ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Metrics for Measuring Quality of Real-time Design Patterns

Saoussen Rekhis*, Hela Marouane*, Rafik Bouaziz!, Claude Duvallet* and Bruno Sadeg*
*University of Le Havre
Le Havre, France
Email: {Hela.Marouane, Claude.Duvallet, Bruno.Sadeg} @litislab.fr
TUniversity of Sfax
Sfax, Tunisia
Email: {Saoussen.Rekhis, Raf.Bouaziz} @fsegs.rmu.tn

Abstract—In recent years, the influence of domain specific
design patterns on software quality has attracted increasing
attention in the area of software engineering. Indeed, such
patterns facilitate the development process of systems, leading
to efficient solutions for a particular domain. Since the usage of
such patterns has been recommended, there is a need to evaluate
their efficiency in a domain, i.e., they answer the question if
the provided model encapsulates really the concepts tied to a
particular domain. It is also important to determine the amount
of pattern elements reuse in order to verify that the patterns cover
the majority of domain concepts. The amount of reuse metrics
determine how much pattern elements are reused in a designed
system, whereas reusability metrics are intended to measure the
degree to come up with the specificities of a particular domain
in the patterns. Our proposal aims to adapt some existing reuse
metrics and to define new metrics for reusability assessment. The
usage of these metrics is illustrated through a case study in real-
time domain.

Keywords—Reusability metrics; Amount of reuse metrics; De-
sign pattern.

I. INTRODUCTION

Reusability and software reuse are two major aspects in
object oriented software. Reusability is the possibility that
an artifact can be reused, i.e., the fitness of an artifact to
be reusable. Software reuse is the use of existing software
components to build new systems, rather than designing and
implementing from scratch. It provides significant improve-
ments in software productivity and quality during the life
cycle of a system. Software reuse is supported by different
approaches including frameworks, product lines, patterns and
program libraries. Our research focuses on the reuse of design
patterns that are applied in a specific domain (e.g., real-time
domain). These patterns offer flexible architectures with clear
boundaries, in terms of well-defined and highly encapsulated
parts that are in alignment with the natural constraints of the
domain [1]. They present a successful mechanism to capture
and promote best practices in the software design. These
reasons motivated several researchers on the definition and
the application of domain specific design patterns [1][2][3].
However, these researchers do not provide a quantitative
evaluation of effectiveness of applying these patterns.

In this paper, we have seen necessary (i) to adapt two
existing metrics namely, Class Template Factor (CTF) and
Function Template Factor (FTF) [4] to measure, respec-
tively, the amount of pattern classes reuse and operations reuse
in a given application and (ii) to add a new metric to compute
the amount of attributes reuse since each class in a pattern

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

has two essential parts, corresponding to its attributes and
its operations. Moreover, we are interested in defining new
metrics for assessing reusability of domain specific design
patterns. The aim of these metrics is to determine whether
the patterns represent the concepts that suit a specific domain;
they compute the degree to meet the concepts related to this
domain. These metrics are applied in a validation step of
domain specific design patterns. After their definition, these
patterns are used to model different systems in the considered
domain. For each pattern reuse, we compute the amount of
reuse metrics and reusability metrics in order to evaluate the
quality of patterns. Indeed, it is essential to show that the
application designers need only to add some system specific
elements since the majority of application elements are reused
from the patterns. Without computing the amount of reuse
metrics, we are not sure that the patterns cover the majority
of domain concepts. Thereafter, we consider an example of a
real-time application (the freeway traffic control application)
designed without and with using a domain specific pattern
(sensor pattern [5]), as the base for the illustration of the
defined metrics. We also interpret how the values measured
of these metrics may contribute and be used effectively to
evaluate the quality of the sensor pattern.

The remainder of this paper is organized as follows. Section
IT presents related work. The definition of metrics for the
measure of the amount of domain specific design patterns
reuse and the reusability assessment is described in Section
III. The explanation of these metrics is presented in Section
IV. This latter gives a case study to illustrate these metrics.
The evaluation of applying the sensor pattern is described in
Section V. Finally, Section VI concludes the paper and outlines
our future work.

