lingers (indicated in the latter two parts of Fig. 9). 

The data recorded in the experiment of Fig. 9 are shown in 
Fig. 10 as a time lapse, similar to the simulation results of Fig. 
4.  It is clear that the fuzzy logic controller allows the robot to 
effectively seek targets while avoiding obstacles, just as in the 
simulation.  Additional evidence of this is illustrated in Figs. 
11-13.  In Fig. 11, one can observe that at low blink rates, other 
rules pertaining to target distance (rules 2-3) dominate the 
determination of robot speed, but at higher blink rates, the 
interpretation of user intent becomes more influential to 
increase speed (rule 1).  In Fig. 12, the target distance is seen to 
have a positive correlation with speed, and speed increases up 
to the hardware-limited threshold.  The adjustment of heading 
with obstacle proximity is shown in Fig. 13, where avoidance 
behavior is more extreme for closer obstacles (rules 13-15).  
All these behaviors are as intended and are consistent with the 
results of simulation. 

 

 

 

 

 

 

Figure 9.  Experiment setup (from top to bottom): robot in starting position 
(lower left of workspace), robot navigating between obstacles, robot 
approaching first target point, robot approaching the second target point. 
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Figure 10.  Robot trajectory from the experiment of Fig. 9. 

 

 

Figure 11.  Modulation of speed based on blink rate demonstrates effective 
interpretation of user intent in the experiment of Fig. 9. 

 

 

Figure 12.  Modulation of speed based on target distance demonstrates 
effective target seeking in the experiment of Fig. 9. 

 

Figure 13.  Modulation of heading adjustment based on obstacle distance 
demonstrates effective obstacle avoidance in the experiment of Fig. 9. 

 

IV. CONCLUSIONS 

In this paper, a technique for gaze-based guidance of 
personal assistance robots has been illustrated via simulation 
and experiments.  Fuzzy logic allows the robot to 
simultaneously manage multiple behaviors, practicing energy 
conservation when appropriate but pursuing the target when 
human intent to do so is clear.  Combined use of the eye gaze 
point and blinking data is a pivotal feature of the fuzzy logic 
controller.  Basic obstacle avoidance is demonstrated as an 
integrated behavior within this controller.  Additionally, the 
fuzzy controller was successfully used to control a real-time 
robot using actual gaze data acquired from human users using 
an eye tracking system.   

The results presented in this paper suggest promise for 
additional future work, which could focus on incorporating the 
controller into a system that actively detects the robot’s 
location and obstacles without the need for special markers. 
The controller should also be tuned for improved performance, 
and some of its more basic rules may be replaced by a more 
sophisticated steering and obstacle avoidance rule set based on 
recent research in inference modeling [21][22].  Performance 
comparison with other MIMO control approaches will then be 
appropriate.  More advanced work will focus on detailed 
implementation for a broader variety of personal assistance 
tasks (e.g., object pick-and-place, operating on a static object) 
in a true 3D environment. 
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