
Towards Scalable Bug Localization using the Edit Distance of Call Traces

Themistoklis Diamantopoulos and Andreas Symeonidis
Information Technologies Institute, Centre for Research and Technology Hellas
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki

Thessaloniki, Greece
{thdiaman,asymeon}@iti.gr

Abstract—Locating software bugs is a difficult task, especially
if they do not lead to crashes. Current research on automating
non-crashing bug detection dictates collecting function call traces
and representing them as graphs, and reducing the graphs before
applying a subgraph mining algorithm. A ranking of potentially
buggy functions is derived using frequency statistics for each node
(function) in the correct and incorrect set of traces. Although most
existing techniques are effective, they do not achieve scalability.
To address this issue, this paper suggests reducing the graph
dataset in order to isolate the graphs that are significant in
localizing bugs. To this end, we propose the use of tree edit
distance algorithms to identify the traces that are closer to each
other, while belonging to different sets. The scalability of two
proposed algorithms, an exact and a faster approximate one, is
evaluated using a dataset derived from a real-world application.
Finally, although the main scope of this work lies in scalability,
the results indicate that there is no compromise in effectiveness.

Keywords—automated debugging; dynamic bug detection; fre-
quent subgraph mining; tree edit distance

I. INTRODUCTION

Software reliability has grown to be a major concern for
both academia and the industry. Software bugs lead to faulty
software and dissatisfied customers, as testing and debugging
are quite costly even compared to the development phase. As
software grows more and more complex, though, identifying
and eliminating software bugs has become a challenging task.

There are two types of bugs: crashing and non-crashing
ones. The former lead to program crashes, thus they are easier
to locate by tracing the call stack at the time of the crash.
The latter are logic errors that do not lead to crashes and
thus do not produce stack traces. Since dynamic analysis is
performed to detect such bugs, the field is known as dynamic
bug detection. The techniques may be classified according to
the granularity of the source code instrumentation approach.
Highly granular approaches involve inserting checks in differ-
ent source code positions, either in the form of counters [1] or
boolean predicates [2] while others involve inserting checks at
block level [3], where blocks are fragments between branches.
Counter-level and block-level approaches are quite precise in
localizing bugs. However, since the rise of Object Oriented
Programming and Functional Programming has led to prefer-
ence for small comprehensive functions, instrumenting func-
tions is effective, as long as proper programming paradigms
are employed. Function-level approaches apply Graph Mining
techniques to call traces to identify which subgraphs are more
frequent in incorrect than in correct runs [4]–[6].

The steps used to localize bugs are common. The gener-
ated call traces constitute a dataset that has to be mined in
order to detect bugs; and this is where the problems start.

Even at function-level, datasets are usually huge. For a small
application, with, e.g., 150 functions, there may be couples of
thousands of transitions among them. In this context, creating
an effective, yet also scalable, solution is a challenging prob-
lem. And, though it has been broadly studied, most literature
approaches focus on reducing the size of each trace, without
reducing the number of traces in the dataset.

In this paper, we present a novel approach towards highly
scalable Graph Mining solutions for function-level traces.
The main contribution lies in the problem formulation, the
reduction of the call trace dataset size through different alter-
natives, and the construction of a realistic dataset to test upon.
Dataset size reduction is confronted using tree edit distance
algorithms, while the potential benefits and drawbacks with
respect to different solutions are discussed. Furthermore, the
applicability of several function-level dynamic bug detection
techniques in real applications is discussed and the efficiency
and effectiveness of our variations are evaluated against them.

Section II of the paper reviews current literature on
function-level dynamic bug detection, illustrating the general
procedure followed to mine the traces and identify the Graph
Mining problems. Section III provides an overview of alterna-
tive solutions to known scalability issues. The construction of
a realistic dataset that illustrates our contribution is explained
in section IV. Finally, our implementation is evaluated in terms
of efficiency and effectiveness in section V, while section VI
concludes the paper and provides insight for further research.

II. FUNCTION-LEVEL DYNAMIC BUG DETECTION

In this section, we discuss the steps of constructing a graph
dataset, reducing it, and applying Graph Mining techniques to
provide the ranking of possibly buggy functions.

A. Graph Dataset Construction

Given a set of tests, program functions are instrumented
and the tests are run to produce a set of call traces S. A
call trace is initially a rooted ordered tree, with the main
function as its root. Two more sets, Scorrect and Sincorrect

are defined, corresponding to correct and incorrect executions,
where correctness is determined by an oracle. Thus, the tree
(or graph, since all trees are graphs) dataset is constructed.

