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Abstract—In this paper, we present how to allocate 

bandwidth in VoIP networks, how to set up a connection, 

and which links in the network should be used. Common are 

algorithms which find shortest path (SPF) – like OSPF in 

Internet network. We create a new algorithm which takes 

into consideration two parameters, including maximum 

throughput bound. Using the created experimentation 

system we show that the algorithm can reduce the number of 

rejected calls and in some cases, the total cost of the calls.  

Keywords-bandwidth; algorithm; experimentation system; 

optimization; efficiency. 

  INTRODUCTION  

Nowadays, one can observe an increasing number of 

computer network users. Voice over Internet Protocol 

(VoIP) is a general term for a family of transmission 

technologies that deliver voice communications over IP 

networks. The Internet and other packet-switched 

networks are particular examples. In this paper, we 

address the problem of how VoIP applications should be 

allocated bandwidth in networks. The objective is to find, 

in real-time, an optimal path in the network when 

establishing a VoIP connection between particular nodes. 

The rest of the paper is organized as follows: after 

introducing the necessary terminology in Section II, 

algorithms that solve the allocation problem are briefly 

described in Section III (basic algorithm) and Section IV 

(modified algorithm), next, the results of investigations 

are presented and discussed. The designed and 

implemented experimentation system is described in 

Section V and the analysis of results of simulations made 

along with design of experiments is in Section VI. The 

conclusions appear in Section VII. 

 PROBLEM STATEMENT 

Any network topology can be modeled as a graph in 

which vertices correspond to nodes and edges correspond 

to links (physical or logical) between the nodes. Two 

mainstream network architectures are considered. In the 

first considered case, nodes can be one of two possible 

types: relay nodes or edge nodes.  Relay nodes transfer 

VoIP traffic, whereas edge nodes generate other network 

traffic, and use IP telephone (wireless phone, soft-phone 

or hands-free phones) generate traffic [1] [2]. This paper 

considers both wired as well as wireless networks. A 

significant research has been conducted in the area of 

802.11-based wireless solution [3] [4]. For the second 

type of network, all the nodes belong to the same 

category. It is no distinction between nodes. This 

conception can be used when we have large network and 

each node is treated as small sub-network. Wireless 

network can be also described in the same way. The 

following terminology is used: 

Constraints: cost and throughput. For a given link, 

defined by nodes v and w, it is natural to assume there is 

an associated cost, denoted cvw:  here, the meaning of 

'cost' is deliberately left open to interpretation, as it often 

depends on user or hardware specifications. For example, 

according to the P2P model described in [5], 'cost' can 

mean: delay in milliseconds, distance in kilometers, and 

number of ISPs between two nodes. Furthermore, every 

link, defined by nodes v and w, will have a limited 

throughput, denoted  dvw (typically measure in kbps). 

Connections. When a connection is established, it is 

allocated a bandwidth b. Therefore, the value b must be 

subtracted from the throughput dvw every time a 

connection is established, assuming nodes v and w, lie on 

the connection path. If  dvw < b, no new connection can be 

established over the link: it that case, a new connection 

path must be sought, avoiding the node-pair (v,w). If no 

such path can be found, the connection request is rejected. 

To simplify calculations, the bandwidth b is chosen as the 

measurement unit, and the throughout values dvw are 

normalized with respect to multiples of b. E.g., if b 

corresponds to 32 kbps (codec G.726 [6]) and dvw 

corresponds to 2 Mbps, we set  b' = 1 and dvw' = 128.  

Calls. All the call data are stored in a connection 

schedule (an example in Table I), including: time ts, when 

the connection starts, nodes v and w defining start/end of 

the connection, and time tt  when the call is terminated tt . 

When a connection is established between v and w, all the 

nodes and links lying in the connection path, as well as 

the associated costs, are stored in the connection schedule.  

122

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-140-3



Objectives. The main objective of bandwidth allocation 

is to try and ensure that all the connection requests are 

satisfied (equivalently, the percentage of rejected requests 

are minimized). Another objective is to minimize the total 

cost of connections, where cost is represented by vab. Yet 

another objective is to reduce the number of terminated 

calls while the network resources are decreasing, but that 

can have an affect on the call costs. 

 THE ALGORITHMS  

A. Basic Algorithm 

Let us have a look at an example with a given connection 

schedule (composed of 5 rows - see Table I) and network 

topology as in Fig. 1 (with nodes enumerated from 1 to 9). 

 

  

Figure 1.  A network topology. 

