
A SQL-based Context Query Language for Context-aware Systems

Penghe Chen, Shubhabrata Sen, Hung Keng Pung and Wai Choong Wong
National University of Singapore

Singapore
e-mails:{g0901858, g0701139, dcsphk, elewwcl}@nus.edu.sg

Abstract—Context-aware computing is a typical paradigm of
ubiquitous computing and aims to provide context information
anywhere and anytime. Context data management which
handles gathering, processing, managing, evaluating and
disseminating context information is the heart of context-
aware system. Context provision and acquisition, thus, become
crucial for context-aware computing. In order to decouple
application developers from the tedious work of managing
underlying context data sources, a proper context query
language should be defined to express context information
requirements without considering details of underlying
structure. Different types of context queries have been
proposed previously and an evaluation demonstrates that
SQL-based and RDF-based query languages are most powerful
in expressing context queries. However, although the RDF-
based languages are more suitable for expressing relations and
reasoning operations, it is not as flexible as the SQL-based
methods in representing user requirements. Additionally, the
RDF-based language creates a large amount of overheads due
to its various definitions of classes, sub-classes and relations. In
order to address these issues, we propose and design this SQL-
based context query language which is easy to use and very
flexible to express queries with different constraints. It
supports both pull and push based context data retrieval, as
well as different context processing functions to generate
meaningful context information.

Keywords-context; context-awareness; context query
language; SQL-based; context data management; context
provision and acquisition; ubiquitous computing.

I. INTRODUCTION
The advances of wireless communication and mobile

computing technologies have brought people into the era of
ubiquitous computing. Context-aware computing which is a
paradigm of ubiquitous computing, aims to provide
information to people anywhere and anytime. As a result,
applications can recognize and adapt to changes in the
environment automatically. Context is usually defined as any
information that can be used to characterize the users’
situations [1], while context-aware systems are systems that
can leverage on context information to adapt their behaviors
in order to realize context-awareness [15].

An important part of a context-aware system is a context
data management system which takes charge of gathering,
processing, managing, evaluating and disseminating context
information [15]. A properly designed context data
management system could decouple the lower level data

collection part from the upper layer application design, so
that developers are not concerned with the actual details of
the underlying data collection. Additionally, context data
management systems can perform intermediate context
processing to improve the quality of context data. In order to
better utilize -systems, application developers should have
access to programming tools that abstract the underlying
details of the context data collection process.

An important part of this problem is to define and design
an appropriate Context Query Language (CQL) to formally
represent context data acquisition requirements through
queries. A context query language is a formal language for
representing queries in context-aware systems and defines
the basic structure and syntax for a context query [15]. A
properly defined CQL can ease the process of expressing the
required context data retrieval conditions as well as the
corresponding context query processing operations.

Query languages designed for traditional database
systems are not suitable for context data querying due to the
special characteristics of context data. First, context data is
usually dynamic, which may produce frequent updating
operations and easily cause data inconsistency using
traditional database system. Additionally, context data is
usually not well structured and can be various kinds of
information, such as situation information or metadata
information, which cannot be properly represented by query
languages designed for well structured schema based data.
Furthermore, context data can come from heterogeneous and
distributed context sources [7], which makes traditional
query languages hard to represent the data information. In
addition, context data management requires lots of context
reasoning operations to derive higher level information [9],
which cannot be represented by traditional query languages.
A properly designed CQL should take care of these
characteristics.

In order to address these issues, different methods have
been proposed to design CQL as discussed in [3][6][9]:
Structure Query Language (SQL)-based, Resource
Description Framework (RDF)-based, Graph-based,
Extensible Markup Language (XML)-based and Application
Programming Interface (API)-based query languages. By
analyzing the advantages and drawbacks of each type of
these query languages, the evaluation conducted by Haghighi
et al. [6] demonstrates that RDF- and SQL-based CQLs are
more powerful and effective. However, compared with SQL-
based method, RDF-based method is more specialized for
RDF or ontology based context representation, which limits

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

its capability and makes it hard to be integrated with
traditional database data. Additionally, RDF is relatively
complex in defining and creating various kinds of classes
and subclasses as well as relations, which produce large
amounts of overhead and make it difficult to implement. On
the other hand, an SQL-like language is very flexible and can
significantly reduce the learning curve, providing a
developer has worked with standard SQL [19].

