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Abstract—The combination of MIMO with wideband (WB)
and ultra-wideband (UWB) systems imply many new effects,
which make the conventional channel models developed for
narrowband transmissions to be inadequate for communications
with large bandwidth. In this paper we use the Fourier analysis
of the cross-correlation functions (CCF)s between the space-
time-frequency (STF) transfer functions of two sub-channels
of an outdoor WB/UWB MIMO wireless channel to derive
the power spectral density (PSD) in a stationary scenario. The
assumptions of the stationary scenario transform the MIMO
channel into a Multiple-In Single-Out (MISO) channel and the
PSD is determined when the channel bandwidth is wide or
ultra-wide. The Fourier analysis of the CCF reveals the fact that
the PSD deviates from the U-shaped function, i.e., Clarke/Jake’s
model to a great extent. This deviation is strongly influenced
by the antenna directivity and the channel bandwidth. One
major phenomenon which become stronger when the bandwidth
increases is the frequency selectivity which is obviously larger
in case of UWB channels than in case of WB channels. This
characteristic makes possible the recognition of the type of the
channel for its bandwidth from its PSD only.

Keywords-WB; UWB; MIMO; wireless channel; PSD.

I. INTRODUCTION

The design of high performance wideband (WB) and ultra-
wideband (UWB) multiple-input multiple-output (MIMO)
wireless systems, requires accurate prediction of the impact
of random multipath propagation and reliable MIMO channel
models which take into account the impact of the direction-of-
departure (DOD), direction-of arrival (DOA), time of arrival
(TOA) and the system bandwidth [2], [3].

The cross-correlation function (CCF) of two sub-channels of
an outdoor WB/UWB MIMO wireless channel [1] is used to
determine the Power Spectral Density (PSD) of WB and UWB
channels in a stationary scenario. The mathematical set-up of
the stationary scenario transforms the MIMO channel into a
Multiple-In Single-Out (MISO) channel. We analyzed a sta-
tionary MISO channel as a special case of MIMO channel. The
PSD is derived for outdoor channels, when omnidirectional
and directional antennas are employed at the mobile station
(MS), in a 2D non-isotropic propagation environment. The
CCF expression is based on the space-time-frequency (STF)

channel transfer functions (CTF) which is represented by a
sum of cluster waves over a number of dominant paths . We
derive the PSD using the Fourier analysis of the CCF of MIMO
channels. In the literature are other works which present
results obtained by using the classical approach that applies
the direct Fourier relation between the correlation and the
PSD [2], [3]. The majority of these models employ a specific
geometry for the scatterers around the MS [4], [5], [6]. Based
on this approach each model is just capable to predict the
behavior of that particular propagation scenario [8]. Moreover,
they are not able to investigate the spatial, the temporal, and
the frequency aspects of the wireless channel in one single
model. Alternatively in this paper, we do not assume a certain
geometry to describe the relative distribution of scatterers in
the space. We establish a mathematical relation between the
random time-delay and the random channel-gain associated
with each scattered waveform within each cluster and use
appropriate pdfs for the parameters such as the time-delay,
the DOA and the DOD. As a result the derived PSD is based
on a non-geometry approach, describing the non-isotropic
propagation by using appropriate pdfs for the parameters such
as the time-delay, DOA and DOD. The expression of the PSD
is the Fourier transform of a linear series expansion of a
number of Bessel functions of the first kind. The coefficients
of the expansion of the PSD are described by three categories
of Fourier series coefficients (FSC): a) linear convolution of
the FSC of the antenna pattern, b) the FSC of the azimuth
angular spread and c) the Fourier series expansion (FSE) of
the pdfs describing the non-isotropic environment.

This paper is organized as follows: the 2D channel model is
described in Section 2. In Section 3, the mathematical model
of the CCF it is presented. In Section 4, the PSD equation
is derived and it is numerically evaluated under different
circumstances. Conclusions are presented in Section 5.