II. RELATED WORK

The use of reusable components (e.g., design patterns)
provides a key element in improving the way software is de-
veloped and supported over its life cycle. Design and software
reuse reduce development efforts and increase the quality of
developed systems. In this context, a critical issue is to identify
and qualify reusable components. For these reasons, several
works on reuse and reusability metrics have been proposed.

A. Amount of reuse metrics

Frakes et al. postulated in [6] that “amount of reuse
metrics are used to assessing and also monitoring the reuse
improvement effort by tracking of the percentages of reuse for

162

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

life cycle objects”. These metrics aim to determine how much
reuse is present within a given system. The common form
of these metrics is defined as the ratio between the amount
of the life cycle object reused and the total size of the life
cycle object [6]. However, there are many ways to implement
this metric. Each way provides different aspects of the reuse
ranging from how much code is reused to how often it is
reused. For example, the amount of code reuse is defined as
the ratio between the number of reused lines of code in a
system and the total lines of code in a system.

Frakes et al. have shown in [7] various implementations
of reuse level (RL) and reuse frequency (RF) metrics which
have been proposed in [6] for measuring amount of reuse. RL
and RF metrics are measured relative to different granularity
of items (e.g., line of codes, functions, files and projects) of
source software (i.e., C, java and C++).

Zaigham et al. [8] analyze the existing amount of reuse
metrics on the basis of their industrial applicability. These
metrics are applied to different software projects written in
C++ to provide a complete understanding of the level of
correlation that exists between them and other software metrics
such as cyclomatic complexity, volume and lines of code.

Aggarwal et al. have proposed in [4] two metrics for
measuring amount of reuse in object oriented software using
generic programming in the form of templates. The first metric,
called CTEF, is defined as a ratio between the number of classes
using class templates and the total number of classes in a
source code. The second metric, called FTF, is defined as a
ratio between the number of functions using function templates
and the total number of functions.

These works are focused on different reuse metrics, aiming
to measure the amount of reuse of software components and
to determine the portion of the new or modified code and
the portion of the reused code. These metrics only deal with
source code which is typically available at the later stages of
the software life cycle, failing to address the importance of
the software artifacts produced during earlier stages such as
analysis and design. So, we see that it is necessary to define
metrics for the assessment of the level of design structures
reuse in application models. In fact, analysis and design are
crucial phases in software development, because they heavily
influence the cost of the implementation and maintenance
phases. Thus, we intend hereafter to adapt existing reuse
metrics defined in [4] for measuring the amount of patterns
reuse in applications designed with UML. Moreover, we will
add another metric to compute the amount of attributes reuse.

B. Reusability assessment

Reusability metrics indicate the possibility that a compo-
nent is reusable and enable to identify a good quality of a
component for reuse, but, they don’t provide a measurement
of how many components are reused.

Different studies are based on the definition of reusability
metrics.

Bhatia et al. [9] have proposed an approach to measure
the reusability of a class diagram based on Depth of Inheri-
tance Tree (DIT) of a class, Number of Children (NOC) and
Coupling Between Object classes (CBO) metrics [10]. This

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

approach consists to define a formula for reusability based
on the principle that DIT and NOC have positive effect on
reusability, whereas CBO has negative impact on reusability of
a class. The authors consider that reusability of a class diagram
is equal to the maximum reusability of a class in the diagram.

Gill et al. [11] have proposed new metrics which can be
computed from inheritance hierarchies: Breadth of Inheritance
Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR),
Attribute Reuse Per Inheritance Relation (ARPIR), Generality
of Class (GC) and Reuse Probability (RP). BIT metric is
compared to two existing metrics (DIT [10] and NOC [10])
to indicate that this metric measures the breadth of the whole
inheritance tree, not to compute the number of immediate sub
classes of a class. MRPIR and ARPIR metrics are compared
respectively to Method Inheritance Factor (MIF) [12] and
Attribute inheritance Factor (AIF) [12] to highlight that these
two proposed metrics give clearer picture of reuse due to
inheritance. In fact, MRPIR metric (respectively ARPIR met-
ric) computes average number of reused methods (respectively
attributes) in inheritance hierarchy and not in all classes. GC
metric considers the generality of the class as feature of
reusability whereas DIT does not consider characteristics of
the class.