In this paper, we discuss the design of a new SQL-based
CQL that helps application developers to construct context
queries to acquire context data from various domains and
different context sources. Our proposed CQL can also
support different types of context acquisition manners as
well as context operations.

The rest of the paper is organized as follows. Analysis of
requirements for a well-defined CQL is given in Section II.
Section III presents some discussions on existing CQLs. The
proposed SQL-based CQL is described in Section IV.
Section V discusses the evaluation and the paper is
concluded in Section VI.

II. REQUIREMENTS
SQL is a widely utilized query language in relational

database management systems. However, directly utilizing
SQL in context data management is not possible as context
data has its own characteristics that are different from
relational database data. This is why a separate CQL is
required to support queries on context data, but the
powerfulness and experiences of SQL can be learnt to create
a CQL upon the existing SQL structure. Compared to
traditional database data, context data has its own special
characteristics [6].
• Dynamic or static: unlike traditional database data

which are usually static, most of context data can be either
static or dynamic which makes the management and
accessing differently.
• Stream data: context data may be queried and

accessed in a continuous or periodic manner which is
different from traditional database queries usually with
specific or discrete data.
• Temporal and spatial relationship: different from

traditional database data, context data is closely related to
spatial and temporal information.
• Situational information: compared to simple and clear

traditional database data, context data can be derived
situational information based on other information.
•Unstructured: most of time, context data do not have a

predefined uniform schema like that in traditional database
data.

All these dedicated characteristics of context data should
be carefully considered while designing a CQL. In addition,
the inherent nature of context data management can also
attribute some requirements on the design of CQL. Some
characteristics of pervasive computing environment are
summarized by Perich et al. [13]: autonomy, mobility,
distribution and heterogeneity, which also create challenges
to the design of CQL, just as discussed in [6]. Autonomy
implies that each entity is an independent context source.

The mobility aspect indicates that entities can appear and
disappear frequently from the network. The distribution
aspect implies that context data should be retrieved from
different entities whereas the heterogeneity aspect results in
no common data model. Also, pervasive applications need to
access context information about users and their devices
without dealing with the details of the data collection process
[4]. Additionally, context queries should be expressed in a
context model that can be converted into different data
models as required.

Based on these considerations, we can list out some of
the requirements in designing CQL for context-aware
systems as following:
• The CQL should express context queries in an abstract

level without indicating details of context sources such as
locations and storage mechanism.
• The CQL should express context queries utilizing a

predefined context data model and this model should be well
integrated with the underlying context data representation
• The CQL should express queries acquiring context data

either in a pull-based or push-based manner by specifying
filters and conditions.
• The CQL should express certain advance context

processing operations to filter and process context data, such
as aggregating and reasoning operations.
• The CQL should express context queries being able to

access context data from more than one context source as
well as continuous data.
• The CQL should be able to express compound queries

concerning multiple contexts domains and conditions.

III. EXISTING CONTEXT QUERY LANGUAGES
Different types of CQLs leveraging on different

technologies have been surveyed and classified previously:
SQL-based, RDF-based, XML-based, API-based and Graph-
based CQLs [3][6][9]. The evaluation conducted in [6] has
further demonstrated that SQL-based and RDF-based CQLs
are more powerful and effective than others. In this section,
we will review existing SQL-based CQLs and compare with
RDF-based CQLs to illustrate the necessity for a new SQL-
based CQL.

A. SQL-based CQL
SQL is a well-established, declarative query language

that has been recognized as an effective language for
accessing traditional database. As demonstrated in [6], SQL-
based CQL is one of the two most effective types of query
languages in context-aware computing. Various SQL-based
CQLs have been proposed and designed previously and we
are inspired by these works to design our new SQL-based
CQL.