II. TWO DIMENSIONAL WB/UWB MIMO MODEL
DESCRIPTION

In this section, we describe the propagation scenario and the
notations used throughout this paper in which superscripts B
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and M indicate the variables at BS and MS sides, respectively.
We also emphasize the differences which exist between WB
and UWB channel models and how these differences are
included in our model.

We consider a moving MS with a constant speed vector
V
(
m
sec

)
and a fixed BS in a 2D non-isotropic propagation en-

vironment where the multipath components arrive in clusters.
The resulted CTF determined by the pth transmitting antenna
element at BS side, the propagation environment and the mth
receiving antenna element at MS side is the summation of the
dominant I paths and L clusters. CTF expression includes the
following elements:

E1) The antenna propagation patterns (APP)s of the pth
and mth antenna of the BS and MS array, GBp (Θil, ω),
GMm (Θil, ω) give the response of the antenna in terms of
the propagation directions and frequency. These functions
implicitly include the effect of mutual coupling caused by the
neighboring antenna elements. Are all periodic functions of
ΘB
il - DOD of the ith dominant path in the lth cluster from

the BS; and ΘM - DOA of the ith dominant path in the lth
cluster to the MS, with the same period of 2π. Therefore, we
represent them by their FSEs as follows:

G (Θ;ω) =
∞∑

k=−∞

GkejkΘ, Gk =
1

2π

∫ π

−π
G (Θ;ω)e−jkΘdΘ

(1)
For the WB channel, it is assumed that the response of

the antenna does not change significantly over the bandwidth
since the relative bandwidth is a small fraction of the central
frequency. UWB antenna patterns are different at different
frequencies and this characteristic should be considered in our
model. In fact this is the main difference between channel
models for WB signals and channel models for UWB signals.
Thus, depending on the signal bandwidth, we will have two
approaches for APP calculation:

a) for WB signals, APP is calculated depending on the
central frequency, ω;

b) for UWB signals, we calculate the APP depending on
the central freuency and by integrating G (Θ, ω) across all the
frequencies of the transmitted signal.

Table I presents the APPs of two WB/UWB antennas. The
helical (directional) and rectangular (omnidirectional) antennas
are often used for antenna arrays and WB/UWB applications
[7]. The Fourier coefficients of omnidirectional antenna can be
simply given by Gk = δk, where δk is the unit impulse [8]. In
this case, the corresponding coefficients, Gk, vanish from the
expression of the CCF and the channel bandwidth influence
can not be determined. Since in the case of WB and UWB
channels, the bandwidth has a great impact on the channel
statistics, it’s necessary to replace Gk = δk with the Gk of
rectangular antennas which allow us to see the influence of
the channel bandwidth.

Table I: 2D Antenna propagation patterns
Antenna Type APP, GW (Θ, ω), ∀Θ ∈ [−π, π)

WB j G0 · ω2c · h · sinΘ

Helical antenna UWB 1
(fH−fL)

∫ fH
fL

j G0 · ω2c · h · sinΘdω

WB j G0
sin( ω2c ·h·sinΘ)

ω
2c ·h·sinΘ

Rectangular
antenna

UWB 1
(fH−fL)

∫ fH
fL

j G0
sin( ω2c ·h·sinΘ)

ω
2c ·h·sinΘ

dω

ω is the channel center frequency, fH , fL are the upper
and lower frequencies of the UWB channel bandwidth, the
parameter h is proportional with the size of the antenna and
G0 is the real and positive constant antenna gain that varies
for each antenna.

Figure 1 shows the FSCs of the propagation patterns for WB
and UWB antennas when h = c

2f . In the case of WB channels
the antenna size is considered at the frequency f = ω

2π = 2.4
GHz and for UWB channels we calculated the antenna size
at f = ω

2π = 10.6 GHz. We observe that for these antennas,
the value of Gk is considerable only for a limited number of
coefficients.
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Figure 1: Normalized Fourier Series Coefficients for WB-
APPs and UWB-APPs, Gk

maxl|Gl| , with antenna size: h = c
2f .