B. Graph Reduction

Since graphs are large, with hundreds of nodes, applying
any mining algorithm is inefficient. Thus, graph reduction is
performed to reduce the size of each graph while keeping
useful information. Figure 1 depicts reduction techniques.

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A

B C

B B B

(a)

A

C

B

(b)

A

B C

B B

(c)

A

B C

B

1
1

3

(d)

A

B C

B

(e)

Fig. 1. An example call graph (a) and four different reduced graphs with
respect to the reduction techniques, including (b) total reduction, (c) one-two-
many reduction, (d) subtree reduction and (e) simple tree reduction.

The first technique, known as total reduction, is presented by
Liu et al. [4]. The authors create a graph using each edge of the
initial call graph once and discard any structural information
(i.e., tree levels). Total reduction is the most efficient reduction
method since it actually preserves minimum information.

However, since total reduction fails to capture the structure
of the call graph, different alternatives have been applied to
preserve more information, while keeping the graph as small as
possible. A straightforward solution is the one proposed by Di
Fatta et al. [5]; the authors perform one-two-many reduction,
preserving tree structure by keeping two child nodes whenever
the children of a node are more than two (see Figure 1c).

Eichinger et al. [6] claim that total reduction and one-
two-many reduction are not sufficient, since they discard call
frequency information. According to the authors, the number
of times (i.e., frequency) that a function calls another function
is crucial since it can capture bugs that may occur in, e.g., the
third or fourth time the function is called. Thus, they propose
subtree reduction, a technique that preserves both the structure
of the tree and the frequency of function calls (see Figure 1d).

Reduction techniques are based on a compromise between
information loss and scalability. Although subtree reduction
maintains most information, it is quite inefficient since it adds a
weight parameter to the graph. Since the scope of this work lies
in scalability, we propose using a reduction technique, which
we call simple tree reduction, shown in Figure 1e. Reducing a
graph using simple tree reduction involves traversing the nodes
once and deleting any duplicates as long as they are on the
same level. The reduced graph is a satisfactory representation
of the original one since large part of its structure is preserved.

C. Graph Mining

Upon reduction, the problem lies in determining the nodes
that are frequent in the incorrect set Sincorrect and infrequent
in the correct set Scorrect. Intuitively, if a function is called
every time the result is incorrect, it is highly possible to have
a bug. However, having more than one function with the same
frequency is also possible. Thus, the Graph Mining algorithm
should find the closed frequent subgraphs, i.e., the subgraphs
for which no supergraph has greater support in Sincorrect.

Finding frequent subgraphs in a graph dataset, known as
Frequent Subgraph Mining (FSM), is a well-known problem.
State-of-the-art algorithms include, e.g., gSpan [7]. Further-
more, since these graphs are actually trees, several Frequent
Subtree Mining (FTM) algorithms, such as FreeTreeMiner [8],
may be used as well. Although those algorithms are applicable
to the problem, there is strong preference for CloseGraph [9],

an algorithm that is highly scalable since it prunes unnecessary
input and outputs only closed frequent subgraphs.

D. Ranking

The output of CloseGraph is a set of frequent subgraphs,
along with their support in the correct and the incorrect set.
Hence, the question is how can a ranking of possibly buggy
functions be created by such a set. It is typical to use DM
techniques based on support and confidence to determine the
interesting subgraphs. For instance, Di Fatta et al. [5] suggest
ranking the functions according to their support in the failing
set. According to Eichinger et al. [6], this type of ranking can
be called structural and for each function f is defined as:

Ps(f) = support(f, Sincorrect) (1)

The support of each function in the failing set Sincorrect

provides a fairly effective ranking. However, the scoring is
not sufficient, since it does not take confidence into account.
Furthermore, finding the support only on incorrect executions
yields skewed results, since a function with large support
in both Scorrect and Sincorrect would be ranked high, even
though it may be insignificant with respect to the bug.

