
Design and Implementation of Business Logic Layer Object-Oriented Design

versus Relational Design

Ali Alharthy
Faculty of Engineering and IT

University of Technology, Sydney

Sydney, Australia

Email: Ali.a.alharthy@student.uts.edu.au

Abstract—Object-oriented programming has become one of the

mainstream programming paradigms in software engineering,

whereas relational models are predominant in commercial

data processing applications. There is strong competition

between these models for dominance in the building of modern

applications, especially after the emergence and spread of

object-relational mapping technology. This paper addresses

the question of whether the object-oriented approach is better

than the traditional approach in terms of flexibility with

respect to changing requirements.

Keywords-object-oriented design; relational design; requirement

changes; maintenance

I. INTRODUCTION

Currently, most business logic layers of modern

applications are constructed using either an object-oriented

model or a relational model. The object-oriented model is

based on software engineering principles such as coupling,

inheritance, cohesion, and encapsulation, whereas the

relational model is based on predicate logic and set theory

principles [1]. The object-oriented model chains the building

of applications within objects that have both data and

behavior. The relational model supports the storage of data in

tables and the treatment of that data with data manipulation

language within the database through stored procedures and

externally through structured query language. The relational

model is currently used in many database systems [1].

Object-oriented technology is also commonly used in

database application development. The difference between

the two technologies is called the object-relational

impedance mismatch [2][3]. In particular, when objects need

to be stored in a relational database, object-relational

mapping (ORM) appears to play an important role in

overcoming the problem of impedance mismatch. ORM is a

new technology that allows applications to access relational

data in an object-oriented manner [4][5]. With the

widespread use of ORM technology, domain objects are built

as objects, and the application logic manipulates these

objects in a pure object-oriented manner. The critical issue

that arises is whether such an object-oriented model for

business logic layers is a good choice in general. Proponents

of the object-oriented approach have tended to assume that

an object-oriented business model will make the system

easier to maintain, easier to extend, and easier to reuse.

The object-oriented approach has been advocated as a

tool for improving developer productivity and software

quality [6][7]. Moreover, it has been suggested that

development using object-oriented programming enhances

productivity by simplifying understandability, program

design, and maintenance in comparison to traditional

approaches [8].These studies have maintained that using the

object-oriented approach would help reduce the maintenance

cost of software. However, there are few complete

experimental results that support the claim that there is an

advantage in the maintainability of programs developed with

the object-oriented approach over those developed with

traditional approaches [7][9].

The objective of this paper is to extend this body of

knowledge by critically examining this assumption and to

carefully compare the applicability and flexibility of the

object-oriented system to those of the relational system. The

findings from this project will be significant for practical

applications in which the business logic layer is implemented

in an object-oriented fashion, which is a growing trend in

enterprise computing.

The rest of the paper is organised as follows. Section II

presents the motivation for the study. Section III outlines the

investigation method. Sections IV, V, VI, and VII present the

case studies, and Section VIII reports the experimental

results. Section IX concludes the paper.

II. MOTIVATION

Today, changing requirements have become a fact of life

for software developers. Many studies have shown that

changes in software were one of the reasons why various

projects failed. For example, a study by the Standish Group

found that only 37% of information technology projects are

considered successes and that 21% of projects are considered

failures [10]. The remaining 42% are considered

„challenged‟—defined as late, over budget, or having failed

to meet expectations. Requirement changes are the major

cause of this phenomenon. Such changes can occur during

the development and maintenance phase in order to

accommodate user and business requirements. Therefore,

there is a need to identify a flexible approach that can deal

with requirement changes.

However, ORM is very popular and widely used.

According to Russell [3], in order to access data stored in

relational databases, most modern applications are built

using ORM technology rather than the traditional approach.

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

It has also been argued that using ORM tools can help reduce

project costs. Moreover, proponents of the object-oriented

approach have tended to assume that an object-oriented

business model will make the system easier to maintain,

easier to extend, and easier to reuse. On the other hand,

proponents of the traditional approach have argued that not

all the world must be handled in objects. In addition, they

have maintained that there is some native incompatibility

between ORM code and databases. They also maintain that

although object-oriented development promises to reduce

maintenance effort, these promises are not based on reliable

experimentation [11]. Indeed, there is a significant lack of

research on whether the object-oriented approach is better

than the traditional approach in terms of flexibility in the

face of requirement changes.