E2) The PDF of the propagation directions, fB
(
ΘB
)

and
fM

(
ΘM

)
, characterizes the non-isotropic environment. One

candidate for the pdf of the non-isotropic AAS called Laplace
distribution is presented in [9]. Another distribution which
characterizes the non-isotropic environment is the von-Mises
pdf[5]. Since these pdfs are periodic functions with period 2π,
in Table II we represent them by the Fourier series coefficients
(FSCs):

fΘ (Θ) =
+∞∑

k=−∞

FkejkΘ, Fk =
1

2π

∫ π

−π
fΘ (Θ) e−jkΘ

(2)
The von-Mises pdf is strongly influenced by the parameter n
which determine the order of the channel non-isotropy. In other
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words n controls the width of DOA of scatter components. The
values of n can be chosen between n ∈ [0,∞). When n = 0,
fΘM (Θ) = 1

2π this is equivalent with isotropic scattering.

Table II: Non-isotropic AAS and corresponding Fourier series
coefficients

PDF,fΘ (Θ), ∀Θ ∈ [−π, π), Fk

Laplace fΘ (Θ) = e

∣∣∣∣−√2Θ
σ

∣∣∣∣
√

2σ

Fk =

e
−
π(
√

2+jkσ)
σ

(
e

2
√

2π
σ −ej2kπ

)
2π(−2+j

√
2kσ)

von-Mises fΘ (Θ) = e
|n∗cos(Θ−µ)|

2πJ0(n)

Fk =
Jk(n)
J0(n)

When n → ∞, fΘM (Θ) = δ (Θ− µ), the propagation
environment is considered extreme non-isotropic scattering
concentrated at Θ = µ, where µ ∈ [−π, π) is the mean DOA
at the MS. For large n, say n > 3 we have a typical non-
isotropic environment [10]. When FSCs are determined the
parameter n appears as the argument of the Bessel functions,
where Jk (·) is the modified Bessel function of the first kind
and J0 (·) is the zero-order modified Bessel function.

Figure 2 compares the FSCs of Laplace and von Mises
pdf (at the MS). For the von-Mises distribution, FSCs are
presented when the propagation environment has two different
orders of non-isotropy.

0 5 10 15 20 25 30 35 40
10

-4

10
-3

10
-2

10
-1

10
0

k

F
k

 

 

Laplace distribution

von-Mises distribution
n = 10n=3

Figure 2: Fourier series coefficients for different AAS pdfs,
to approximate Laplace and von-Mises distributions (with
different orders of non-isotropy n = 3, 10) determined to have
a good match to the real pdf for the non-isotropic propagation

Comparing the distributions in Figure 2, we see that the
necessary number of FSCs for the Laplace pdf is larger than
the necessary number of FSCs for the von-Mises pdf. One can
observe that the required number of the FSCs increases when
the non-isotropic characteristic of the propagation environment
becomes more pronounced.

E3) The most significant effect for WB/UWB channels
is the different attenuation that the sub-bands undergo. This

phenomenon is known as frequency selectivity.
In our model the frequency selectivity of the radio channel

is characterized by the term
(
ωbw
ω

)η
, where ωbw is the signal

bandwidth ωbw = ωH − ωL , ωL, and ωH are the lower and
the upper frequencies, ω is the central frequency. η depends
on the geometric configuration of the objects which produce
signal’s diffraction. Depending on the geometric configuration
of the objects, η can take the values: -1 (diffraction by corner
or tip), 0.5 (diffraction by axial cylinder face), 1(diffraction
by broadside of a cylinder).