Several variations of the structural ranking have emerged
in order to overcome the aforementioned issues [2][5]. In this
paper, we use an entropy-based ranking technique proposed by
Eichinger et al. [6] since it is proven to outperform the other
techniques. The main intuition behind this ranking technique is
to identify the edges that are most significant to discriminate
between correct and incorrect call traces. A table is created
with columns corresponding to subgraph edges and rows
corresponding to graphs. The table holds the support of each
edge in every graph. Consider the example of Table I:

TABLE I. ENTROPY-BASED RANKING EXAMPLE

Graph f1 → f2 f1 → f3 f2 → f4 . . . Class
G1 4 7 2 . . . correct
G2 9 5 8 . . . incorrect
G3 6 3 1 . . . correct
.

where F = f1, f2, . . . is the set of functions and G =
G1, G2, . . . is the set of graphs. Supposing subgraph SG1

appears 4 times in graph G1 and edge f1 → f2 ∈ SG1,
the support of the edge in graph G1 is 4. As one might
observe, the problem is actually a feature selection problem,
i.e., defining the features (edges) that discriminate between
the values of the class feature (correct, incorrect). Thus,
any feature selection algorithm may be used to determine the
most significant features. Eichinger et al. [6] calculate the
information gain for each feature, and interpret the result for
each feature (ranging from 0 to 1) as the probability of it being
responsible for a bug. The respective probability Pe(f) for a
node (function) is determined by the maximum probability of
all the edges it is connected to.

The structural ranking Ps and the entropy-based ranking
Pe are used to compute the combined ranking as follows:

P (f) =
Pe(f)

2max
f∈F

Pe(f)
+

Ps(f)

2max
f∈F

Ps(f)
(2)

where the maximum values at the denominator are used in
order to normalize the weighting of each ranking.

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

III. REDUCING THE GRAPH DATASET

The steps given in Section II are common for all function-
level bug detection algorithms. Several researchers have indi-
cated the need for scalability, which is generally accomplished
by reducing the graphs (see subsection II-B). Ideally, the useful
information of the graph is retained while its size is minimized.
However, even upon reduction, the number of graphs in the
dataset is large, thus making the mining step quite inefficient.

Although a dataset of several graphs is given, not all of
them are equally useful in locating the bug. Consider a scenario
for the grep program. Assume the program has a bug that
results in faulty executions when the ? character is used in
a Regular Expression (RE), such that the appropriate words
are not returned, if the preceding element appears 0 times.
Normally, if a symbol is succeeded by the ? character, then it
may be found 0 or 1 times exactly. Consider running the grep
program for one word at a time for the following phrase:

there once was a cat that ate a rat
and then it sat on a yellow mat

In this text, the RE [a-z]*c?at should match the words in
the set Smatched = {cat, that, rat, sat, mat}, i.e., all
words having any letter from a to z 0 or more times, followed
by the letter c 0 or 1 times exactly, and followed by letters a
and t. Instead it only matches the word cat. Consider also
the set of words that are not matched Sunmatched = {there,
once, was, a(1), ate, a(2), and, then, it, on, a(3),
yellow}. Assuming that all the possible traces are created,
several of them, such as the ones created from the Smatched

set, are actually much more significant in identifying the bug,
since it actually resides only on the Smatched set. Thus, traces
of cat and rat should be more similar than traces of cat and
yellow. In fact, when executing the cat and rat scenarios,
many function calls coincide. This is however also true for
traces of was and it. Intuitively, determining which traces
are highly indicative of the bug can be based on the similarity
between them as well as whether they are correct or incorrect.
Thus, correct executions that are similar to the incorrect ones
(e.g., rat may be close to cat) should isolate more easily
the buggy functions. On the other hand, when two correct (or
incorrect) executions are quite close to each other (e.g., the
traces from was and it could be quite similar), then one of
them should provide all necessary information.

The example is formed such that it is easy to understand.
One could ask why not select test cases by hand, so that they
are discriminating. However, this is usually impossible since
real scenarios are much more complex, e.g., for the grep case
there may be passages instead of words. In addition, certain
executions may seem similar, yet be significantly different with
respect to the call traces. Thus, there is the need for a similarity
metric between two traces. Having such a metric, one can
apply the call trace selector algorithm shown in Figure 2.