Contory [18] utilizes a SQL-based CQL as an interface to
provide context information for applications. Contory
supports both pull- and push- based methods to acquire
context data, but it does not support context processing
operations and has poor performance on consolidating
context information from different sources. Another SQL-
based query language designed to query data in an ambient

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

intelligent environment is presented by Feng [2], which uses
context information to define data retrieval conditions in a
relational database. This work presents some good concepts
and definitions on acquiring data through SQL-based
mechanism but it is limited on relational databases and has
less support to context data management.

PerLa [19] is a SQL-like language designed for
collecting data from different nodes in a pervasive system.
PerLa can acquire data from different sources independently
from the underlying structure by dividing queries into two
levels. However, PerLa does not adequately consider context
data processing but limits sensor data. CML [12] queries
context data directly through SQL by converting its context
data model which can represent different type of context data
to relational database schema through its internal designed
facility. However, this conversion may generate complex
SQL join operations and query representations are not
programming and platform independent.

Another SQL-based context querying mechanism is
described by Judd and Steenkiste [8]. By defining four types
of entities (i.e., device, access point, people and space), this
framework utilizes a Context Service Interface-SQL (CSI-
SQL) wrapper to query and access data from context
sources, but the primary function of this design is on
expressing attribute requirements, timely execution and
meta-attribution rather than context data. Fjords architecture
[10] designs some SQL-based facilities to manage and query
over streaming sensor data with supporting both pull- and
push-based data acquisition methods. The mechanism
presented by Madden et al. [11] can also acquire sensor data
either through pull queries or push queries as well as a
hybrid queries.

By studying the existing SQL-based CQLs, we observe
that no one has fully fulfilled the requirements we illustrated
in Section II. Motivated by this, we propose and design this
SQL-based CQL leveraging on these previous works.

B. Non-SQL based CQL
RDF-based CQL is the other most powerful CQL in

context-aware computing as shown in [6]. A typical RDF-
based CQL is the MUSIC CQL proposed by Reichle et al.
[17] which has a good support on querying derived
information. However, supporting only single entity severely
limits its querying capability. Another RDF-based querying
mechanism described by Perich et al. [14] decouples queries
into sub-queries and process them separately to overcome
some obstacles posed by mobile environment. However, this
reliance on mobile devices creates availability and reliability
issues. SOCAM [5] can easily provide context information
about entities and relationships between entities in the smart
space leveraging on the ontology technology, but it has
limitations in supporting complex queries.

Although RDF-based CQLs are more suitable for
expressing relationships of context sources and are as
powerful as SQL-based CQLs, they are not as flexible as
SQL-based CQLs and produce large amounts of overhead in
creating classes, sub-classes and relationships [14].
Furthermore, a large percentage of existing systems are using
SQL-based methods to manage and acquire data, which are

not easy to integrate with RDF-based approach. As a result,
we plan to devise this SQL-based language so that the
learning curve is not steep and integration is faster.

IV. PROPOSED CONTEXT QUERY LANGUAGE
Motivated by the need of a CQL that can fulfill all the

requirements discussed previously, we propose a new SQL-
based CQL to express context queries. As the language is
designed leveraging on SQL syntax, the query structure
consists of the existing SQL constructs like SELECT…
FROM… WHERE with GROUP BY…HAVING…ORDER
BY…as optional instructions. Most of the existing CQLs just
extend SQL with basic SELECT…FROM…WHERE
structure without mentioning other optional instructions to
support querying on context data. In this proposed query
language, we add some constructs to the existing SQL query
structure to support them. These constructs include MODE,
SUBSCRIBE/UNSUBSCRIBE, ON VALUE…LIFETIME
which will be discussed in detail and which syntax is given
in this section. The underlying context model leverages on
the concept of context domain to divide and manage
different categories of context sources, and each context
domain is represented by a list of context attributes to
represent context data, just as shown by by Pung et al. [16].
The basic structure of context query is as follows with
constructs that are enclosed by […] being optional:

MODE GLOBAL | LOCAL
SELECT | SUBSCRIBE | UNSUBSCRIBE

<attribute> | <contextEvent> | <operation
(attribute)> | <operation (contextEvent)> [, attribute,
…]

FROM <domain> [, domain, …]
[ON INTERVAL <interval> LIFETIME <timespan>]
WHERE <predicate> [AND | OR predicate …]
[GROUP BY <attribute>]
[HAVING <predicate>]
[ORDER BY <attribute>] [DESC | ASC]

A. Description
The MODE clause specifies the mode of the query

which is a new construct added specially for this CQL.
Nowadays, with the advances of ubiquitous computing, data
about various kinds of environmental conditions and other
entities can be obtained and utilized by applications. On the
other hand, with the advances of sensing technology on
mobile devices, many applications which only utilize context
information of a host device have also been designed and
implemented. We believe that a properly designed CQL
should be able to support these two types of applications
effectively. By analyzing the characteristics, we can see that
processing context queries of local applications should be
different from global applications. In order to address this
issue, we divide context queries into two types and use the
MODE construct in the proposed CQL with possible values
LOCAL and GLOBAL respectively. LOCAL represents
queries of applications which utilize context information

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

from their host devices only; while GLOBAL indicates
queries of applications which demand context data from
different context sources. As a result, this proposed CQL
supports both application types by supporting their
corresponding data acquisition conditions.

The SELECT/SUBSCRIBE/UNSUBSCRIBE clause
specifies the required context information or actions. The
SELECT construct is inherited directly from SQL and
represents queries that acquiring context data in a pull-based
manner. However, since context-aware applications aim to
detect changes of situations and adapt to them automatically,
there are many queries concerning the changes of context
information. We call these context changes as context events
which will be pushed to applications as notifications when
they are triggered. Unfortunately, the pull-based SELECT
construct cannot support those push-based kind of queries. In
order to address this issue, we design this new SUBSCRIBE
construct which lets the application developers issue push-
based queries. We also design the UNSUBSCRIBE
construct to let applications cease their reception of
notifications about certain kinds of context events.

In addition, we extend the SELECT/SUBSCRIBE
/UNSUBSCRIBE clause with three different types of
expressions to indicate what type of context information is
required by the query, namely: context attribute, context
event, and operation involved context. Context attribute is
inherited from SQL but extended to indicate context
information of a specific context attribute of a specific
context domain. In the case of traditional database, data is
integrated, these attributes can also be relational attributes.

Besides the simple context attribute, we also define two
new types of context information: context event and
operations involving context. The context event represents
context information about changes of context source status
and triggering notifications. As discussed previously, context
event is an important type of context information for context-
aware applications. Autonomy of context-aware applications
is realized through situation detection and event notification
mechanisms. By tracking the changes of situational status,
those context events can trigger corresponding notification
mechanism to make applications adapt to new situation
automatically. It takes the format like “domain.
contextEvent” which includes three sections: domain name,
delimiter(.) and event name. The same event name may
appear in different context domains, so the context domain
information is shown to solve the possible ambiguity.

The other newly defined type of context information is
the operation involved context which indicates context
information derived by applying certain context processing
operations on raw context data. Unlike traditional database
systems which mainly focus on data updating and retrieval,
context-aware systems also need to interpret or derive higher
level context information during the query answering
process. In order to generate the higher level context
information, appropriate functions should be applied on
collected raw context data. Even though traditional database
systems also provide certain aggregating functions, they are
not powerful enough to handle other contextual based
operations. In order to solve this problem, we propose this

new type of context information to represent those operation
involved contexts. The expression consists of two parts:
operation and context data. Operation indicates what context
processing operations are utilized, while context data
specifies raw context data required for the operations. This
context data can be either context attribute or context event
as illustrated above. There are several types of operations
that can be applied on context data and we provide a separate
section to give more details in next sub section.

<context> ::= <context attribute> |

<context event> | <operational
context>

<operational context> ::= <operations>
(<context attribute> | <context
event>)

<context attribute> ::= <context
domain>.< attribute>

<context event> ::= <context domain>.<
event>

<context domain> ::= PERSON |OFFICE |
HOME | SHOP | CLINIC | CAR ...