E4)The ith path (of the lth cluster) propagation delay, τpm,il
is decomposed into three components [8]: one component
which represents the delay depending on the distances between
BS and MS, and another two components which vary as a
function of the local coordinates of BS and MS:

τpm,il = τil −
(
τBp,il + τMm,il

)
(3)

τBp,il ,
aBp ΘB

il

c
; τMm,il ,

aMmΘM
il

c
(4)

where τi,l is the delay between local coordinates OB or OM ,
τBp,il, τ

M
m,il represents the propagation delays from antenna aBp

to aMm located in their corresponding coordinates OB or OM .
Tl is the cluster arrival rate and is considered to be constant
in time. ΘB

il is the unity vector pointing to the DOD of the
i× lth dominant path from the BS and ΘM

il is the unity vector
pointing to the DOA of the i× lth dominant path to the MS.

E5) When modeling narrowband channels, it was adequate
to define the path gain depending on the path time-delay [8].
This is not sufficient for WB/UWB MIMO channels where the
frequency selectivity phenomenon influences the gain of the
channel. In the ray based propagation models which can be
applied to signals transmitted at high frequencies range, like
WB and UWB signals, can be assumed that one propagation
path has DOA and TOA that does not depend on frequency,
but has a frequency dependent complex path gain. In our
model the multipath gain is expressed as the extension of Friis’
Transmission Formula [11]: gmp,il = 1

2ωτil
.

E6) Assuming plane wave propagation the path phase
shift, ψmp,il, can be accurately approximated by ψil. This is
absolutely a function of the distance between the BS and the
MS and on the signal frequency, and not a function of the
position of different antenna elements in their coordinates [8].
The term ψil = φil − ω (τil + Tl) characterizes the phase
shift depending only on the distance between the BS and
the MS and the signal frequency, and not a function of the
position of different antenna elements in their coordinates
[12]. ψil ∼ U [−π, π) and illustrates the phase contribution
of surrounding scatterers. We express the path phase shift in
the form ej(φil−ω(τil+Tl)).

When putting together the elements described in E1÷E6,
the CTF has the following expression:

hpm (t, ω) =
(ωbw
ω

)η L∑
l=1

I∑
i=1

GBp
(
ΘB
il ;ω

)
GMm

(
ΘM
il ;ω

)
×

×gpm,ilej(φil−ω(τil+Tl)−ωilt−ωτil−ωTl) (5)
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In the resulted CTF each l cluster, and implicitly each i
wave, is associated with a path attenuation gain, gpm,il, a path
phase shift, ψil, a time-varying delay, τpm,il.The Doppler shift
of the ith received wave, within the lth cluster, is represented
by ωil = ω

c V
TΘM

il where V and c are the MS velocity vector
and the speed of light, respectively.

III. TWO DIMENSIONAL CROSS-CORRELATION FUNCTION
OF WB/UWB MIMO CHANNELS

The CCF expression of the TFs, hpm (t1, ω1) and
hqn (t2, ω2), of two arbitrary sub-channels of a MIMO channel
is the result of the following definition:

Rpm,qn (t1, t2, ω1, ω2) , E
[
hpm (t1, ω1)h∗qn (t2, ω2)

]
(6)

In the CCF expression are three dimensions: space, two
pairs of antenna elements (p, m, q, n), time (t1, t2), and cen-
tral frequencies (ω1, ω2). According to these three dimensions,
we call it STF-CCF. The expectation operation is performed
over all introduced random variables. In the presence of
enough number of multi-paths by invoking the central limit
theorem the TF can be considered a Gaussian random process.
Therefore, the above second-order statistics fully characterize
statistical behavior of the channel.