As shown in this figure, the algorithm requires as input the
correct and incorrect sets, Scorrect and Sincorrect, along with
parameter n, which controls how many graphs are going to be
retained per set. Initially, the set D, which contains all correct-
incorrect pairs of graphs, is sorted according to the similarity
of each pair. The set S′correct contains the first n correct unique
graphs that are found in the sorted set D, i.e., the n correct

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

D = {(g1, g2) ∀g1 ∈ Scorrect, g2 ∈ Sincorrect}
sort(D, key=similarity(g1, g2))
S′
correct =First(n, {g1 : g1 ∈ d ∈ D})

S′
incorrect =First(n, {g2 : g2 ∈ d ∈ D})

Fig. 2. The call trace selector algorithm that receives the two sets of graphs
as input (correct and incorrect) and its output is two new subsets of them.

graphs that belong to the most similar pairs d of D. The set
S′incorrect contains the first n incorrect unique graphs that are
found in the sorted set D. For example, given n = 2 and
D = {d1, d2, d3} = {(g1, g3), (g1, g4), (g2, g5)} so that the
similarity of pair d1 is larger than that of d2 and the similarity
of d2 is larger than that of d3, the sets S′correct and S′incorrect
are {g1, g2} and {g3, g4} respectively. Function sort sorts the
set according to the key and index provides the index of an
element. Thus, the issue is how to determine similarity between
two graphs, i.e., how to implement the function similarity.

A metric widely used to represent the similarity between
two strings is the String Edit Distance (SED). SED is defined
as the number of edit operations required to transform one
string to the other. SED operations usually contain insertion
or deletion of characters. Concerning trees, such as the ones of
our dataset, Tree Edit Distance (TED) algorithms can be used
to calculate the distance between two of them. The following
subsections provide a definition of the TED problem and two
well known algorithms of current literature in finding TED.

A. The Tree Edit Distance Problem

The TED problem was originally posed by Tai [10] in 1979.
The possible edit operations are defined in Figure 3.

A

B C

D E

(a)

A

B F

D E

(b)

A

B

D E

(c)

A

B C

D EF

(d)

Fig. 3. An example tree (a) and three different edit operations: (b) node
relabeling, (c) node deletion, and (d) node insertion.

Node relabeling concerns simply changing the label of a node
(see Figure 3b). Node deletion is performed by deleting a node
of the tree and reassigning any children it had so that they
become children of the deleted node’s parent. For example in
Figure 3c, the children of deleted node C are reassigned to C’s
parent A. Finally, node insertion concerns inserting a new node
in a position in the tree, such as inserting node F in Figure 3d.
Assuming a cost function is defined for each operation, an edit
script between two trees T1, T2 is a sequence of operations
required to turn T1 into T2, and its cost is the aggregate cost
of them. Thus, the TED problem is defined as determining the
optimal edit script, i.e., the one with the minimum cost.

B. Zhang-Shasha Algorithm

Let δ(T1, T2) be the edit distance between trees T1 and T2,
and γ(l1 → l2) be the cost of the edit operation from l1 to l2.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A simple algorithm for computing TED is defined as follows:

δ(θ, θ) = 0 (3)
δ(T1, θ) = δ(T1 − u, θ) + γ(u→ λ) (4)
δ(θ, T2) = δ(θ, T2 − v) + γ(λ→ v) (5)

δ(T1, T2) = min


δ(T1 − u, T2) + γ(u→ λ)

δ(T1, T2 − v) + γ(λ→ v)

δ(T1(u), T2(v)) + δ(T1 − T1(u),
(6)

T2 − T2(v)) + γ(λ→ v)

where T − u denotes tree T without node u and T − T (u)
denotes tree T without u or any of each children. Param-
eter λ is the performed edit operation. The Zhang-Shasha
algorithm, which was named after its authors, K. Zhang and
D. Shasha [11], uses Dynamic Programming (DP) in order to
compute the TED. The keyroots of a tree T are defined as:

keyroots(T) = {root(T)}∪ {u ∈ T : u has left siblings} (7)

Given (7), the relevant subtrees of T are defined as:

relevant subtrees(T) =
⋃
u

{T (u)}, ∀u ∈ keyroots(T) (8)

Thus, the algorithm recursively computes the TED by finding
the relevant subtrees and applying equations (3)–(6).

C. pq-Grams Algorithm

Several algorithms solve the TED problem. However, even
the most efficient ones lack scalability, since the polynomial
order of the problem is high. A promising way of reducing
complexity is by approximating the TED instead of computing
its exact value. Approximate TED algorithms can generally be
effective enough when results do not need to be exact. In the
call trace scenario, the TED is a value denoting the similarity
of two trees, thus, even if it is approximate, it shall provide
with the appropriate n most significant graphs as in Figure 2.

