
Software Evolution Visualization Tools Functional
Requirements: a Comprehensive Understanding

Hani Bani-Salameh

Department of Software Engineering
The Hashemite University, Jordan

Email: hani@hu.edu.jo

Ayat Ahmad

Department of Software Engineering
The Hashemite University, Jordan

Email: ayat_ahmad1991@yahoo.com

Dua’a Bani-Salameh

Department of Computer Science
JUST, Jordan

Email: duaabs@gmail.com

Abstract—Software is usually going under many changes during
its life time cycle. Following up software changes and enhance-
ments is an essential process for many reasons: it increases the
complexity of software projects, and affects the software structure
and quality. Software visualization is considered as one of the
comprehensive techniques that developers make use of daily
in order to analyze and understand how the software evolves
and changes over time. To achieve this, developers use software
evolution visualization (SEV) tools, and face difficulties find-
ing/identifying the most suitable tool. The goal of this study is to
identify generic functional requirements for software visualization
tools, in order to help developers choose their tools based on the
supported features/requirements. The main focus is on tools that
target softwares’ evolution. The research methodology is based on
a systematic review that aims to summarize the current research
on software SEVs and to answer a question on “what are the main
functional requirements for software evolution visualization tools
that have been identified in the literature?” The most common
functional requirements and activities that have been identified in
this study are views, detailed-on-demand, filter, select, re-arrange,
and comparison.

Keywords–Evolution; Software Evolution Visualization; Tools.

I. INTRODUCTION

Software evolution is an essential topic in software engi-
neering and maintenance [1]. Software continually changes in
response to any changes in (1) the requirement, (2) environ-
ment to adapt new technology, and (3) to repair errors. With
increasing the size and complexity of the software systems,
following up the continual software changes is not an easy task.
Software engineers need to understand how software evolves
over time to keep the software operational with a high quality.
Also, this is necessary to present its state and to predict its
future development.

Software visualization is a powerful technique for software
comprehension by mapping different software aspects with
visual properties such as position, size, shape, and color [2][3].
It is shown that it can be effective to understand and analyze
software evolution. There are many SEV tools. Such tools
aim to visualize the version history of software systems by
visualizing history of the software artifact such as - source
code changes, test files, and documentation. No matter what
is the source of visualization or in what level (source code,
documentation, or other) it is implemented . These tools
have common requirements and functionalities, and have been

studied to extract a set of common functional requirements for
SEV tools.

Requirements identification is the base and the start point
for building any software project [4]. Also, it is important for
the construction of SEV tools. Each tool uses a different tech-
nique to represent different types of changes, have particular
advantages, and is facing different problems and challenges.

SEV tools usually deal with and process a huge amount
of data that is needed to visualize in order to follow software
changes and the impact of these changes [5]. A good user in-
terface design for SEV tools involves multiple user interaction
techniques which give users the ability to interact with and
represent data such as multiple views, select, filter and other
features, that can help to overcome challenges and increase
user’s satisfaction. Also, interaction techniques can affect the
quality of SEV tools by allowing higher flexibility and ex-
tensibility [6]. Studying such tools allows us to specify more
important features and functional requirements that increase
the users’ satisfaction, and humans’ understanding for software
evolution in specific.

The main goal of this study is to identify a list of generic
functional requirements for SEV tools. Defining requirements
for such tools can be used as an indicator to ensure if these
tools meet the quality attributes, enhance human perception,
and meet user’s expectations. Also, this study presents the
current state of such tools which represents the first step when
building a new SEV tool, and in defining the requirements for
the future.

The remaining part of this paper is organized as follow.
Section II describes the research approach that have been
followed when conducting the review. Section III discusses
the functional requirements uncovered by this study. Section
IV provides a brief discussion. Finally, Section V presents the
future work and concludes the paper.

II. METHOD

To identify the functional requirements for the SEV tools,
we started our study by identifying a research question as
follows.