Each link is characterized by two attributes: the cost of 

the link, cvw , and, the throughout,  dvw  (it is a normalized 

value, so for e.g., dvw = 2 means that two connections can 

be made simultaneously). It is assumed, that only one call 

is permitted per time slot [ts, tt]. We present, step by step, 

how the Basic Algorithm, i.e. Short Path Finding (SPF) 

algorithm works.  
Step 0.   In first iteration (ts=0) there is one connection 

to set up. 
 

 

Figure 2.  After first iteration (Step 0). 

The shortest path (which can be verified using  

Dijkstra algorithm, for example) is shown in Fig. 2 - it 

may be observed that transit node is node 6. The total cost 

of the path is c5,6 + c6,9 = 3 + 7 = 10. Remark: The value 

dvw must be decreased accordingly, for each link on the 

connection path. At the end of any iteration, existing 

connections are required termination. In this particular 

example, no such action is required. 

Step 1. Another connection is set up (see row 2 in Tab. 

1). Once again it is the shortest path in the graph (Fig. 3) 

with transit nodes 5-2-1 and the total cost equal to 19. Is 

this satisfactory? No! The link between nodes 1 and 7 

cannot be used for another connection. Two other paths 

are possible (3-5-6-8-7 and 3-5-2-7), each with total cost 

= 20 (i.e. just one unit more), but neither consumes the 

total throughput of any link in the network. 

 

 

Figure 3.  After second iteration (Step 1). 

Step 2. The result of this iteration (path 4-9-3 with the 

total cost of 13) is shown in Fig. 4. 

 

 

Figure 4.  After third iteration (Step 2). 

Step 3. The results of this iteration (path with no 

terminal node) is shown in Fig. 5 

 

 

Figure 5.  After fourth iteration (Step 3). 
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At the end of this iteration, only one connection is 

terminated (between nodes 5 and 9). In this case, we must 

increment dvw for each link participating in this 

connection. The result is shown in Fig. 6. 

 

 

Figure 6.  Disconnection. 

Step 4. Here, a connection needs to be set up between 

node 1 and node 9. If we only consider the values cvw,, the 

optimal path is 1-7-8-9. But link 1-7 is already operating 

at full capacity. Thus, a different path needs to be found.  

 

 

Figure 7.  The result of Step 4. 

The new path found (1-2-6-9) has a cost of 21. It is 6 units 

more than the cost of the 1-7-8-9 path, which can not be 

reached by SPF. The summary of the obtained results 

with SPF is given in Table I, there are also results given 

by the created algorithm described in Section IIIB. 

TABLE I.  ALGORITHMS PERFORMANCE 

                          Basic    Premaru  

 Step    ts v w tt 
Transit 

 nodes 
  Cost Transit 

 nodes 
Cost 

 

   0 0 5 9 3 6    10 6  10  

   1 1 3 7 6 5,2,1    19 5,2  20  

   2 2 4 6 6 9    13 9  13  

   3 3 6 2 12 -     7 - 7  

   4 4 1 9 7 2,6    21 7,8  15  

Total Cost                       70                            65 

This simple example shows all the most important 

processes occurring in VoIP applications: setting up 

connections and/or making disconnection. It also 

illustrates the difficulty of finding optimal paths: the 

problem is to find a path having a minimal cost, and such 

that other potential connections will not be blocked in 

subsequent iterations. In Step 1 we could have set up the 

path 3-5-2-7. Then the path cost in iteration 1 would be 20 

(one more than it is now), but the advantage is that the 

connection 1-7-8-9 could then be set up in Step 4, thus, 

sparing five units of cost. If several more connection 

paths were to be badly chosen, the whole network itself 

might become completely saturated after just a few 

iterations, rendering future calls impossible. Moreover, 

poorly chosen connection paths severely compromise 

network reliability, leading to widespread user 

dissatisfaction.  

B. Algorithm Premaru 

The created algorithm, named Premaru, can compete 

with SPF. The idea of Premaru is based on introduction of 

two parameters denoted as p and q. The fundamental rule 

of the designed algorithm is following: “If the lowest 

value dvw of all links in a found path is lower than q, 

moreover, there is any other path that connects the same 

nodes and its total cost is bigger than previous path by p 

or less, then the second (another) path will be chosen”. It 

would avoid blocking beneficial paths in further 

iterations. This procedure is described by the pseudo-code 

and the block-diagram in Fig. 8. 

Function find_shortest_path (v, w, C) finds the shortest 

path between nodes v and w. It uses the cost matrix C of 

the whole network. Function throughput (path, D) returns 

the minimum throughput, dmin ,of all edges in path. It 

exploits the throughput matrix, D, of the whole network. 

If the minimum throughput of the found path is lower 

than  q we zeroes edge's throughput. That prevents reuse 

of edges having a throughput lower than q. 