Subedha et al. [13] have used reuse utility percent and reuse
frequency metrics as the assessment attributes for reusability
of the software component in context level. These metrics
determine which components have high reuse potential from
a set of standard components in an existing environment.

The previous metrics estimate the probability of reusability
of a component and evaluate its design quality (e.g., when
CBO increases, reusability decreases and it becomes harder
to modify the software system). These metrics indicate that
whether or not the components are reusable in the future. But,
they do not answer an essential question: Do the reusable
components represent the specificities of a particular domain?
In order to fill this lack, we propose in this paper other metrics
for reusability assessment of domain specific design patterns.
The aim of these metrics is to show if these patterns are
well-defined and they take into account the concepts of the
considered domain.

III. METRICS DEFINITION

In this section, we adapt some existing metrics related
to the amount of reuse for class diagrams. We also define
new metrics that determine the reusability of patterns, i.e., the
probability of their reuse.

A. Amount of reuse metrics

We have to adapt the pair of metrics CTF and FTF [4] to
compute how much classes and operations to reuse are present
within a given application. Moreover, we consider as important
to add a new metric, called Attribute Reuse Level, to measure
reuse level of attributes in each class of a system. In fact,
attributes are essential elements that represent the properties
of a class.

The values of these metrics range from 0 to 1. When reuse
of patterns elements increases, the reuse level value approaches
to 1. A reuse level of 0 indicates no reuse of pattern elements.

163

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

1) Metric 1: Class Reuse Level (CRL): This metric is
defined as the ratio between the number of reused pattern
classes (RPC) and the total number of classes in the designed
system as shown in (1).

Let us consider a model, with n classes C4, Cs, ..., Cp,.

i RPC(C;)

CRL=%2=L (1)
n
where,
| 1 if the class is reused from a pattern,
RPC(C:) = { 0 otherwise.

2) Metric 2: Attribute Reuse Level (ARL): This metric is
defined as the ratio between the number of reused attributes
(RAT) of pattern classes and the total number of attributes in
the designed system as shown in (2).

Let us consider a model having n classes C1, Co, ..., Cj,
and m; attributes a1, as, ..., amy, for each class Cj;.

n m;

Z Z RAT (ai;)

i=1 j=1

n
> m
i=1

ARL =)

where,

1 if the attribute is reused
RAT (a;5) = { from a pattern class,
0 otherwise.

3) Metric 3: Operation Reuse Level (ORL): This metric is
defined as the ratio between the number of reused operations
(ROP) of pattern classes and the total number of operations in
the designed system, as shown in (3).

Let us consider a model having n classes Cy, Co, ..., C),
and k, operations op1, opa, ..., opy, for each class C;.

n k;
Z Z ROP(opiq)

ORL = =121 3)

where,

1 if the operation is reused
from a pattern class,

ROP(opiq) = {
0 otherwise.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

B. Reusability Metrics

We propose new metrics which indicate the possibility
that a pattern can be reused in new systems. Moreover, these
metrics indicate whether these patterns allow designing the
specificities tied to this domain or not. They are calculated
from two releases of each application. Release 1 is designed
without using any pattern. Release 2 is designed using design
patterns. Measurement values of these metrics are always
normalized to a number between O and 1. When metric
values approach to 1, this means that the majority of the
pattern elements (i.e., classes, attributes and operations) are
recognized in the systems which are designed without using
patterns. Thus, the patterns support the requirements related to
a particular domain. Otherwise, the value O indicates that no
pattern elements are identified in the systems designed without
using patterns.

1) Metric 1: Class Reusability (CR): The metric CR is
defined as the ratio between the number of identified pattern
classes (/PC) in a model designed without using patterns and
the number of reused pattern classes (RPC) in this model when
designed using patterns as shown in (4).

Let us consider a model with n classes Cq, Cs, ..., C,,.

> IPC(Cy)
CRrR="1

= “)
> RPC(C))
i=1

where,

1 if the class is identified as
a pattern class,
0 otherwise.

IPC(Cy) = {

| 1 if the class is reused from a pattern,
RPC(C:) = { 0 otherwise.