<attribute> ::= name | location |
temperature | mood | activity |
humidity | luminanicity | ...

<event> ::= locationChange | moodIsSad
| temperatureIsHigh | ...

<operation> ::= <aggregating function>
| <algebraic function> |
<contextual function>

The FROM clause is also inherited directly from SQL,

but we extend it to specify the context domains involved in
the context queries. Those context domains are predefined by
context-aware systems. In the context of Coalition [16],
which organizes context sources into different domains, the
values can be PERSON, OFFICE, HOME, SHOP, CLINIC,
etc. Additionally, these context domains can be easily
extended to relations of traditional databases. As a result,
traditional database can be easily integrated with context data
to produce higher order information. In the future
implementation, it can also be extended to include semantic
web sources or other Internet sources.

<context domain> ::= PERSON |OFFICE |

HOME | SHOP | CLINIC | CAR |...

The ON INTERVAL … LIFETIME clause is a new

construct designed for supporting context queries about
continuous or periodic context acquisition. Just as discussed
in Section II, context can be continuous data or periodic data.
There are many context-aware applications that need to
acquire context data continuously. One typical example is
monitoring the security status of a critical place.
Additionally, periodic acquisition of context information is
also common for context-aware applications and a typical
example is to monitor the patient status in hospitals.
However, traditional database systems utilizing SQL which
usually focus on handling sporadic data retrieval cannot

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

represent and handle these continuous or periodic cases
appropriately. In order to solve this problem, we design this
new construct and augment it to the proposed CQL.

The ON INTERVAL clause of the construct specifies
the sampling interval for a context query. In the design, we
treat continuous context retrieval as a special case of periodic
context retrieval with the interval as zero. In order to
differentiate this special case, we use a special value NULL
to represent the continuous nature of retrieval. On the other
hand, we use normal integer value plus time unit (i.e., ms, s,
min, h) to indicate periodic context queries. Irrespective of
whether the context retrieval is continuous or periodic, the
usual pattern is that context information is retrieved over a
period of time. In order to represent this issue, we design the
LIFETIME clause of the construct to indicate the timespan
of the context retrieval. There are two extreme cases of this
timespan values. One is zero which implicitly indicates that
the query is neither a continuous or periodic query. The other
one is everlasting which means that the retrieval will never
stop. Even these two cases are rare, but we include them for
completeness and represent them with NULL and EVER
respectively. A normal timespan value is represented by an
integer value with a corresponding time unit.

The WHERE construct is inherited directly from SQL
but extended to represent the list of constraints on context
information acquisition. Constraints are the heart of a query
since they provide a guideline on how to filter out unwanted
context data from the large number of available context data
sources. Most of existing SQL-based CQLs utilize simple
predicates only, which is restrictive in expressing complex
requests. In this CQL, compound predicates that consists of
more context constraints connected by AND/OR are built.

<compound predicate> ::= <disjunctive

predicate> AND <disjunctive predicate>
AND ...

<disjunctive predicate> ::= <simple
predicate> OR <simple predicate> OR ...

<simple predicate> ::= <context
expression> <operator> <context
expression>

<context expression> ::= <context
attribute> | <context event> | <context
constant> | <functional expression>

The remaining three constructs GROUP BY, HAVING

and ORDER BY are all directly inherited from SQL, but
extended with context variables or predicates as the
arguments. Most of the previous SQL-based CQLs do not
extend SQL with those constructs. However, we think these
constructs are also necessary, especially in querying context
data from a large number of context sources, in which case
we may need these construct to further process the final
results. The GROUP BY clause defines how the resulting
context information can be further grouped with respect to
specific context information. The HAVING clause defines
how the filtered context data can be further selected with
respect to certain conditions represented by having-
predicates in the definition. The ORDER BY clause defines

how the query results should be sorted with respect to the
attribute indicated by context information either in ascending
order (ASC) or descending order (DESC). These three
constructs are all optional.