By replacing (5) in (6), regrouping dependent and indepen-
dent random variables, using the elements described in E1-E6
and the results presented in [1] the CCF results in the following
expression:

Rpm,qn = (t1, t2, ω1, ω2)
(ωbw1ωbw2)η

(ω1ω2)η (4ω1ω2)
×Φτ (j (ω1 − ω2)) Φ−(1)

τ (j (ω1 − ω2)) ΦT (j (ω2 − ω1))
×
{
W
(
dBp,q,GBp,k (ω1)⊗ GB∗q,−k (ω2)⊗FBk

)
× W

(
dMm,n,GMm,k (ω1)⊗ GM∗n,−k (ω2)⊗FMk

)}
(7)

where

W (d,Hk) , 2π
∞∑

k=−∞

jkejk∠dHk (ω) Jk

(
|d|
c

)
(8)

dBp , ω1d
B
p , d

B
q , ω2d

B
q , d

B
p,q , ω1a

B
p − ω2a

B
q

dMm , ω1

(
aMm − t1V

)
, dMn , ω2

(
aMn − t2V

)
dMm,n , (ω2t2 − ω1t1)V +

(
ω1a

M
m − ω2a

M
n

)
G(·)

(·,k) and F (·)
k are the kth FSCs of the APP and the

AAS in the corresponding coordinates, respectively. Jk (u) ,
j−k

π

∫ π
0
ej(kξ+ucosξ)dξ is the kth−order Bessel function, ⊗

and |·| denotes linear convolution and the Euclidian norm,
respectively.

The norm of the separation vectors dBp,q , d
M
m,n represent

shifted distances between between ω1a
B
p and ω2a

B
q at the

BS, and between ω1

(
aMm − t1V

)
and ω2

(
aMn − t2V

)
at the

MS respectively. Large distances often result in less STF
correlation as the Bessel functions asymptotically decrease.
Parameters d(·)

(·,·) contain space, time, and frequency separa-
tions between hpm (t1, ω1) and hqn (t2, ω2).

IV. TWO-DIMENSIONAL POWER SPECTRAL DENSITY OF
2D WB AND UWB MISO CHANNELS

We analyze the CCF derived in equation (7) in the frequency
domain in order to see the temporal variations of the wireless
channel. This analysis corresponds to the stationary scenario
when ω1 = ω2 = ω and m = n = 1. This is the case MISO
system. From ∠dM1,1 = ∠V + ∠ (t2 − t1) we get:

Rp1,q1 (t1, t2, ω, ω) = π
ω2η
bw

2ω2η+2
W
(
dBp,q,HBk

)
×

∞∑
k=−∞

jkejk∠V
(
GM1,k (ω1)⊗ GM∗1,−k (ω2)⊗FMk

)
×Jk

(
ω (t2 − t1) |V |

c

)
(9)

Using the Fourier transform of Jk (u), the Fourier transform
of the CCF derived for stationary case versus the time-
difference index, ∆t , t2 − t1 results in the following
equation:

Rp1,q1 (Λ, ω) ,
∫ ∞
−∞

e−jΛ∆tR1p,1q (t1, t2, ω, ω) d∆t

=
ω2η
bw

2ω2η+2
W
(
dMq,p,HBk

) πc
|V |

×
∞∑

k=−∞

(
ejk∠V GM1,k (ω)⊗ GM∗1,−k (ω)⊗FMk

) Tk

(
cΛ
|V |ω

)
√

1−
(

cΛ
|V |ω

)2
(10)

where HBk , GBp,k (ω) ⊗ GB∗q,−k (ω) ⊗ FBk and Λ is a
frequency variable in the interval ω

c |V | < Λ < ω
c |V |.

Note that Rp1,q1 (Λ, ω) = 0 for all |Λ| > ω
c |V |. The

Chebyshev polynomials form a complete orthogonal set on
the interval −1 6 u<1, with respect to the weighting function

1√
1−u2 . Therefore, any bandlimited CCF (on the interval
−ωc |V | 6 Λ 6 ω

c |V |) can be expanded in terms of Chebyshev
polynomials as shown in the above expression.