III. INVESTIGATION METHOD

The investigation is performed using a number of case

studies and by introducing a variety of requirement changes

in order to evaluate how the two approaches cope with them.

For the implementation, we used Java Database Connectivity

(JDBC), a representative relational system, and Hibernate, a

representative ORM framework, as well as MYSQL, a

relational database. All of these are popular open-source

products. In order to measure the overall implementation

effort associated with JDBC and Hibernate due to

new/changed requirements, we used the code size produced

in the completion of a task—the code size was measured in

lines of code and takes into account lines added, modified,

and deleted—as well as the time required to complete a task.

To measure the code size, we used a free tool to compare the

source code files after each implementation. The case

studies implementation has been done by a developer who

has six years experience in Web and Database applications

development.

IV. FIRST CASE STUDY

We chose a simple case study to make an initial

comparison of the effort involved in implementing the two

technological approaches and changing them in response to

requirement changes.

A. Problem statement

 A company requires a Car Park application to maintain

information about employees and their parking permits. The

car park has a number of parking spots, which are divided

into three areas: A, B, and C. Employees who want a permit

have to pay a fee on a quarterly basis, which will be

automatically deducted from their salary. The purpose of the

Car Park application is to help the car park manager process

the employees' applications for parking permits. Each

employee has an ID, a name, and a phone extension. Each

permit has a permit number, the car's registration number,

and the section where the car can be parked. An employee

can have at most two permits. Employees may change their

extension in the course of their employment. When

employees get a new car and want to use it instead of the old

one, they have to discontinue the current permit and apply

for a new one.

B. Comparison of the findings of the initial construction of

the two approaches

TABLE I. FINDINGS OF THE INITIAL CONSTRUCTION

Progra

m

Files SLOC
Total/

Lines

ET

H
ib

er
n

at
e

CPSystem.java 141

251

4 h 30

min

Permit.java 47

Employee.java 47

HibernateUtil.java 16

Employee.hbm.xml 17

49 Permit.hbm.xml 14

Hibernate.cfg.xml 18

Total 300

JDBC CPSystem.java 283 283 3 h

 Table I summarises the findings of the initial

construction of the Car Park system using the two

approaches. The table shows that even though there are no

significant differences between the two approaches with

respect to the effort measured by size of source code, the

Hibernate approach took more time than the JDBC approach.

In fact, with Hibernate we had to deal with six files, whereas

with JDBC we had to deal with only one file. Therefore, the

Hibernate approach took about 4.3 h, compared to 3 h for

JDBC.

C. Impact of requirement changes on the two approaches

Because requirements change frequently in practice, it is

useful to see how different approaches cope with

requirement changes. For the initial investigation regarding

requirement changes, we made the following change: in the

Terminate Permit use case, instead of deleting the permit (as

we did before), we labelled the permit as terminated.

D. Comparison of findings after first requirement change

TABLE II. FIRST REQUIREMENT CHANGE

Progr

am

Files V1 V2 A M D S

ET

H
ib

er
n

at
e

CPS.java 141 149 10 4 2 16

40

min

Permit.java 47 65 8 0 0 8

Emp.java 47 47 0 0 0 0

Emp.hbm.xml 17 17 0 0 0 0

Perm.hbm.xml 14 15 1 0 0 1

Hiber.cfg.xml 18 18 0 0 0 0

HiberUtil.java 16 16 0 0 0 0

Total 300 327 19 4 2 25

JDBC CPSy.java 283 283 0 3 0 3
10

min

V1 = before the change; V2 = after the change; A = add; M = modify; D =

delete; S = summation of A,M, and D; ET = estimated time

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

As Table II shows, there are significant differences

between the two approaches with respect to the

implementation effort measured by the size of the source

code. The implementation of the new requirement changes

with Hibernate required a total of 25 lines of code, compared

to only 3 lines of code using JDBC. In addition, the

implementation of the new requirement changes with

Hibernate took about 40 min, whereas it took only 3 min

with JDBC. Indeed, it is evident that JDBC offered more

flexibility with regard to both time and effort.