After that, a search is made for another path, named 

pathtemp. If pathtemp satisfies the condition cost (pathtemp) – 

cost (path)  p,  then this path is chosen. It enables to 

have a minimum throughput larger than q. This avoids 

traffic-crowded edges - pathtemp is calculated using a 

temporary matrix of throughputs Dtemp, where all 

throughputs not greater than q are omitted. 
 

path = find_shortest_path(v, w, C, D); 

dmin = throughput(path, D); 

if dmin <= q then 

   Dtemp = throughput_zeroing(q, D); 

   pathtemp = find_shortest_path(v,w,C,Dtemp); 

   if cost(pathtemp) – cost(path) <= p  

then path = pathtemp; 

   end if 

end if 

set_up_connection(path, D); 

Figure 8.  Algorithm Premaru – pseudo-code description. 
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Function find_shortest_path (v, w) is left undefined. It 

can be the Dijkstra algorithm [7], as suggested earlier, but 

it can be the Bellman-Ford algorithm [7] or a heuristic 

algorithm (such as genetic algorithm), either. In our recent  

implementation, the modified Dijkstra algorithm was 

utilized - it finds the shortest path, taking into account dvw 

(if dvw is equal to 0, the edge v-w cannot be used). 

IV.       EXPERIMENTATION SYSTEM   

The experimentation system has been designed and 

implemented by our research team following ideas 

presented in [8]. The core module of the system is 

simulation environment – a complex program which 

allows testing both considered algorithms (Algorithms 

Performance Module) and making multi-aspect 

investigations. The user can choose an experiment design 

which will be performed in automatic manner 

(Experiment Design Module) generating input parameters, 

including network matrices (C – cost matrix and D – 

throughput matrix) and connection schedule (con_gen). 

The values of Premaru parameters p and q can be also 

specified by the user. Output data is stored on a properly 

designed database (Data Acquisition Module). In Fig. 9, 

the experimentation system is shown as input – output 

plant.  

 

 

Figure 9. Experimentation system as input – output plant. 

Terminology used in Fig. 9 is explained below:  

 network – information about number of nodes 

and network density, 

 cost – information about cost distribution 

(homogenous or Weibull) and its parameters 

(maximum cost for homogenous distribution), 

 throughput – maximum throughput of a link 

(parameter of homogenous distribution), 

 connections – the number of connections,  is 

the parameter of the exponential distribution, 

 Basic algorithm (also named Dijkstra) – a simple 

Dijkstra‟s algorithm, modified for our purposes.  

 Premaru algorithm – the created algorithm that 

includes parameters p and q, 

 ctotal – the total cost of all connections, 

 ttotal – the total time of simulation, 

 nrrejected – the number of rejected calls, 

 nrre-searched – the number of calls for which was 

done more than one path search. 

The application software was written using C# and 

.NET 3.5 Windows Forms, because they constitute a 

highly flexible platform for the design of user-friendly 

interfaces using familiar components (check-boxes, text-

boxes, buttons, etc.). An external library was used to 

produce the charts. The database was compiled and 

maintained using SQLite. The system (simulator) only 

requires a PC that runs Windows OS and .NET 

Framework 3.5 or higher (freely downloadable from the 

Microsoft corporation website).  

An important issue is experiment design, i.e., creating 

input data that models real-life scenarios. According to 

aspects specified in Section II the details about such 

scenarios may be described as follows. 

The Network. The network is represented by the graph 

described by the pair of matrices cvw and dvw. The entries 

of the first matrix represent costs between nodes v and w. 

The entries of the second matrix represent the throughputs 

between nodes v and w. Those matrices are highly 

correlated, because if a non-zero entry in one of them 

corresponds to a non-zero entry in the other. Accordingly, 

for each link between nodes we have a pair of values:  

cost and throughput. The size of the network is also 

important. Tests can be made for „small‟ (50 nodes) and 

„large‟ networks (100 nodes). In the case of complete 

graphs (networks), each pair of nodes is connected, i.e. it 

represents network with 100% density. But such networks 

are too expensive and rarely used, in practice. The system 

allows generating networks with density from 3% to 80%. 

Each link between nodes is assigned a cost value, which is 

stored in matrix C as cvw. This value might represent the 

time-delay (in time units - milliseconds, for example). 

Realistic cost values can be generated by exploiting two 

probability distributions: (i) homogeneous distribution, 

(ii) Weibull distribution. With a homogeneous 

distribution, cost values are drawn from 1 to k, where k 

determines the maximum value of cost (parameter k can 

be chosen in our system). The Weibull distribution 

provides a good mathematical model of delay in VoIP 

networks [9]. The Weibull distribution is characterized 

by: k – a shape parameter and λ – a scale parameter. Each 

link between nodes is assigned a throughput value, which 

is stored in matrix D as dvw. Throughput for every link is 

drawn from homogeneous distribution. The throughput 

can be from 1 do  p, where p represents the maximum 

throughput bound).  

