
Bandwidth Allocation Algorithms for VOIP Networks: An Experimentation

System and Evaluation of Created Algorithm

Rafal Orlowski, Michal Chamow, Iwona Pozniak-Koszalka, Leszek Koszalka, Andrzej Kasprzak

Department of Systems and Computer Networks,

Wroclaw University of Technology,

Wroclaw, Poland

E-mail: {156669, 156594, iwona.pozniak-koszalka, leszek.koszalka, andrzej.kasprzak}@pwr.wroc.pl

Abstract—In this paper, we present how to allocate

bandwidth in VoIP networks, how to set up a connection,

and which links in the network should be used. Common are

algorithms which find shortest path (SPF) – like OSPF in

Internet network. We create a new algorithm which takes

into consideration two parameters, including maximum

throughput bound. Using the created experimentation

system we show that the algorithm can reduce the number of

rejected calls and in some cases, the total cost of the calls.

Keywords-bandwidth; algorithm; experimentation system;

optimization; efficiency.

 INTRODUCTION

Nowadays, one can observe an increasing number of

computer network users. Voice over Internet Protocol

(VoIP) is a general term for a family of transmission

technologies that deliver voice communications over IP

networks. The Internet and other packet-switched

networks are particular examples. In this paper, we

address the problem of how VoIP applications should be

allocated bandwidth in networks. The objective is to find,

in real-time, an optimal path in the network when

establishing a VoIP connection between particular nodes.

The rest of the paper is organized as follows: after

introducing the necessary terminology in Section II,

algorithms that solve the allocation problem are briefly

described in Section III (basic algorithm) and Section IV

(modified algorithm), next, the results of investigations

are presented and discussed. The designed and

implemented experimentation system is described in

Section V and the analysis of results of simulations made

along with design of experiments is in Section VI. The

conclusions appear in Section VII.

 PROBLEM STATEMENT

Any network topology can be modeled as a graph in

which vertices correspond to nodes and edges correspond

to links (physical or logical) between the nodes. Two

mainstream network architectures are considered. In the

first considered case, nodes can be one of two possible

types: relay nodes or edge nodes. Relay nodes transfer

VoIP traffic, whereas edge nodes generate other network

traffic, and use IP telephone (wireless phone, soft-phone

or hands-free phones) generate traffic [1] [2]. This paper

considers both wired as well as wireless networks. A

significant research has been conducted in the area of

802.11-based wireless solution [3] [4]. For the second

type of network, all the nodes belong to the same

category. It is no distinction between nodes. This

conception can be used when we have large network and

each node is treated as small sub-network. Wireless

network can be also described in the same way. The

following terminology is used:

Constraints: cost and throughput. For a given link,

defined by nodes v and w, it is natural to assume there is

an associated cost, denoted cvw: here, the meaning of

'cost' is deliberately left open to interpretation, as it often

depends on user or hardware specifications. For example,

according to the P2P model described in [5], 'cost' can

mean: delay in milliseconds, distance in kilometers, and

number of ISPs between two nodes. Furthermore, every

link, defined by nodes v and w, will have a limited

throughput, denoted dvw (typically measure in kbps).

Connections. When a connection is established, it is

allocated a bandwidth b. Therefore, the value b must be

subtracted from the throughput dvw every time a

connection is established, assuming nodes v and w, lie on

the connection path. If dvw < b, no new connection can be

established over the link: it that case, a new connection

path must be sought, avoiding the node-pair (v,w). If no

such path can be found, the connection request is rejected.

To simplify calculations, the bandwidth b is chosen as the

measurement unit, and the throughout values dvw are

normalized with respect to multiples of b. E.g., if b

corresponds to 32 kbps (codec G.726 [6]) and dvw

corresponds to 2 Mbps, we set b' = 1 and dvw' = 128.

Calls. All the call data are stored in a connection

schedule (an example in Table I), including: time ts, when

the connection starts, nodes v and w defining start/end of

the connection, and time tt when the call is terminated tt .

When a connection is established between v and w, all the

nodes and links lying in the connection path, as well as

the associated costs, are stored in the connection schedule.