E. Further impact of requirement changes on the two

approaches

For the second requirement change, suppose a company

needs to distinguish between full-time and part-time

employees. Part-time employees are paid an hourly rate,

whereas full-time employees are assigned a salary.

TABLE III. SECOND REQUIREMENT CHANGE

Pro

gra

m

Files V1 V2 A M D S

ET

H
ib

er
n

at
e

CPS.java 149 154 5 2 0 7

1 h

Permit.java 65 65 0 0 0 0

Emp.java 47 47 0 1 0 1

PartTime.java - 20 20 0 0 20

FullTime.java - 20 20 0 0 20

Emp.hbm.xml 16 16 0 0 0 0

Perm.hbm.xml 17 24 7 0 0 7

Hiber.cfg.xml 15 15 0 0 0 0

HiberUtil.java 18 18 0 0 0 0

Total 327 379 52 3 0 55

JD

BC
CPSy.java 283 296 13 3 0 16

20

min

As Table III shows, the new requirements have had a

greater impact on the program implemented through

Hibernate, in terms of both the time and the effort required to

implement these changes. The implementation of the new

requirement changes with Hibernate required a total of 55

lines of code, in contrast to JDBC, which required only 16

lines. This difference represents a nearly 3:1 ratio in quantity

of code. Although one of the key benefits of inheritance is

minimising the amount of duplicate code in an application by

sharing common code amongst several subclasses, the

majority of new code is due to inheritance code. Moreover,

the implementation with Hibernate took about 1 h, compared

to only 20 m using JDBC. As a result, increasing the number

of classes that need to be persisted automatically can lead to

increased levels of effort and time.

V. SECOND CASE STUDY

We made the second case study more complicated than
the first in order to produce more statistics with which to
compare the two approaches. We also made changes that
reflect the change in business policy, that is, allowing more
than one kind of item to be stored at a shelf location. This

change in policy required a change in the structure of the
classes. It will provide more data with which to compare the
two approaches.

F. Problem statement

A database is needed to maintain information about the
items stored in various warehouses of a company. Design a
relational database, which can store the information
contained the following:

1. Each warehouse has a phone (not shown) to contact

the staff at the warehouse.

2. Shelf locations are of two types: single access and

double access.

3. The present policies require that each shelf location,

at any time, can be used to store only one kind of

item.

TABLE IV. FINDINGS OF THE INITIAL CONSTRUCTION

Program

Files SLOC
Total/

Lines

ET

H
ib

er
n

at
e

PartInWareHouse.java 141

300

4 h

Part.java 30

Warehouse.java 31

ShelfLocation.java 45

ShelfLocationPK.java 37

HibernateUtil.java 16

Warehouse.hbm.xml 12

58
Part.hbm.xml 13

ShelfLocation.hbm.xml 15

Hibernate.cfg.xml 18

Total 358

JDBC PartInWareHouse.java 202 2.3 h

Table IV summarises the findings for implementing the

Parts in Warehouses system with the two approaches.

Hibernate required a total of 358 lines of code, in contrast to

JDBC, which required 202 lines. In addition, Hibernate

required about 4 h, whereas JDBC required 2.3 h. Hibernate

clearly required more effort and time than JDBC.

G. Impact of requirement changes on the two approaches

The storage rules change to allow more than one kind of

item to be stored at a shelf location. This entails that the

cardinality relationship between the two entities Shelf

Location and Items must be changed to one-to-many.

H. Comparison of the findings after first requirement

change

As shown in Table V, the new requirements have had a

greater impact on the program implemented through

Hibernate, in terms of both the time and the effort required to

implement these changes. The implementation of the new

requirement changes with Hibernate required a total of 139

lines of code, in contrast to JDBC, which required only 38.

This difference represents a nearly 4:1 ratio in quantity of

code. Indeed, the source of increase in code quantity was due

to the addition of an item class with its composite key, which

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

is not necessary in JDBC. Moreover, the implementation

with Hibernate took about 1.30 h, compared to only 30 min

with JDBC.