Connection schedule. In order to construct a good 

connection schedule, it is important to know how 

subscribers behave. In our research we assumed that the 

starting time of a connection can be accurately described 

by random variable with a homogeneous distribution. We 
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also assumed that the duration of a connection can be 

accurately described by a random variable having an 

exponential distribution. This assertion is based on the 

results presented in [10]. The probability density function 

of phone call duration described there can be modeled by 

an exponential distribution with λ=0.02. Our 

experimentation system allows changing the value of  λ. 

 To generate a list of connections necessary parameters 

are: (i) Network size (number of nodes), (ii) Number of 

connections, (iii) λ-parameter in exponential distribution. 

The way of selecting nodes when a connection is being 

established is modeled by a homogenous distribution.  

There is only one condition: the initial node must not be 

the final node. The time-instant of establishing a 

connection is also modeled by a homogenous distribution.  

V.       INVESTIGATIONS 

A.   Design of experiment 

The following input data were taken into consideration:  

 Network size : 100 nodes. 

 Network density: 3%, 6%, 9%, 12%, 15%, 18%, 

21%, 24%, 27%, 30%, 35%, 40%, 45%, 50%, 

60%, 70%, 80% . 

 Number of connections: 1000, 2000, 3000, 4000, 

5000, 7500, 10000. 

 The cost values of links: generated using Weibull 

distribution with  k = 2.09 and  λ = 7.5.  

 Call duration: modeled using the exponential 

distribution with λ = 0.02.  

 The Premaru parameters (p, q): 16 different pairs 

– all combinations for  q = 1, 2, 3, 4 and for  p = 

1, 2, 3, 4. , i.e. (1, 1), (1, 2), … , (3, 4), (4, 4). . 

B.  Number of rejected calls 

In Fig. 10, one can see the average results given by 

SPF Basic algorithm and Premaru algorithm. 

  

 

Figure 10. Number of rejected calls in relation to network density. 

It may be observed, that number of rejected calls is 

almost the same when Premaru algorithm is used instead 

of Basic algorithm. We found that these differences were 

very small - less than 5% (Fig.11). Moreover, the network 

density do not influence on number of rejected calls rate. 

It was only observed that the number of rejected calls was 

linearly proportional to the number of connections. 

 

        

Figure 11. Number of rejected calls for network density 10% (on left) 

and 20% (on right). 

C. The total cost 

The average total cost given by Basic algorithm and 

Premaru algorithm in relation to the number of calls for 

various network densities is shown in Fig.12.  

  

 

Figure 12. The total cost in relation to the number of connections for 

different network densities. 
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It may be observed, that Premaru algorithm is better 

(producing lower costs) in two situations: (i) for relatively 

small network densities almost independently on the 

number of connections, and (ii) in some cases of network 

with greater densities if the number of connections is 

relatively big. 

D. The influence of (p, q) parameters 

The influence of q parameter is shown in Fig. 13. By 

increasing the q parameter the total cost is reduced but 

this property was found as evident for networks with low 

densities. It may be observed in Fig. 13 that for  q = 1, the 

total cost is lower than for  q = 4. 

 

 
Figure 13. The total cost produced by Premaru algorithm in relation to 

parameter q for different network densities and numbers of connections. 

 

In addition, if we have a density networks less than 50% 

then the difference between the total costs incurred by 

Premaru and Basic, in an experiment where there are no 

rejected calls, did not depend on the parameter p. 

However, if the network density is greater than 50%, the 

cost reduction with Premaru is remarkable as  p increases. 

VI. CONCLUSION 

In the paper, we present the results of evaluation of the 

created and implemented Premaru algorithm. The 

evaluation was based on simulations made using the 

designed and implemented experimentation system. The 

Premaru is able to find suitable connection paths in VOIP 

networks while in many cases significantly reducing the 

total cost of the established connections as well as 

reducing the number of rejected calls. 

We suggest using Premaru algorithm for lower density 

networks and for all networks when the number of 

connections is relatively big, i.e.,  the network 

connectivity problem is sufficiently complex. 

In the nearer future we are planning: to create a hybrid 

algorithm which will perform as Basic algorithm before 

reaching rejected calls limit and after as Premaru 

algorithm, and to develop the experimentation system by 

implementing newly designed algorithm and include new 

modules following ideas described in [11]. 
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