2) Metric 2: Attribute Reusability (AR): The metric AR is
defined as the ratio between the number of identified attributes
(IAT) of pattern classes in a model designed without using
patterns and the number of reused attributes (RAT) of pattern
classes in this model when designed using patterns as shown

).

Let us consider a model with n classes C;, Cs, ..., C,, and
m,; attributes a1, ag, ..., Gm, for each class Cj.
>3 14T,
AR =17 5)
>3 RaT(,)
i=1 j=1

where,

1 if the attribute is identified as
an attribute of a pattern class,
0 otherwise.

IAT((J,”) = {

164

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

1 if the attribute is reused from
a pattern class,
0 otherwise.

RAT((I”) =

3) Metric 3: Operation Reusability (OR): The metric OR is
defined as the ratio between the number of identified operations
(IOP) of pattern classes in a model designed without using
patterns and the number of reused operations (ROP) of pattern
classes in this model when designed using patterns as shown
in (6).

Let us consider a model with n classes C1, Co, ..., C,, and
k; operations op1, opa, ..., opg, for each class C;.
>_ > 10P(opig)
OR = == (©)
33" HOP(on
i=1 q=1
where,

1 if the operation is identified as
an operation of a pattern class,
0 otherwise.

IOP(opiy) = {

1 if the operation is reused from
ROP(opiq) = a pattern class,
0 otherwise.

IV. CASE STUDY

In this section, we present a case study as an example to
explain the application of reusability and reuse metrics. The
measurement of these metrics was carried out in a pattern
specific to the real-time domain [5] (Figure 1). We consider
this domain as the base of the illustration of the defined metrics
since the design of real-time systems is considered to be a
complex process, as all components and real-time constraints
have to be considered during the design phase. In fact, real-
time applications must be able to meet real-time constraints,
i.e., they have to guarantee that each action meets its deadline
and that data are used during their validity interval. Thus, it is
necessary to give a great importance to real-time applications
design.

The real-time domain consists of three functionalities: (1)
acquisition of data from environment, (2) data analysis and
control and (3) sending orders and commands to actuators.
For each functionality, we have defined a design pattern that
captures RT domain knowledge and design expertise. In this
paper, we present only the sensor pattern [5], which focuses
on the modeling of data acquisition functionality of real-time
domain. This pattern is applied to model the freeway traffic
control application.

A. Application description

The COMPASS [3] is a freeway traffic management system
intended to improve safety and to provide a better level of
service to motorists. According to this system, the current
traffic state is obtained from sensors installed in the freeway:

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

inductance loop detectors and supervision cameras. In fact,
inductance loop detectors are embedded in the pavement. Their
shape may vary depending on the system requirements. Induc-
tance loop detectors, which are active sensors, measure speeds
and lengths of vehicles, number of vehicles and occupancy
rates of road segments. These acquired measures are updated
and transmitted periodically to the Central Computer System
to monitor traffic and to identify traffic incidents. Whereas
the Closed Circuit Television (CCTV) supervision cameras
constitute passive sensors that transmit periodically the images
to the Traffic Operation Centre (TOC). These images are
used to confirm the reception of data through the inductance
loop detectors and to provide information on local conditions.
CCTV cameras are normally mounted on the top of 15 meters
poles at approximately 1 km apart along the freeway. These
cameras are characterized by a resolution 126 x 185 pixels.
Each measure, taken from the environment of this system,
has a value, a timestamp and a validity interval to verify the
temporal consistency of the collected traffic data. In addition,
the minimum and maximum thresholds of each taken measure
must be defined in order to determine the abnormal values for
which COMPASS system may detect an incident.

The data acquisition subsystem of this application is de-
signed without and with using sensor pattern to calculate the
reusability metrics defined in Subsection III-B. Whereas the
amount of reuse metrics (Subsection III-A) are computed
based on this application model reusing the pattern. Figures
2 and 3 show respectively the model without and with the use
of the pattern. The model without using pattern is designed by
three professors who have an experience in UML.

B. Metrics illustration

Table I shows all metrics calculated from the models of
freeway traffic management application already presented (c.f.
Figures 2 and 3).

TABLE I
REUSE AND REUSABILITY METRICS CALCULATIONS.