“What are the main functional requirements for the
software evolution visualization tools that have been identified
in the literature?”

196Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Then, we started to collect papers that have clear demon-
stration for the used features and interaction techniques. The
total of all surveyed papers is 39.

A list of all interaction techniques is introduced, then we
started to analyze the papers and summarize most common set
of techniques used.

Next, similar features are grouped (categorized) based on
what tasks they perform, and what are the goals from those
operations. Different interactions/features techniques are used
to perform similar tasks and similar goals.

During the analysis of the SEV tools, the focus was on what
important features that help developers to better understand
the software evolution process. For this reason, we focused on
what users achieve by using such operations rather than how.

III. FUNCTIONAL REQUIREMENTS

Following is a list of six functional requirements that have
been found common in most SEV tools (see Table I):

• Views: show different representation.
• Details-on demand: show more information/details.
• Filter and Search: show something conditionally.
• Select: marks something as point of interest.
• Re-arrangement: shows different arrangements of the

data sets (e.g. sort, cluster, and aggregate).
• Comparison: shows the differences between different

data sets.

TABLE I. MOST COMMON FUNCTIONAL REQUIREMENTS.

Method/Functionality Ways to Visualize
Views

• Different Granularity Levels
• Increase Abstraction Level
• Dependencies & Relationships
• Others

Details-on-Demand
• Zoom
• Expand
• Mouse Cursor Hovers

Filter & Search
• Uses checkbox
• Change color, and change repre-

sentation

Select Select and highlight data sets.
Re-arrange Analyze changes in different ways such as

aggregate, cluster and sort.
Comparison Comparing changes that occur from time to

time, and between different software versions.

A. Views: to show different representation
SEV tools provide different visual representations of the

target software history (e.g. different colors, size, and shapes
with animation). Multiple views is an effective technique that
helps software engineers to understand how different parts of
the software evolved and changed in different perspectives. It
provides flexibility to analyst to directly find views that fit their
goals.

Multiple views are used in SEV tools to show how changes
occur in different ways as the following:

• In different granularity levels of the system: an
example of multiple views is provided by Xie et
al. who define multiple views of the data history
changes at different granularity levels (e.g. system
level, file(class) level, method level, and line level)
by supporting navigation within views [7].

• To increase abstraction level: the DEVis [8] tool uses
multiple windows/views to increase the abstraction
level. When a part or icon is selected a more detailed
window appears.

• Clear insight about dependencies and relation-
ships: using different representations which provide
the user with a clear insight about dependencies and
relationships between software artifacts, and to iden-
tify which parts of the project are changed together
(see ChronoTwigger [9]).

• Different types of visualization (chart with his-
togram): multiple views can be used to represent how
data changed (e.g. charts with histogram), in order to
give insight into evolutionary trends and phenomena
governing software growth (see SEANet tools [10],
AniMatrix [11]). They help to give users with the
ability to navigate/travel/fly within views by selecting
or clicking a specific node.

B. Details-on-Demand: Show More Information and Details.
Most SEV tools provide users with the ability to get more

details when needed about the presented data such as: number
of revisions in a specific date, type of changes occurred,
and number of nodes in a specific version. User interaction
techniques used to get more details are (1)Zooming (Zoom-
in, Zoom-out), (2)Expand, and (3)Mouse Cursor Hovers over
a data item. Using zoom-out users can change scale of data
overview for large data sets, or decrease it using zoom-in to
get detailed view for small data sets [12]. Examples such as
(AniMatri [11], SEANet [10], and DEVis [8]).