122

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

Objectives. The main objective of bandwidth allocation

is to try and ensure that all the connection requests are

satisfied (equivalently, the percentage of rejected requests

are minimized). Another objective is to minimize the total

cost of connections, where cost is represented by vab. Yet

another objective is to reduce the number of terminated

calls while the network resources are decreasing, but that

can have an affect on the call costs.

 THE ALGORITHMS

A. Basic Algorithm

Let us have a look at an example with a given connection

schedule (composed of 5 rows - see Table I) and network

topology as in Fig. 1 (with nodes enumerated from 1 to 9).

Figure 1. A network topology.

Each link is characterized by two attributes: the cost of

the link, cvw , and, the throughout, dvw (it is a normalized

value, so for e.g., dvw = 2 means that two connections can

be made simultaneously). It is assumed, that only one call

is permitted per time slot [ts, tt]. We present, step by step,

how the Basic Algorithm, i.e. Short Path Finding (SPF)

algorithm works.
Step 0. In first iteration (ts=0) there is one connection

to set up.

Figure 2. After first iteration (Step 0).

The shortest path (which can be verified using

Dijkstra algorithm, for example) is shown in Fig. 2 - it

may be observed that transit node is node 6. The total cost

of the path is c5,6 + c6,9 = 3 + 7 = 10. Remark: The value

dvw must be decreased accordingly, for each link on the

connection path. At the end of any iteration, existing

connections are required termination. In this particular

example, no such action is required.

Step 1. Another connection is set up (see row 2 in Tab.

1). Once again it is the shortest path in the graph (Fig. 3)

with transit nodes 5-2-1 and the total cost equal to 19. Is

this satisfactory? No! The link between nodes 1 and 7

cannot be used for another connection. Two other paths

are possible (3-5-6-8-7 and 3-5-2-7), each with total cost

= 20 (i.e. just one unit more), but neither consumes the

total throughput of any link in the network.

Figure 3. After second iteration (Step 1).

Step 2. The result of this iteration (path 4-9-3 with the

total cost of 13) is shown in Fig. 4.

Figure 4. After third iteration (Step 2).

Step 3. The results of this iteration (path with no

terminal node) is shown in Fig. 5

Figure 5. After fourth iteration (Step 3).

123

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

At the end of this iteration, only one connection is

terminated (between nodes 5 and 9). In this case, we must

increment dvw for each link participating in this

connection. The result is shown in Fig. 6.

Figure 6. Disconnection.

Step 4. Here, a connection needs to be set up between

node 1 and node 9. If we only consider the values cvw,, the

optimal path is 1-7-8-9. But link 1-7 is already operating

at full capacity. Thus, a different path needs to be found.

Figure 7. The result of Step 4.

The new path found (1-2-6-9) has a cost of 21. It is 6 units

more than the cost of the 1-7-8-9 path, which can not be

reached by SPF. The summary of the obtained results

with SPF is given in Table I, there are also results given

by the created algorithm described in Section IIIB.

TABLE I. ALGORITHMS PERFORMANCE

 Basic Premaru

 Step ts v w tt
Transit

 nodes
 Cost Transit

 nodes
Cost

 0 0 5 9 3 6 10 6 10

 1 1 3 7 6 5,2,1 19 5,2 20

 2 2 4 6 6 9 13 9 13

 3 3 6 2 12 - 7 - 7

 4 4 1 9 7 2,6 21 7,8 15

Total Cost 70 65

This simple example shows all the most important

processes occurring in VoIP applications: setting up

connections and/or making disconnection. It also

illustrates the difficulty of finding optimal paths: the

problem is to find a path having a minimal cost, and such

that other potential connections will not be blocked in

subsequent iterations. In Step 1 we could have set up the

path 3-5-2-7. Then the path cost in iteration 1 would be 20

(one more than it is now), but the advantage is that the

connection 1-7-8-9 could then be set up in Step 4, thus,

sparing five units of cost. If several more connection

paths were to be badly chosen, the whole network itself

might become completely saturated after just a few

iterations, rendering future calls impossible. Moreover,

poorly chosen connection paths severely compromise

network reliability, leading to widespread user

dissatisfaction.