Metrics Value

Class Reuse Level (CRL)

) Attribute Reuse Level (ARL) 10 — .71
Amount of reuse

metrics

Operation Reuse Level (ORL) $=0.67

Class Reusability (CR) 2=1
Attribute Reusability (AR) % =0.7
Reusability metrics
Operation Reusability (OR) 2 —0.67

According to the model presented in Figure 2, we identify
the following classes as elements of sensor pattern: (i) Sensor,
InductanceLoop and Camera classes: they play, respectively,
the role of Sensor, Active_Sensor and Passive_Sensor classes,
(ii) RoadSegment and Vehicle classes: they correspond to the
ObservedElement class and (iii) trafficData class: it matches
the Measure class. As the RoadSegment and Vehicle classes
play the same role (i.e., ObservedElement class), they are

165

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Sensor

ObservedElement

nm

elementlD: String
status: String

B

i

getStatus()
setStatus()

1l

rl

= sensorDescription: String

= periodicity: Integer [0.1] [

Measure vl

/

Active_Sensor

Passive_Sensor

i getValue()

nnooponomm

@ setValue()

measureType: String
value: String

timestamp: DateTime

unit: String
minimumValue: String
maximumValue: String
validityDuration: Integer
maximumDataError: String

[

derived_Measure

BE

context Measure inv:

updateMeasure()
getMeasure()

selfvalidityDuration==
self.sensor.periodicity

Fig. 1. Sensor pattern [5].
CentralComputer
Freeway
= description- Stri |
7 description: String * & monitor))
notifyincident()
|
.= 1l monitor
Sensor RoadSegment
i periodicity: Integer = segmentiD: String
£ location® String = start_point_location: String
71 M| = end_point_location® String
& transmit()
[0.1]
gl
Vehicle
Camera Inductancel oop & vehiclelmmat: String
= resolution: String = shape: String
0.1
@ takelmage() # takeMeasure() 01
0] |
I Il
&l TrafficData
Image =} wvalue: Integer il
= timestamp: DateTime
5 imagelD: String &} validitylnterval: Integer
[} instant: DateTime = minValue: Integer
= maxValue: Integer
@ setData()
& getData()
Legend

[Identified Pattern classes
[Specific application classes

Identified attributes and operations
are in bold

Fig. 2. Data acquisition subsystem of COMPASS without using sensor pattern.

calculated as only one identified pattern element. In other
words, the number of identified (RoadSegment,Vehicle) is equal
to 1 (not to 2). This avoids any conflicts in the evaluation of
conceptual models with various correct solutions. Indeed, if
the elements have the same role in a system, the designer has
two solutions: he may use or not the inheritance relationships.
Thus, we must calculate the number of identified elements
considering the classes which play the same role as one
element to obtain the same measurement.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

Sensor class has one attribute corresponding to the attribute
of the Sensor pattern class: it is periodicity. The takelmage()
operation of Camera class matches the getValue() operation
of Passive_Sensor pattern class. Whereas, the takeMeasure()
operation of InductanceLoop class correspond to the set-
Value() operation of Active_Sensor pattern class. RoadSegment
and Vehicle classes have, respectively, segmentld and vehi-
clelmmat attributes that correspond to elementld attribute of
ObservedElement pattern class. All attributes and operations

166

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Sensor Measure
E SensorDescription: String |[1] M= eType: String
= periodicity: Integer = value: Integer
= location: String = timestamp: DateTime
= validitylnterval: Integer
& transmit() = minValue: Integer [0..1]
= maxValue: Integer [0..1]
/ \ i updateMeasure()
Camera Inductancel cop i getMeasure()
Il
i getimage() & setData()
|
ObservedElement
CentralComputer 4 M
Y =} 1D: String
- +monitor| =1 state: String
& monitor()
& notifylncident() & getState()
& setState()
Freeway /d

=} description: String

RoadSegment

Vehicle

£ start_point_location: String
= end_point_location: String

t 1.7

Fig. 3.

of TrafficData class are elements of Measure pattern class.
The identification of model elements (classes, attributes and
operations) as pattern participants is based on a semantic com-
parison between classes names using a domain dictionary. This
dictionary holds for each term (i.e., a class name, an attribute
name and operation name) the possible synonyms, antonyms,
hypernyms. The construction of this dictionary requires the
intervention of pattern designers to determine the linguistic
relations for each introduced pair of terms. The designer
specifies, for example, that the class name observedElement
is the hypernym of vehicle class name.