In the following, RM (Λ)is the last term in 10, and repre-
sents the impact of the non-isotropic environment, the APP,
and the direction of the MS speed:

RM (Λ) ,
∞∑

k=−∞

ejk∠V
(
GM1,k (ω)⊗ GM∗1,−k (ω)⊗FMk

)

×
Tk

(
cΛ
|V |ω

)
√

1−
(

cΛ
|V |ω

)2
(11)

The term RM (Λ), is a PSD that represents the channel
variations caused around or by the MS.

In Figures 3 and 4, this PSD is depicted for WB signals
depending on the central frequency f = 2.5GHz and for
UWB for the bandwidth 3.1 ÷ 10.6GHz, depending on the
following elements:
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i) the non-isotropic propagation environment around the MS
is represented by Laplace and von-Mises distributions,

ii) the WB and UWB antennas employed at the MS side
are represented by the helical and rectangular APPs,

iii) the direction of the MS speed is on the positive x-axis
or the positive y-axis direction.

Analyzing the presented results we observe that three of the
most important parameters which influences the PSD shape
are APPs, the pdf of the propagation directions, the mobile
speed direction and the channel bandwidth. The following
observations can be formulated:
• For both WB and UWB channels, the maximum Doppler

shift is ω
c |V | (i.e., RM (Λ) = 0, if |Λ| > ω

c |V |).
• These results are consistent with the results proposed

in [8], [13], [14]. In [8] it is presented the PSD of a
narrowband channel in non-isotropic 2D propagation. The
results presented in this work are similar to the PSD
shape we obtained for WB channels. Between our results
and the results presented in [8] there are similarities
regarding the U-shape of the PSD but there are also
differences determined by parameters characteristic to
wideband channels like frequency selectivity, higher cen-
tral frequency and APPs typically used for these types of
channels. Comparing the PSD obtained for WB channels
with those obtain for UWB channels, and even with those
obtained for narrowband channels in [8] we can conclude
that the channel bandwidth has a great influence on the
PSD shape. When the bandwidth increases the channel
frequency selectivity also increases and larger variations
can be observed over the PSD anvelope. The increased
frequency selectivity is obviously larger in case of UWB
channels than in case of WB channels. This feature offers
the possibility to recognize the type of the channel for its
bandwidth from its PSD only.

• It is clear that the majority of incoming/outgoing waves
do travel in nearly horizontal directions and when the
APP is directed along the vehicle motion the PSD has an
asymmetrical shape. This is what it can be observed in
our results: in Figure 3 when MS moves in the positive
direction of the x-axis the PSD is larger at positive Λ than
at negative Λ. This phenomenon is the consequence of
the interaction between the beam of the antenna pattern,
the direction of the MS speed, and the distribution of the
propagation directions around the MS. This asymmetry
of the PSD, is also determined by the Doppler spectrum
which concentrates towards positive frequency axis.

• In Figure 4.4 all the PSD curves are symmetrical around
the axis Λ = 0, because the pdf of the path directions
and the APPs are symmetrical around ΘM = 0, and are
perpendicular toward the speed direction.

• Generally speaking the PSD resulted for WB channels is
less fluctuating than the PSD resulted for UWB channels.
These fluctuations in the shape of the PSD of WB/UWB
channels is the consequence of the frequency selectivity
which increases with the signal frequency and signal
bandwidth.
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Figure 3: PSD of WB channels, MS moves in the positive
direction of the x-axis (a,b) and y-axis (c,d), two antenna types
employed at the MS, non-isotropic propagation (Laplacian or
von-Mises distributed) and isotropic environment (uniformly
distributed).
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(b) Rectangular antenna
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(c) Helical antenna
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Figure 4: PSD of UWB channels, MS moves in the positive
direction of the x-axis (a,b) and y-axis (c,d), two antenna types
employed at the MS, non-isotropic propagation (Laplacian or
von-Mises distributed) and isotropic environment (uniformly
distributed) .