TABLE V. FIRST REQUIREMENT CHANGE

Pro

gra

m

Files V1 V2 A M D S

ET

H
ib

er
n

at
e

WHouse.java
14

1

15

5
14 5 0 19

1.30
h

Part.java 30 30 0 0 0 0

Whouse.java 31 31 0 0 0 0

SLoc.java 45 32 2 6 15 23

SLocPK.java 37 37 0 0 0 0

Item.java - 29 29 0 0 29

ItemPK.java - 37 37 0 0 37

HibUtil.java 16 16 0 0 0 0

Who.hbm.xml 12 12 0 0 0 0

Part.hbm.xml 13 19 6 0 0 6

SLo.hbm.xml 15 20 5 2 1 8

Item.hbm.xml - 16 16 0 0 16

Hiber.cfg.xml 18 19 1 0 0 1

Total 358 453 110 13 16 139

JDB

C
WHouse.java

20

2

21

8
16 20 2 38

40

min

VI. THIRD CASE STUDY: ISSUE OF RELATIONAL

REPRESENTATION/NAVIGATION

The representation of the relationship is a fundamental

issue. In fact, the difference between hierarchy, network,

relational, and object-oriented databases is the way in which

the relationship is represented. Therefore, if we construct

the application with JDBC, we will not experience the

navigation problem, whereas the problem arises when the

application is constructed with ORM. Thus, we have to

decide how to represent the navigation objects.

I. Problem statement

A distribution company supplies various kinds of

products to customers on a daily basis according to the

standing orders placed by the customers. The company wants

to set up a system to maintain information about the products

that the company can supply, its customers, and the standing

orders.

J. Comparison of the findings of the initial construction of

the two approaches

Table VI summarises the findings for implementing the

Standing Order system with the two approaches. Hibernate

required a total of 268 lines of code, in contrast to JDBC,

which required 141. In addition, Hibernate required about 3

h, whereas JDBC required 2 h. Thus, Hibernate required

more effort and time than JDBC.

TABLE VI. FINDINGS OF THE INITIAL CONSTRUCTION

Progra

m

Files SLOC
Total/

Lines

ET

H
ib

er
n

at
e

SOSystem.java 86

212

3 h

Customer.java 22

Order.java 47

Product.java 41

HibernateUtil.java 16

Customer.hbm.xml 10

56
Order.hbm.xml 15

Product.hbm.xml 12

Hibernate.cfg.xml 19

Total 268

JDBC SOSystem.java 141 141 2 h

K. Impact of requirement changes on the two approaches

We changed the navigation rule between the objects

from unidirectional to bidirectional association.

TABLE VII. FINDINGS OF THE INITIAL CONSTRUCTION

Prog

ram

File Name V1 V2 A M D S

ET

H
ib

er
n

at
e

SOSys.java 86 86 0 0 0 0

30

min

Cust.java 22 32 10 0 0 10

Order.java 47 47 0 0 0 0

Product.java 41 51 10 0 0 10

Htil.java 16 16 0 0 0 0

Cu.hbm.xml 10 14 4 0 0 4

Or.hbm.xml 15 15 0 0 0 0

Pr.hbm.xml 12 16 4 0 0 4

Hib.cfg.xml 19 19 0 0 0 0
Total 268 296 28 0 0 28

JDBC SOSys.java 141 141 0 0 0 0 0

As Table VII shows, the new requirements have had a

greater impact on the program implemented through

Hibernate, in terms of both the time and the effort required

to implement these changes. The implementation of the new

requirement changes with Hibernate required a total of 28

lines of code and 30 min, in contrast JDBC, which did not

require any changes, because navigation is not an issue for

it.

VII. FOURTH CASE STUDY

We made this case study even more complicated and

realistic in order to produce much more statistical data with

which to compare the two approaches. The case study also

highlights the issue of relationship representation and

illustrates that the object-oriented approach is more sensitive

to the class model than the relational model.

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

L. Problem statement

Eastern Suburb Gymnastics (ESG) is a regional

organisation that is responsible for running competitions

between the gymnastics clubs in eastern suburbs of

Melbourne. The competitions are organised into seasons.