B. Context Processing Functions
Context processing functions represents various kinds of

operations that can be applied on context data to generate or
derive higher level context information. In addition to the
updating and reading operations done by traditional database
system, context query processing also takes charge of
interpreting context data and deriving higher level
information, which is just realized by those context
processing functions. Some of the existing CQLs have
similar processing operations integrated like [1] [14] [17].

SQL currently provides five aggregating functions that
can be applied on a set of data to get some insights to the
data patterns and behavior, namely: MAX, MIN, SUM,
AVG, and COUNT. We think these aggregating functions
are also necessary for context data query processing and
inherited directly from SQL.

<aggregating function> ::= SUM |

COUNT | AVG | MIN | MAX.

Another important type of functions added for the CQL is

contextual functions which provide the task of context
information interpretation and higher level information
derivations from basic context data. Traditional database
systems usually do not provide any functions for data
interpretation. However, this type of functionalities is very
important for CQL, so an important aspect of the proposed
CQL is to support contextual functions that can be used by
applications for information interpretation and reasoning. It
is important to provide a suite of different types of such
functions to support a wide variety of applications. One set
of such contextual functions can interpret the basic sensor
data and draw inferences based on the data and certain
predefined logical conditions. For instance,
isFever(temperature) interprets whether a given temperature
corresponds to a fever or not. Similarly, an
isFire(temperature) function can be used to determine a fire
in a building and generate appropriate functions. Another
class of contextual functions provides the task of deriving
relations between two or more entities. For instance,
isFriend(personA, personB) checks whether two persons are
friends. This function can utilize the social network and
contact information of a person to make this decision.
Another function nearBy(x, y) can compute whether two
entities are within a certain distance from each other. There
are also contextual functions aiming to derive situational
information. For instance, isMeeting(location) will determine
whether there is a meeting going on in the given place. These
are just some of the examples of the different types of
contextual functions that we propose to support as part of our
context query language.

<contextual function> ::= isFever(t) |
distance(a, b) | isFriend(a, b) |

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

nearby(x, y) | isFire(a) |
isMeeting(l) | ...

Since these contextual functions are usually situation and

application dependent, it is not possible to predefine and
generate an exhaustive list of all the contextual functions.
Instead, the application developers can define functions
according to their application requirements, which requires
the CQL to be extensible with new contextual functions. In
order to realize this extensibility, we propose the creation of
a contextual function repository that can hold the different
types of contextual functions as defined by application
developers. Additionally, this approach also promotes
reusability as the popular contextual functions can be shared
among applications. During the query processing, whenever
a contextual function is detected, the query processor can
retrieve the function definition and related rules from this
repository to analyze the collected data and generate result
accordingly.

V. EVALUATION
We implement this proposed CQL with our context-

aware system Coalition [16] and examine the querying
processing performance. In this section, we focus on
illustrating how the proposed CQL can represent different
types of requests and fulfill those requirements presented in
section II and illustrate the proposed context query language
usage with a study case.

A. Discussions
The proposed CQL expresses context domains, context

attributes and conditions in a conceptual level. In other
words, the expressions focuses on expressing what a user
wants and does not mention any details about how context
sources and context data are managed in the underlying
framework or system. This means the proposed CQL express
context should be able to express context queries at an
abstract level.

Also, the proposed CQL utilizes a generic and conceptual
method to model context data wherein context sources are
divided into different context domains and each domain is
associated with a list of context attributes. This mechanism is
consistent with the concepts of relation and attribute in
traditional relational database.

The proposed CQL supports two types of queries to
support context acquisition: select-based queries and
subscribe-based queries, which correspond to pull-based or
push-based information retrieval methods respectively.
Select-based queries specify the required context information
with a list of conditions to filter out unwanted context data.
This type of queries is issued on demand and gets context
data in real time. On the other hand, subscribe-based queries
issue required context information with a list of constraints
proactively and the context data will be pushed to the query
issuer whenever the constraints are triggered.