V. CONCLUSION

In this paper, we investigated the impact of the non-uniform
distribution of scatterers along with the non-omnidirectional
APPs on the PSD for a 2D-WB/UWB MISO channel. The
PSD is the result of the Fourier analysis of the CCF in a
stationary case. It was observed that the PSD deviates from
the U-shaped function, i.e., Clarke/Jake model. This deviation
depends on the AAS, the employed antennas, and the direction
of the MS speed. The results also prove that the range of
frequencies over which the channel operates as well as the
channel bandwidth have a great impact on the behavior of
these characteristics.
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[1] A.M. Piştea, H. Rad, T. Paladeand A. Moldovan, Cross correlation
function for wideband MIMO channels: derivation and analysis. Pro-
ceedings of the 6th International Wireless Communications and Mobile
Computing Conference, pp. 819-823, July 2010,

[2] R. B. Ertel, P. Cardieri, K.W. Sowerby, T. S. Rappaport, and J. H. Reed,
Overview of spatial channel models for antenna array communication
systems. IEEE Pers. Commun., vol. 5, pp. 10–22, February 1998.

[3] K. Yu. Multiple-Input Multiple-Output Radio Propagation Channels:
Characteristics and Models. Doctoral thesis, Signals, Sensors and Sys-
tems, Royal Institute of Technology (KTH), 2005.

[4] Y. Ma and M. Pätzold, Wideband two-ring MIMO channel models
for mobile-to-mobile communications. Proc. 10th International Sympo-
sium on Wireless Personal Multimedia Communications, WPMC 2007.
Jaipur, India, pp. 380–384, Dec. 2007.

[5] M. Pätzold and B. O. Hogstad, A wideband MIMO channel model
derived from the geometric elliptical scattering model. Processing of
3rd International Symposium on Wireless Communication System, pp.
138–143, Sept. 2006.

[6] C.-C. Chong, C.-M. Tan, D. I. Laurenson, S. McLaughlin, M. A. Beach,
and A. R. Nix. A new statistical wideband spatio-temporal channel
model for 5-GHz band WLANsystems. IEEE J. Select Areas Commun.,
vol. 21, pp. 139–150, Feb. 2003.

[7] A. Balanis. Antenna theory: analysis and design. John Wiley & Sons, 2
edition, 1996.

[8] H.S. Radand S. Gazor, The Impact of Non-Isotropic Scattering and
Directional Antennas on MIMO Multicarrier Mobile Communication
Channels. IEEE Transactions on Communications vol. 56, no. 4, pp.
642-652, Apr. 2008.

[9] Q. Spencer, M. Rice and M. Jensen. A statistical model for the angle
of arrival in indoor multipath Propagation, IEEE Vehicular Technology
Conference, pp. 1415-1419, 1997.

[10] A. Abdi, J. Barger, and M. Kaveh, A parametric model for the distribu-
tion of the angle of arrival and the associated correlation function and
power spectrum at the mobile station. IEEE Trans. Veh. Technol., vol.
51, no. 1, pp. 425–434, May 2002.

[11] K. Haneda and J. Takada, An application of SAGE algorithm for
UWB propagation channel estimation. Proc. IEEE Conf. Ultra Wideband
Systems and Technologies 2003 (UWBST2003), Reston, VA, USA, pp.
483-487, Nov. 2003.

[12] G. D. Durgin, Theory of stochastic local area channel modeling for
wireless communications. Ph.D. dissertation, Virginia Tech, Blacksburg,
VA, Dec. 2000.

[13] J. D. Parson and A. M. D. Turkmani, Characterisation of mobile radio
signals: Base station crosscorrelation. IEE Proceedings I. Communica-
tions, Speech and Vision, 138(6), pp.557–565, December 1991.

[14] J. D. Parson and A. M. D. Turkmani, Characterisation of mobile radio
signals: Model description. IEE Proceedings I, Communications, Speech
and Vision, vol. 138(6). pp. 549–556, Dec. 1991.

41

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-140-3