C. Filter and Search: Show Something Conditionally.
Filter used in SEV tools which allows users to control the

displayed data based on a specific condition (query), where
users specify conditions or ranges (e.g. based on type, range
of specific duration time, or another criteria). Only the data that
satisfy the condition is presented and the other data is hidden
from the view or shown in a different way or different color.
ClonEvol [13] uses checkbox to filter by node’s type (attribute,
class, and file), and by type of operation (add, delete, modi-
fied). ChronoTwigger [9] allows to show only the node(file)
that have co-change/changed within selected timespan, and
hides nodes that do not have any change event. Filter is used in
AniMatrix [11], that allows users to control data presented in
history navigator, is using filter by interface name or by type
of coupling in order to show classes that have been changed
over time, and to show different types of coupling. From the
above, it appears that user interaction techniques implemented
in most of the SEV tools are: checkbox, change color, and
change representation.

D. Select: Mark Something as Point of Interest.
SEV tools which provide users with the ability to select

data sets and highlight them, to facilitate, follow up, and track
how large data changed and evolved over time, and to identify

197Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

locations of more important data that have co-change or most
impact change. ChronoTwigger [9] allows users to select a
node or set of nodes on the 2D visualization to highlight the
set of corresponding/related nodes in 3D view.

E. Re-arrangement: Show Different Arrangement of Data Sets.

SEV tools which provide users with the ability to change
the way of representation of software entities in new arrange-
ments, and group it in different perspectives. Re-arrangement
allow developers to analyze changes in different ways such
as aggregate, cluster, and sort. Storyline tool allows users
to aggregate developer in one large clusters, and connects
everyone to everyone else [14]. iVIS [15] allows to re-arrange
the entity layout of the visualizations by selecting software
entities and dragging them around. This allows the developers
to analyze co-changes between selected entities in different
groups, and can give more attentions for a specific entity by
the developer.

F. Comparison: Show the Differences Between Different Data
Sets.

Comparing changes that occur from time to time, and be-
tween different software versions is an essential requirement in
the SEV tools, that helps developers to analyze the differences
between software versions and to identify the state of the
system. Some tools provide comprehensive techniques in the
single view using color and animation.

Comparison mode used in eCITY tool [16] which allows
to compare between two different dates by using animation,
and sequentially insert the new components. This allows users
to compare the states of specific dates side by side. Salamanca
et al. [17] present a tools that provides a software structures
view, and allows a side-by-side comparison of the evolving
package or class hierarchy structures from the selected project
revisions in circular timeline. Other examples appear in [18]
and [19].

G. Other Requirements

Following is a list of requirements mentioned by re-
searchers but not commonly used.

• Source code presentation: which gives users the ability
to access the underling source code [11][17][21].

• Panning [11]22], Brushing, Collapse [22][23], manip-
ulate [9][22], move up and down [8][18][24].

The SEV tools can be divided into two categories. The
categorization is based on the (1)type of visualization that is
used (at which level such as Artifacts and Structure Evolution),
and (2)method to represent the techniques used to visualize
the software evolution (See Figure 1). Figure 1 shows that
the visualization tools are categorized either based on the
type of visualization they support (eg. visualizing software
artifacts and structure) or the methods of visualization (eg.
views, filters, comparison, etc.).

This study does not pay attention to what are the used types
of SEV tools. The main focus is on getting generic functional
requirement to guide all users either researchers, developers, or
maintainers to better understand software’s evolution process.

Figure 1. Classification of SEV Tools.

IV. DISCUSSION

It is difficult to find all interaction technique used in
the SEV tools. The proposed functional requirements for the
SEV tools are defined based on features supported in most
of the existing tools. The supported features can help users
to better understand software changes and evolution. This
section discusses more issues about the proposed functional
requirements.

Interactive facilities provided to the user are essential to the
quality of the SEV tools. They support higher flexibility and
extensibility [6], where users not only can see information but
also can interact with it to reduce the effort needed for better
understanding, and supports the ability to faster change context
of information as needed in powerful ways.

Different visual attributes such as color, animation and

198Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

different shape “way of representation” are used by SEV
tools requirements to enrich user interface and increase user
satisfaction. Also, animation is used to enable to analyze large
information in a usable way. It allows to compare instances
sequentially, show dependencies between software artifacts.
Also, it illustrates dynamic behaviors for software evolution.