Additionally, the proposed CQL defines different
functions to process context data to generate higher level
context information. The aggregating functions can provide
some pre-processing operations on the context data, while

contextual functions can apply some predefined rules on
context data to derive situational information.

The design of ON INTERVAL with LIFETIME section
enables the proposed CQL to design context queries for
continuous or periodic data retrieval. Additionally, the
complex structure design of the WHERE clause enables the
proposed CQL to express complex constraints and
requirements. Together with specifying different domains in
the FROM clause, the proposed CQL can represent
compound queries that retrieve and process context data
from different domains and context sources.

Another advantage of this proposed CQL is that it can be
integrated with a traditional relational database system. As
the proposed CQL is actually an extension of SQL, it can
easily involve relational data by replacing context domains
with relations. At the abstract level, application developers
actually have no idea whether the data comes from context
sources or relational database. As a result, context data and
relational data can be seamlessly integrated. From the above
illustration and analysis, we can see that proposed CQL has
fulfilled the requirements illustrated in section II.

B. Case Study
In this sub section, we are going to illustrate the usage of

this proposed context query language with a shopping guide
scenario.

Lisa went shopping in shopping mall X during last
weekend. At the moment of entering the mall, Lisa received a
message about new arrivals from one clothes shop A as she
subscribed the notification service previously. After going
around at shop A, Lisa received a recommendation for the
bookstore shop B based on her preference of book and
current location. During the time in shop B, Lisa realized her
friend Emily was also shopping in the same mall, and then
she contacted Emily for a coffee. By checking the real time
queuing information of the several coffee shops, they chose
shop C, after which they looked around together and had a
good shopping time.

In this scenario, different types of context information
need to be queried. First, in order to push notification of new
arrivals, the context event of Lisa’s entering the shopping
mall X should be subscribed in advance. Secondly, in order
to give proper recommendations to Lisa, we need to find
shops based on both her hobby and location context. Thirdly,
in order to check whether there are friends around, we need
to provide the function of find nearby friends based on
current location. Last, in order to provide the real time
queuing information, we need to monitor the queues of each
shop. Following four context queries are designed for these
four points respectively:

Q1: (Context Event Subscription)
MODE GLOBAL
SUBSCRIB person.enterMall(“Mall X”)
FROM person
WHERE person.name = “Lisa”
ON INTERVAL 0
LIFETIME EVER

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

Q2: (Search Matched Shops)
MODE GLOBAL
SELECT shop.name
FROM shop, person
WHERE shop.type = person.preference

AND isNearby(shop.location, person.location)
AND person.name = “Lisa”

Q3: (Check Nearby Friends)
MODE GLOBAL
SELECT person.name
FROM person
WHERE isNearby(person.location, “Mall X”)
 AND isFriend(person.name, “Lisa”)

Q4: (Query Queuing Information)
MODE GLOBAL
SELECT shop.name, MIN(shop.queue)
FROM shop
WHERE shop.type = “coffee”
 AND person.location = “Mall X”

VI. CONCLUSION AND FUTURE WORK
We presented a new SQL-based CQL in this paper. By

exploring the properties of context data and pervasive
environments, we illustrated the requirements for a well-
designed CQL. Through studying existing CQLs, we
observed that SQL-based CQLs are more flexible and easy to
utilize, inspired by which, a new SQL-based CQL is
proposed and designed. This CQL supports both pull- and
push-based queries as well as continuous context retrieval by
different time intervals. Additionally, different context
processing functions, especially contextual functions, have
been designed to generate higher-level context information.
Furthermore, this CQL supports compound conditions to get
context data from various context entities belonging to
different context domains. Leveraging on the proposed SQL-
based CQL, user requests can be better represented and
supported by the underlying context data management
system. One of the main future works is to further integrate
context reasoning operations with this proposed CQL in
which reasoning operations can be represented by certain
intermediate context processing operations, so that
referenced context information can be generated in runtime
during context query processing.

ACKNOWLEDGMENT
This research was carried out at the SeSaMe Centre. It is

supported by the Singapore NRF under its IRC@SG
Funding Initiative and administered by the IDMPO.