B. Algorithm Premaru

The created algorithm, named Premaru, can compete

with SPF. The idea of Premaru is based on introduction of

two parameters denoted as p and q. The fundamental rule

of the designed algorithm is following: “If the lowest

value dvw of all links in a found path is lower than q,

moreover, there is any other path that connects the same

nodes and its total cost is bigger than previous path by p

or less, then the second (another) path will be chosen”. It

would avoid blocking beneficial paths in further

iterations. This procedure is described by the pseudo-code

and the block-diagram in Fig. 8.

Function find_shortest_path (v, w, C) finds the shortest

path between nodes v and w. It uses the cost matrix C of

the whole network. Function throughput (path, D) returns

the minimum throughput, dmin ,of all edges in path. It

exploits the throughput matrix, D, of the whole network.

If the minimum throughput of the found path is lower

than q we zeroes edge's throughput. That prevents reuse

of edges having a throughput lower than q.

After that, a search is made for another path, named

pathtemp. If pathtemp satisfies the condition cost (pathtemp) –

cost (path)  p, then this path is chosen. It enables to

have a minimum throughput larger than q. This avoids

traffic-crowded edges - pathtemp is calculated using a

temporary matrix of throughputs Dtemp, where all

throughputs not greater than q are omitted.

path = find_shortest_path(v, w, C, D);

dmin = throughput(path, D);

if dmin <= q then

 Dtemp = throughput_zeroing(q, D);

 pathtemp = find_shortest_path(v,w,C,Dtemp);

 if cost(pathtemp) – cost(path) <= p

then path = pathtemp;

 end if

end if

set_up_connection(path, D);

Figure 8. Algorithm Premaru – pseudo-code description.

124

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

Function find_shortest_path (v, w) is left undefined. It

can be the Dijkstra algorithm [7], as suggested earlier, but

it can be the Bellman-Ford algorithm [7] or a heuristic

algorithm (such as genetic algorithm), either. In our recent

implementation, the modified Dijkstra algorithm was

utilized - it finds the shortest path, taking into account dvw

(if dvw is equal to 0, the edge v-w cannot be used).

IV. EXPERIMENTATION SYSTEM

The experimentation system has been designed and

implemented by our research team following ideas

presented in [8]. The core module of the system is

simulation environment – a complex program which

allows testing both considered algorithms (Algorithms

Performance Module) and making multi-aspect

investigations. The user can choose an experiment design

which will be performed in automatic manner

(Experiment Design Module) generating input parameters,

including network matrices (C – cost matrix and D –

throughput matrix) and connection schedule (con_gen).

The values of Premaru parameters p and q can be also

specified by the user. Output data is stored on a properly

designed database (Data Acquisition Module). In Fig. 9,

the experimentation system is shown as input – output

plant.

Figure 9. Experimentation system as input – output plant.

Terminology used in Fig. 9 is explained below:

 network – information about number of nodes

and network density,

 cost – information about cost distribution

(homogenous or Weibull) and its parameters

(maximum cost for homogenous distribution),

 throughput – maximum throughput of a link

(parameter of homogenous distribution),

 connections – the number of connections,  is

the parameter of the exponential distribution,

 Basic algorithm (also named Dijkstra) – a simple

Dijkstra‟s algorithm, modified for our purposes.

 Premaru algorithm – the created algorithm that

includes parameters p and q,

 ctotal – the total cost of all connections,

 ttotal – the total time of simulation,

 nrrejected – the number of rejected calls,

 nrre-searched – the number of calls for which was

done more than one path search.

The application software was written using C# and

.NET 3.5 Windows Forms, because they constitute a

highly flexible platform for the design of user-friendly

interfaces using familiar components (check-boxes, text-

boxes, buttons, etc.). An external library was used to

produce the charts. The database was compiled and

maintained using SQLite. The system (simulator) only

requires a PC that runs Windows OS and .NET

Framework 3.5 or higher (freely downloadable from the

Microsoft corporation website).