ESG needs a system to help organise and maintain the

records of the competitions that take place in a single

season. The system, in essence, needs to store information

on the gymnasts, their clubs, the organisation of the

competitions, and the competition results.

M. Comparison of the findings of the initial construction of

the two approaches

TABLE VIII. FINDINGS OF THE INITIAL CONSTRUCTION

Progra

m

File SLOC
Total/

Lines
ET

H
ib

er
n

at
e

GScoringSystem 237

810

6 h

Club 44

Competition 24

CompetitionPk 35

Division 60

EventPk 46

Event 37

EventType 58

Gymnast 60

Judge 40

Meet 52

TeamPk 46

Team 33

Score 22

HibernateUtil 16

Club.hbm.xml 13

177

Competition.hbm.xml 12

Division.hbm.xml 15

Event.hbm.xml 21

EventType.hbm.xml 14

Gymnast.hbm.xml 15

Judge.hbm.xml 17

Meet.hbm.xml 14

Team.hbm.xml 14

Score.hbm.xml 16

Hibernate.cfg.xml 26

Total 987

JDBC GScoringSystem 259 259 3 h

 Table VIII summarises the findings for implementing

the Eastern Suburb Gymnastics system with the two

approaches. Hibernate required a total of 987 lines of code,

in contrast to JDBC, which required 259. In addition,

Hibernate required about 6 h, whereas JDBC required 3 h. It

is evident that Hibernate required more effort and time than

JDBC. This difference represents a nearly 4:1 ratio in

quantity of code. Indeed, the source of the increase in the

code quantity was due to a plain old Java objects (POJO) and

its mapping files.

N. Impact of requirement changes on the two approaches

Here, we investigated how sensitive the two approaches

are to the choice of domains modelled.

TABLE IX. FINDINGS OF THE INITIAL CONSTRUCTION

Prog

ram

File Name V1 V2 A M D S

E

T

H
ib

er
n

at
e

GSSystem
23

7
274 37 0 0 37

1

h

Club 44 44 0 0 0 0

Competition 24 24 0 0 0 0

CompetitionPk 35 35 0 0 0 0

Division 60 60 0 0 0 0

EventPk 46 46 0 0 0 0

Event 37 37 0 0 0 0

EventType 58 58 0 0 0 0

Gymnast 60 60 0 0 0 0

Judge 40 40 0 0 0 0

Meet 52 52 0 0 0 0

TeamPk 46 46 0 0 0 0

Team 33 33 0 0 0 0

TeamMember - 55 55 0 0 55

Score 22 22 0 0 0 0

HibernateUtil 16 16 0 0 0 0

Club.hbm.xml 13 13 0 0 0 0

Comp.hbm.xml 12 12 0 0 0 0

Divis.hbm.xml 15 15 0 0 0 0

Event.hbm.xml 21 21 0 0 0 0

EType.hbm.xml 14 14 0 0 0 0

Gymt.hbm.xml 15 15 0 0 0 0

Judge.hbm.xml 17 17 0 0 0 0

Meet.hbm.xml 14 14 0 0 0 0

Team.hbm.xml 14 14 0 0 0 0

TMember..xml - 14 14 0 0 14

Score.hbm.xml 16 16 0 0 0 0

Hibern.cfg.xml 26 27 1 0 0 1
Total 987 1093 106 0 0 106

JDBC GSSystem 259 291 32 0 0 32

25

mi

n

Table IX shows that the implementation of the new

requirement changes with Hibernate required a total of 106

lines of code, in contrast to JDBC, which required only 32.

This difference represents a nearly 3:1 ratio in quantity of

code. Moreover, the implementation with Hibernate took

about 1 h, compared to only 25 min for JDBC.

VIII. RESULTS

The results of our critical comparison of the two

paradigms in terms of flexibility, which was based on

implementation findings, indicate that in the initial

construction of the application, using ORM is much costlier

than using JDBC. In other words, the level of effort and time

required to implement the application is much higher with

Hibernate than with JDBC. For instance, the initial

construction of the ESG system with ORM required a total

of 987 lines of code, in contrast to JDBC, which required

259. This difference represents a nearly 4:1 ratio in quantity

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

of code. In addition, ORM required about 6 h, whereas

JDBC required only 3 h. Indeed, increasing the number of

classes that need to be persisted automatically can lead to

increased levels of effort and time.