Some interaction techniques are used in the SEV tools
to fulfill the user’s multiple intents, and it is possible to fit
more than one requirement/feature in the tool. For example,
comparison features are intended to show differences between
specific data sets; filters feature helps users to compare their
data sets, the re-arrange feature allows to compare two groups,
and the multiple views feature allows users to compare be-
tween different views of the software. Also, multiple views
are used to increase the abstraction level in order to give users
the ability to get more details as needed.

We believe that the proposed generic functional
requirements for SEV tools is useful and has several
advantages. First, they can be used as a first step when
building new SEV tools, and in order to examine whether
they meet users’ needs. Second, they can be used to understand
what are the user’s needs, and help to find new techniques
that might help to better understand the software evolution
process.

V. CONCLUSION AND FUTURE WORK

This research project identifies generic functional
requirements for the software evolution visualization tool by
studying the existing literature. The main goal for identified
requirement for software evolution visualization tool is to find
more essential requirements that help all stockholder to better
understand the software evolution process. The six reported
functional requirements are: views, which provide multiple
representations for changes in different granularity level,
different version, for different type of artifact; detailed-on
demand requirements provide the user with more information
than needed such as number of revisions, number of nodes in
a specific version, and so on, by mouse hover and zoom-in,
zoom-out operation; filter and search which has the ability
to change data presented based on specific condition(e.g.
a developer that wants to analyze changes that occur in
a specific time stamp and hide the other changes). Select
requirements give the user the ability to mark specific things
as needed. Re-arrange feature is considered as a good way
to group presented data in different perspectives by sorting
or clustering. Finally, Comparison is the last suggested
requirement in this study. It gives the user the ability to make
comparisons, and allows them to notice differences between
software versions for different types of entities in different
level.

Further study can be performed in the future in order to
expand our list of functional requirements. Also, the study
can be extended to gather feedback from developers, and
domain experts which helps to identify a list of non-functional
requirements for the SEV tools. This can help developers and
designers to build a generic software quality model for such
tools.

REFERENCES
[1] R. Lima, A. Torres, T. Souto, M. Mendona, and N. Zazworka, “Software

evolution visualization: A systematic mapping study”, Information
Software Technology, vol. 55, no. 11, pp. 1860–1883, 2013.

[2] D. Gracanin, K. Matkovic, and M. Eltoweissy, “Software visualization,”
Innovations in Systems and Software Engineering, vol. 1, no. 2, pp.
221-230, 2005.

[3] J. Heer, B. Shneiderman, and C. Park, “Interactive Dynamics for Visual
Analysis: A Taxonomy of Tools that Support the Fluent and Flexible
Use of Visualizations,” Queue - Micoprocessors, vol. 10, no. 2, pp.
30-55, 2012.

[4] H. M. Kienle and H. A. Muiller, “Requirements of Software
Visualization Tools: A Literature Survey,” In Proceedings of the 4th
IEEE International Workshop on Visualizing Software for Understand-
ing and Analysis (VISSOFT), Canada, 2007, pp. 2–9.

[5] S.-L. Voinea. “Software Evolution Visualization,” PhD thesis, Technis-
che Universiteit Eindhoven, 2007.

[6] M. Lanza, “CodeCrawler-Lessons Learned in Building a Software
Visualization Tool,” In Proceedings of the European Conference on
Software Maintenance and Reengineering, pp. 409–418, 2003, IEEE
Press.

[7] X. Xie, D. Poshyvanyk, and A. Marcus, “Visualization of CVS Repos-
itory Information,” In Proceedings of the 13th Working Conference
Reverse Engineering., 2006, pp. 231-242.

[8] J. Zhi and G. Ruhe, “DEVis: A Tool for Visualizing Software Document
Evolution,” In Proceedings of the First IEEE Working Conference on
Software Visualization, Eindhoven, Netherlands, 2013, pp. 1-4.