An important issue is experiment design, i.e., creating

input data that models real-life scenarios. According to

aspects specified in Section II the details about such

scenarios may be described as follows.

The Network. The network is represented by the graph

described by the pair of matrices cvw and dvw. The entries

of the first matrix represent costs between nodes v and w.

The entries of the second matrix represent the throughputs

between nodes v and w. Those matrices are highly

correlated, because if a non-zero entry in one of them

corresponds to a non-zero entry in the other. Accordingly,

for each link between nodes we have a pair of values:

cost and throughput. The size of the network is also

important. Tests can be made for „small‟ (50 nodes) and

„large‟ networks (100 nodes). In the case of complete

graphs (networks), each pair of nodes is connected, i.e. it

represents network with 100% density. But such networks

are too expensive and rarely used, in practice. The system

allows generating networks with density from 3% to 80%.

Each link between nodes is assigned a cost value, which is

stored in matrix C as cvw. This value might represent the

time-delay (in time units - milliseconds, for example).

Realistic cost values can be generated by exploiting two

probability distributions: (i) homogeneous distribution,

(ii) Weibull distribution. With a homogeneous

distribution, cost values are drawn from 1 to k, where k

determines the maximum value of cost (parameter k can

be chosen in our system). The Weibull distribution

provides a good mathematical model of delay in VoIP

networks [9]. The Weibull distribution is characterized

by: k – a shape parameter and λ – a scale parameter. Each

link between nodes is assigned a throughput value, which

is stored in matrix D as dvw. Throughput for every link is

drawn from homogeneous distribution. The throughput

can be from 1 do p, where p represents the maximum

throughput bound).

Connection schedule. In order to construct a good

connection schedule, it is important to know how

subscribers behave. In our research we assumed that the

starting time of a connection can be accurately described

by random variable with a homogeneous distribution. We

125

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

also assumed that the duration of a connection can be

accurately described by a random variable having an

exponential distribution. This assertion is based on the

results presented in [10]. The probability density function

of phone call duration described there can be modeled by

an exponential distribution with λ=0.02. Our

experimentation system allows changing the value of λ.

 To generate a list of connections necessary parameters

are: (i) Network size (number of nodes), (ii) Number of

connections, (iii) λ-parameter in exponential distribution.

The way of selecting nodes when a connection is being

established is modeled by a homogenous distribution.

There is only one condition: the initial node must not be

the final node. The time-instant of establishing a

connection is also modeled by a homogenous distribution.

V. INVESTIGATIONS

A. Design of experiment

The following input data were taken into consideration:

 Network size : 100 nodes.

 Network density: 3%, 6%, 9%, 12%, 15%, 18%,

21%, 24%, 27%, 30%, 35%, 40%, 45%, 50%,

60%, 70%, 80% .

 Number of connections: 1000, 2000, 3000, 4000,

5000, 7500, 10000.

 The cost values of links: generated using Weibull

distribution with k = 2.09 and λ = 7.5.

 Call duration: modeled using the exponential

distribution with λ = 0.02.

 The Premaru parameters (p, q): 16 different pairs

– all combinations for q = 1, 2, 3, 4 and for p =

1, 2, 3, 4. , i.e. (1, 1), (1, 2), … , (3, 4), (4, 4). .

B. Number of rejected calls

In Fig. 10, one can see the average results given by

SPF Basic algorithm and Premaru algorithm.

Figure 10. Number of rejected calls in relation to network density.

It may be observed, that number of rejected calls is

almost the same when Premaru algorithm is used instead

of Basic algorithm. We found that these differences were

very small - less than 5% (Fig.11). Moreover, the network

density do not influence on number of rejected calls rate.

It was only observed that the number of rejected calls was

linearly proportional to the number of connections.

Figure 11. Number of rejected calls for network density 10% (on left)

and 20% (on right).

C. The total cost

The average total cost given by Basic algorithm and

Premaru algorithm in relation to the number of calls for

various network densities is shown in Fig.12.

Figure 12. The total cost in relation to the number of connections for

different network densities.