REFERENCES
[1] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware
applications”. Human-Computer Interaction, 2001, pp. 97-166.

[2] L. Feng, “Supporting context-aware database querying in an ambient
intelligent environment”. In: 3rd IEEE International Conference on
Ubi-media Computing (U-Media), July 2010, pp. 161-166.

[3] L. Feng, J. Deng, Z. Song, and W. Xue, “A logic based context query
language”. Smart Sensing and Context, 2010, pp. 122-134.

[4] C. Fra, M. Valla, and N. Paspallis, (2011). “High level context query
processing: an experience report”. In: IEEE International Conference
on Pervasive Computing and Communications Workshops
(PERCOM Workshops), March 2011, pp. 421-426.

[5] Gu, T., Pung, H. K., and Zhang, D. Q. A service-­‐oriented middleware
for building context-­‐aware services. Journal of Network and
Computer Applications, 2005, pp. 1-18.

[6] P. D. Haghighi, A. Zaslavsky, and S. Krishnaswamy, “An evaluation
of query languages for context-aware computing”. In: 17th
International Conference on Database and Expert Systems
Applications (DEXA), 2006, pp. 455-462.

[7] J. Heer, A. Newberger, C. Beckmann, and J. I. Hong, “Liquid:
context-aware distributed queries”. In: Ubiquitous Computing
(UbiComp 2003), October 2003, pp. 140-148.

[8] G. Judd and P. Steenkiste, “Providing contextual information to
pervasive computing applications”. In: First IEEE International
Conference on Pervasive Computing and Communications (PerCom
2003), March 2003, pp. 133-142.

[9] Y. Li, L. Feng, and L. Zhou, “Context-aware database querying:
recent progress and challenges”. The Book Context-Aware Mobile
and Ubiquitous Computing for Enhanced Usability, 2009, pp. 147-
168.

[10] S. Madden and M. J. Franklin, “Fjording the stream: an architecture
for queries over streaming sensor data”. In: 18th International
Conference on Data Engineering, March 2002, pp. 555-566.

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks”. ACM Transactions on Database Systems (TODS), 2005,
pp. 122-173.

[12] T. McFadden, T., Henricksen, K., and Indulska, J. “Automating
context-aware application development”. In: UbiComp 1st
International Workshop on Advanced Context Modelling, Reasoning
and Management, Nottingham, September 2004, pp. 90-95.

[13] F. Perich, A. Joshi, T. Finin, and Y. Yesha, “On data management in
pervasive computing environments”. IEEE Transactions on
Knowledge and Data Engineering, 2004, pp. 621-634.

[14] F. Perich, A. Joshi, Y. Yesha, and T. Finin, “Collaborative joins in a
pervasive computing environment”. The International Journal on
Very Large Data Bases, 2005, pp. 182-196.

[15] M. Perttunen, J. Riekki, and O. Lassila, “Context representation and
reasoning in pervasive computing: a review”. International Journal of
Multimedia and Ubiquitous Engineering, 2009, pp. 1-28.

[16] H. K. Pung, et al. “Context-aware middleware, for pervasive elderly
homecare”. IEEE Journal on Selected Areas in Communications,
2009, pp. 510-524.

[17] R. Reichle, et al. “A context query language for pervasive computing
environments”. In: 6th Annual IEEE International Conference on
Pervasive Computing and Communications. March 2008, pp. 434-
440.

[18] O. Riva anD C. di Flora, “Contory: a smart phone middleware
supporting multiple context provisioning strategies”. In: 26th IEEE
International Conference on Distributed Computing Systems
Workshops, July 2006, pp. 4-7.

[19] F. A. Schreiber, R. Camplani, M. Fortunato, M. Marelli, and G. Rota,
“Perla: A language and middleware architecture for data management
and integration in pervasive information systems”. IEEE Transactions
on Software Engineering, 2012, pp. 478-496.

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-364-3

IMMM 2014 : The Fourth International Conference on Advances in Information Mining and Management