The reusability metric values presented in Table I approach
to 1, it indicates that the majority of pattern participants are
recognized in the application model. If we obtain the same
results in several case studies, this means that the patterns
cover the domain concepts.

As shown in Figure 3, the image is considered as a measure
taken by a camera sensor. It has a value (the taken photo),
a timestamp and a validity duration. But, it does not have
minimum and maximum values. Thus, minVal and maxVal
attributes have the multiplicity [0..1]. The other attributes have
the default multiplicity [1].

We have reused the classes Sensor, Active_Sensor, Pas-
sive_Sensor, ObservedElement, and Measure. RoadSegment
and Vehicle classes constitute specific application elements
which specialize ObservedElement class. This class reuses
all features of ObservedElement pattern class. We have also
reused all attributes and operations of Measure class except
Maximum Data Error attribute. From Sensor class, we have
instantiated description and periodicity attributes. In addition,
the reused operations of Active_Sensor and Passive_Sensor
classes correspond respectively to setData() and getlmage()

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

Legend
[1 Reused Pattern classes
[] Specific application classes

Reused attributes and operation
are in hold

Data acquisition subsystem of COMPASS with using sensor pattern.

operations of InductanceLoop and Camera classes.

The reuse metric values presented in Table I mean that
the majority of application elements (classes, attributes and
operations) are reused from the pattern and a limited number of
application specific elements are added. This result is approved
in the next Section by applying the sensor pattern in several
real-time applications.

V. SENSOR DESIGN PATTERN EVALUATION

We present in Table II the values of reuse metrics and
reusability metrics obtained for the sensor pattern which is
used for modeling ten different real-time applications that we
reference Al, A2, ..., A10. On one hand, the values obtained
for reuse metrics show that more than half of the classes,
the attributes and the operations of real-time applications
corresponding to the sensor pattern are instantiated from this
pattern. For example, the values of reuse metrics obtained in
Table II for the application A1l show that 83% of classes (CRL
= 0,83), 62% of attributes (ARL = 0,62) and 87% operations
(ORL = 0,87) belonging to the model fragment relative to
the sensor pattern are instantiated from this pattern. There are
even cases (applications A7, A8 and A9) where all applications
classes are instances of pattern classes (CRL = 1). Thus, we
deduce a good level of reuse of the sensor pattern elements in
the modeling of real-time applications.

On the other hand, the values obtained for reusability
metrics calculated for the sensor pattern indicate that the
degree of reusability of classes and attributes is better than the
reusability of operations. Indeed, we identified all the classes
of the sensor pattern (CR = 1) in seven cases of real-time
applications modeled without reusing this pattern. In addition,
we have identified the majority of the attributes reused from the

167

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE II
RESULTS FOR REUSE METRICS AND REUSABILITY METRICS CALCULATED FOR SENSOR PATTERN.
Al A2 A3 A4 A5 A6 A7 A8 A9 A10 | Averge
CRL | 083 | 0,57 0,7 0,71 0,8 0,83 1 1 1 0,71 0,81
ARL | 0,62 | 0,59 | 0,72 0,6 083 | 0,75 | 0,75 | 0,76 | 0,87 | 0,73 0,72
Amount of reuse
metrics
ORL | 087 | 0,71 083 | 0,75 | 0,83 0,7 0,83 | 0,83 | 0,72 1 0,80
CR 1 1 1 1 1 0,6 1 1 0,8 0,8 0,92
- AR 0,8 0,76 | 0,66 | 0,73 0,7 0,76 | 0,77 0.8 0,64 | 0,81 0,74
Reusability
metrics
OR 0,71 0,60 0,5 0,66 0.4 0,42 0,6 0.4 0,37 0,5 0,51

pattern classes. For example, the values of reusability metrics
obtained in Table II for application Al show that all reused
classes of the sensor pattern are identified (CR = 1), 80% of the
attributes are identified (AR = 0,8) and 71% of operations are
identified (OR = 0,71). This means that the reuse of this pattern
is interesting in the real-time domain because it adequately
represents the concepts of data acquisition functionality.