Moreover, JDBC is more flexible in the face of

requirement changes than is ORM. For example, for an

object to be persisted to a database, Hibernate needs a

mapping file for all the objects that are to be persisted as well

as POJO, which is not required when using the JDBC

approach. This means that if we would like to add an

attribute to or delete an attribute from a class, we must

modify the mapping file of that class to map or delete the

attribute, and subsequently we must modify the class itself to

add/delete that an attribute with its getter and setter methods.

When using JDBC, in contrast, we do not need to undertake

these steps. Furthermore, the object-oriented paradigm has

an issue related to navigation between objects through

association links, whereas navigation is not an issue for

JDBC. In addition, determining the direction with UML is

not an easy task, which can be considered one of the

common mistakes in design decision. In addition, the object-

oriented approach is more sensitive to the class model than

the relational model. It is worth mentioning that the

developer did not use auto-code generation during

performing the initial construction implementation, and this

could explain the remarkable difference in time between two

approaches.

Although the current study has yielded some clear

preliminary findings, its design is not without flaws. First,

the case studies were small scale as a result of some

restrictions, such as the time and effort required for

implementation. A further limitation is that the

implementation of all the case studies was performed by one

developer, which may affect the generalisability of the

study‟s findings to different developers.

IX. CONCLUSION

This paper addressed the question of whether the object-

oriented approach is better than the traditional approach or

vice versa in terms of applicability and flexibility to

requirement changes. The experimental results show that the

object-oriented approach required more time and effort as a

result of mapping files. Moreover, the object-oriented

approach has an issue of navigation between objects.

However, our examination is only the beginning. We believe

there is still a need for further research with real projects to

yield reliable results. Our future work will focus on

conducting more experiments on real projects to validate our

results and to investigate flexibility of object-oriented

approach to requirement changes.

REFERENCES

[1] E. F. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM, vol. 13, 1970, pp. 377-387.

[2] B. Unger, L. Prechelt, and M. Philippsen, The Impact of Inheritance
Depth on Maintenance Tasks: Detailed Description and Evaluation of
Two Experiment Replications. Fak. für Informatik Univ., 1998.

[3] C. Russell, “Bridging the Object-relational Divide,” Queue, vol. 6,
2008, pp. 18-28.

[4] M. I. Aguirre-Urreta and G. M. Marakas, “Comparing Conceptual
Modeling Techniques: A Critical Review of the EER vs. OO
Empirical Literature,” ACM SIGMIS Database, vol. 39, 2008, pp. 9-
32.

[5] F. Lodhi and M. A. Ghazali, “Design of a Simple and Effective
Object-to-Relational Mapping Technique,” in Proceedings of the
2007 ACM Symposium on Applied Computing, 2007, pp. 1445-1449.

[6] S. Sircar, S. P. Nerur, and R. Mahapatra, “Revolution or Evolution? A
Comparison of Object-oriented and Structured Systems Development
Methods,” MIS Quarterly, 2001, pp. 457-471.

[7] G. A. Kiran, S. Haripriya, and P. Jalote, “Effect of object orientation
on maintainability of software,” in Software Maintenance, 1997.
Proc. International Conference on, 1997, pp. 114-121.

[8] M. B. Rosson and S. R. Alpert, “The Cognitive Consequences of
Object-oriented Design,” Human-Computer Interaction, vol. 5, 1991,
pp. 345-379.

[9] M. A. Eierman and M. T. Dishaw, “The Process of Software
Maintenance: A Comparison of Object-oriented and Third-generation
Development Languages,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 19, 2007, pp. 33-47.

[10] S. Group. (2011). The Standish Group International Inc.

[11] E. Arisholm and D. I. Sjoberg, “Evaluating the Effect of a Delegated
Versus Centralized Control Style on the Maintainability of Object-
oriented Software,” IEEE Transactions on Software Engineering, vol.
30, 2004, pp. 521-534.

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