[9] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani,
“ChronoTwigger: A Visual Analytics Tool for Understanding Source
and Test Co-Evolution,” In Proceedings of the 2nd IEEE Working
Conference on Software Visualization (VISSOFT). Victoria, Canada.
2014, pp. 117–126.

[10] T. Chaikalis, G. Melas, and A. Chatzigeorgiou, “SEANets: Software
Evolution Analysis with Networks,” In Proceedings of the 28th IEEE
International Conference on Software Maintenance (ICSM), Trento,
Italy, 2012, pp. 634-637.

[11] G. Melanc, “AniMatrix: A Matrix-Based Visualization of Software
Evolution,” In Proceedings of the Second IEEE Working Conference
on Software Visualization (VISSOFT), 2014, pp. 1–10.

[12] J. S. Yi, Y. Kang, J. T. Stasko, and J. A. Jacko, “Toward a Deeper
Understanding of the Role of Interaction in Information Visualization,”
IEEE Transactions on Visualization and Computer Graphics (TVCG),
vol. 13, no. 6. Presented in InfoVis 2007, Sacramento, California,
October 28 - November 1, pp. 1224–1231.

[13] A. Hanjali, “ClonEvol: Visualizing Software Evolution with Code
Clones,” In Proceedings of the First IEEE Working Conference on
Software Visualization (VISSOFT), 2013, pp. 1-4.

[14] M. Ogawa, “Software Evolution Storylines,” 2010,
URL:http://www.michaelogawa.com/research/storylines/, [accessed:
13–07–2016].

[15] A. Vanya, R. Premraj, and H. van Vliet, “Interactive Exploration of
Co-evolving Software Entities,” In Proceedings of the 14th European
Conference on Software Maintenance and Reengineering (CSMR),
2010, pp. 260-263.

[16] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “eCITY: A Tool
to Track Software Structural Changes using an Evolving City,” In
Proceedings of the 29th IEEE International Conference on Software
Maintenance (ICSM), 2013, pp. 492–495.

[17] A. Gonzalez, R. Theron, A. Telea, and F. J. Garcia, “Combined
Visualization of Structural and Metric Information for Software
Evolution Analysis,” In Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, ACM, 2009, pp. 25-30.

[18] O. Benomar and P. Poulin, “Visualizing Software Dynamicities with
Heat Maps,” In Proceedings of the First IEEE Working Conference on
Software Visualization (VISSOFT), 2013, pp. 1-10.

[19] Q. Tu and M. W. Godfrey, “An integrated approach for studying archi-
tectural evolution,” In Proceedings of the 10th International Workshop
on Program Comprehension, 2002, pp. 127-136

[20] M. Burch, C. Vehlow, F. Beck, S. Diehl, D. Weiskopf, and I. C. Society,
“Parallel Edge Splatting for Scalable Dynamic Graph Visualization,
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, 2011, pp. 2344–2353.

199Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[21] M. Lungu and M. Lanza, “Exploring Inter-Module Relationships in
Evolving Software Systems,” In Proceedings of the 11th European
Conference on Software Maintenance and Reengineering, Amsterdam,
2007, pp. 91–102.

[22] S. Boccuzzo and H. C. Gall, “Multi-Touch Collaboration for Software
Exploration,” International Conference on Program Comprehension,
Portugal, 2010, pp. 30–33.

[23] M. D. Ambros and M. Lanza, “A Flexible Framework to Support
Collaborative Software Evolution Analysis,” In Proceedings of the 12th
IEEE European Conference on Software Maintenance and Reengineer-
ing, 2008, IEEE CS Press, pp. 3-12.

[24] M. D. Ambros and M. Lanza, “BugCrawler: Visualizing Evolving
Software Systems,” In Proceedings of the 11th European Conference
on Software Maintenance and Reengineeringpp, Amsterdam, 2007, pp.
333–334.

200Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