VI. CONCLUSION AND FUTURE WORK

The main objective of this work is to define two categories
of metrics that are important for reuse design. The first one
aims to assess the reuse level of pattern participants. When the
measurement of amount of reuse metrics increases, it means
that the pattern elements are simply reused in the model with
a minimal possibility for modification. The second category
focuses on predicting the reusability of domain specific design
patterns. This kind of metrics checks the presence of pattern
elements in a system designed without the usage of patterns.
When the measurement of reusability metrics increases, it
means that the patterns well represent the domain concepts.
Reuse and reusability metrics are then illustrated using a
case study and they are calculated for ten applications to
evaluate the quality of the sensor pattern. The values of reuse
metrics show a high degree of the pattern elements reuse (i.e.,
more than 70% of classes, attributes and operations of the
considered applications are modeled by reusing the sensor
pattern in the majority of cases). Similarly, the values obtained
for reusability metrics show that the attributes, the operations
and especially the classes of the sensor pattern are identified in
the applications models designed without reuse of this pattern.
Thus, we can conclude that it has a good ability to be reused
for modeling real-time applications.

In future work, we will check and evaluate the effectiveness
of applying other domain specific design patterns (controller
and actuators patterns) for real-time systems based on the
measurement of these metrics taken for different case studies.

REFERENCES

[1] D. Port, "Derivation of domain specific design patterns,” USC Center for
software engineering, 1998.

[2] H. Marouane, A. Makni, R. Bouaziz, C. Duvallet, and B. Sadeg, "A real-
time design pattern for advanced driver assistance systems,” in 17/
European conference on Pattern Languages of Programs (EuroPLoP),
2012, pp. C6:1-C6:11.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

[3] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg, "A
process to derive domain-specific patterns: Application to the real-time
domain,” in Proceedings of 14t" International Conference on Advances
in Databases and Information Systems (ADBIS), 2010, pp. 475-489.

[4] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, ’Software reuse
metrics for object-oriented systems,” in Proceedings of the third ACIS In-
ternational Conference on Software Engineering Research, Management
and Applications (SERA’05). IEEE computer society,2005, pp. 48-54.

[5] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg, "Mod-
eling real-time applications with reusable design patterns,” International
Journal of Advanced Science and Technology (IJAST), vol. 22, 2010,
pp. 71-86.

[6] W. Frakes and C. Terry, "Software reuse: metrics and models,” ACM
Comput. Surv., vol. 28, no. 2, Jun. 1996, pp. 415-435.

[71 W. B. Frakes, R. Anguswamy, and S. Sarpotdar, "Reuse ratio metrics
RL and RF” in 11" International Conference on Software Reuse, Falls
Church, VA, USA, 2009.

[8] M. Zaigham and R. Tauseef, “Correlation between amount-of-reuse
metrics and other software measures with respect to programming code
in c++,” Software Quality Control, vol. 11, no. 4, Nov. 2003, pp. 301-
312.

[9] K. B. Pradeep and M. Rajbeer, An approach to measure software
reusability of OO design,” in Proceedings of 2™d National Conference
on Challenges & Opportunities in Information Technology (COIT-2008)
RIMT-IET, Mandi GobindgarhA, 2008.

S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented
design,” IEEE Transaction on Software Engineering, vol. 20, no. 6, Jun.
1994, pp. 476-493.

S. G. Nasib and S. Sunil, “Inheritance hierarchy based reuse &
reusability metrics in oosd,” International Journal on Computer Science
and Engineering (IJCSE), vol. 3, no. 6, 2011, pp. 2300-2309.

R. Harrison, S. Counsell, and R. Nithi, ”An evaluation of the MOOD
set of object oriented software metrics,” IEEE Transaction on Software
Engineering, vol. 24, no. 6, 1998, pp. 491-496.

V. Subedha and S. Sridhar, "Design of a conceptual reference framework
for reusable software components based on context level,” International
Journal of Computer Science Issues (IJCSI), vol. 9, no. 3, 2012, pp.
26-31.

[10]

(1]

[12]

[13]

168