126

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

It may be observed, that Premaru algorithm is better

(producing lower costs) in two situations: (i) for relatively

small network densities almost independently on the

number of connections, and (ii) in some cases of network

with greater densities if the number of connections is

relatively big.

D. The influence of (p, q) parameters

The influence of q parameter is shown in Fig. 13. By

increasing the q parameter the total cost is reduced but

this property was found as evident for networks with low

densities. It may be observed in Fig. 13 that for q = 1, the

total cost is lower than for q = 4.

Figure 13. The total cost produced by Premaru algorithm in relation to

parameter q for different network densities and numbers of connections.

In addition, if we have a density networks less than 50%

then the difference between the total costs incurred by

Premaru and Basic, in an experiment where there are no

rejected calls, did not depend on the parameter p.

However, if the network density is greater than 50%, the

cost reduction with Premaru is remarkable as p increases.

VI. CONCLUSION

In the paper, we present the results of evaluation of the

created and implemented Premaru algorithm. The

evaluation was based on simulations made using the

designed and implemented experimentation system. The

Premaru is able to find suitable connection paths in VOIP

networks while in many cases significantly reducing the

total cost of the established connections as well as

reducing the number of rejected calls.

We suggest using Premaru algorithm for lower density

networks and for all networks when the number of

connections is relatively big, i.e., the network

connectivity problem is sufficiently complex.

In the nearer future we are planning: to create a hybrid

algorithm which will perform as Basic algorithm before

reaching rejected calls limit and after as Premaru

algorithm, and to develop the experimentation system by

implementing newly designed algorithm and include new

modules following ideas described in [11].

Acknowledgements

The authors would like to thank the students of

Wroclaw University of Technology – Mr. Radwan, Mr.

Kempa, Mr. Kidon, Mr. Miziolek, and Mr. Neska for

remarkable help in programming the experimentation

system and Mr Daniel Davies for productive

proofreading.

REFERENCES

 V. Hilt, A. Hari, and M. Hofmann, “An Efficient and Robust
Overlay Routing Scheme for VoIP”, IEEE Press, ICICS, Bangkok,
December 2006, p. 148.

 R. Birke, M. Mellia, M. Petracca, and D. Rossi, “Experiences of
VOIP Traffic Monitoring in Commercial ISP”, International
Journal of Network Management, vol. 20, 2010, p. 339.

 S. Ganguly, V. Navda, K. Kyungtae, A. Kashyap, and S.R. Das,
“Performance Optimizations for Deploying VoIP Services in Mesh
Networks”, IEEE Journal on Telecommunications., vol. 24, 2006,
p. 2147.

 W. Wang; S. L. Chang, O. K. Victor, and H. Li, “Solutions to
Performance Problems in VoIP over a 802.11 Wireless LAN”,
IEEE Transactions on Vehicular Technology, 54, 2005, p. 366.

 K. Walkowiak , “Offline Approach to Modelling and Optimization
of Flows in Peer-to-Peer Systems”, IEEE Press, NTMS, Tangier,
2008, p.1.

 Recommendation G. 726: 40, 32, 24, 16 kbit/s, Adaptive
Differential Pulse Code Modulation (ADPCM,).

 A. Kasprzak, “Packet-switching Wide Area Networks”, WPWR,
Wroclaw, 2004 /in Polish/.

 D. Ohia, L. Koszalka, and A. Kasprzak, “Evolutionary Algorithm
for Congestion Problem in Computer Networks”, Springer,
Lecture Notes of Artificial Intelligence, vol. 5711, 2009, p. 113.

 H. Li and L. Mason, “Estimation and Simulation of Network Delay
Traces for VoIP in Service Overlay Network”, IEEE Press, 2007,
p. 423.

 R. Birke, M. Mellia, M. Petracca, and D. Rossi, “Understanding
VOIP from Backbone Measurements”, IEEE Press, INFOCOM,
2007, p. 2027.

[11] L. Koszalka, D. Lisowski, and I. Pozniak-Koszalka, “Comparison

of Allocation Algorithms in Mesh Sructure with Multistage

Experiments”, Lecture Notes in Computer Science, vol. 3984,

Springer, 2006, p. 58.

127

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