Such an approximate TED algorithm is the pq-Grams based
algorithm proposed by Augsten et al. [12]. The authors define
pq-Grams as a port of known string q-grams to trees. An
example tree and its pq-Grams are shown in Figure 4. The
p and q parameters define the stem and the base of the pq-
Gram, respectively. Let p = 2 and q = 3, the stem of the
first pq-Gram of Figure 4c is {∗, A} and its base is {∗, ∗, B}.
Since the pq-Grams for the tree of Figure 4a cannot be directly
created, an intermediate step of extending the tree with dummy
nodes is shown in Figure 4b. The pq-Gram profile is the set
of all pq-Grams of a tree (see Figure 4c), while the pq-Gram
index of the tree is defined as the bag of all label tuples for
the tree. The pq-Gram index for the tree of Figure 4 is:

I(T) = {∗A∗∗B, ∗A∗BC, ∗ABC∗, ∗AC∗∗, AB∗∗∗,
AC∗∗D,AC∗DE,ACDE∗, ACE∗∗, CD∗∗∗, CE∗∗∗} (9)

According to Augsten et al. [12], the TED between two
trees is effectively approximated by the distance between their
pq-Gram indexes. Let I(T) be the pq-Gram index of tree T ,
the pq-Gram distance between trees T1 and T2 is defined as:

δ(T1, T2) = |I(T1) ∪ I(T2)| − 2|I(T1) ∩ I(T2)| (10)

Equation (10) provides a fast way of approximating the TED
between any pair of trees of the dataset. Thus, the pq-Gram

A

B C

D E

(a)

∗

A

∗ ∗ B C ∗ ∗

∗ ∗ ∗ ∗ ∗ D E ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

(b)

∗

A

∗ ∗ B

∗

A

∗ B C

∗

A

B C ∗

∗

A

C ∗ ∗

A

B

∗ ∗ ∗

A

C

∗ ∗ D

A

C

∗ D E

A

C

D E ∗

A

C

E ∗ ∗

C

D

∗ ∗ ∗

C

E

∗ ∗ ∗

(c)

Fig. 4. A pq-Grams example for p = 2 and q = 3, containing (a) an example
tree, (b) its extended form for p = 2 and q = 3, and (c) its pq-Grams.

distance function can be used in place of the similarity
function which is required by the algorithm shown in Figure 2.

IV. DATASET

The techniques of section II are effective for bug localiza-
tion in small applications. For example, Eichinger et al. [6]
evaluate their method against two known literature bug local-
ization techniques ([4] and [5]) using a small dataset. Although
effectiveness is irrefutable, efficiency is not thoroughly tested
since the dataset is too small to resemble a real application.
Indicatively, the size of the program is almost 2 pages of code,
leading to graphs of roughly 20 nodes after the reduction step.

Since the main scope of this paper lies in achieving
scalability in order to locate bugs of real applications, a larger
dataset has to be used. The dataset was generated using the
source code of daisydiff [13], a Java application that
compares html files. We used the 1.2 version of daisydiff
and planted 3 types of bugs in the code, as shown in Table II.

TABLE II. PLANTED BUGS

Bugs Description Function Calls
1 Wrong limit conditions (Forgot +1) 17509
2 Missing condition (Forgot a < check) 54137
3 Wrong condition (> instead of <) 78837

These bugs do not aim to cover possible bug classes, as in [6],
rather to test algorithm efficiency. Three scenarios with differ-
ent number of function calls are created to demonstrate our
proof of concept. The bug-free and the three buggy versions
were run 100 times given different inputs. The application has
almost 70 files with 9500 lines, leading to graphs of almost
750 nodes after reduction. The dataset is given online in [14].

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE III. AVERAGE ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS

pq-Grams NoTED ZhangShasha
5 10 15 20 25 30 35 - 5 10 15 20 25 30 35

Graph Parsing 7.81 7.15 7.11 7.15 7.13 7.12 7.13 7.14 8.71 7.05 7.06 7.02 7.03 7.02 7.02
Graph Reduction 4.03 3.97 4.00 4.04 4.03 3.96 3.97 3.93 4.07 3.98 3.97 3.94 3.99 3.92 3.94
Dataset Reduction 84.22 84.10 84.91 83.99 83.94 83.86 84.07 0.00 188.23 187.90 187.37 187.35 187.81 187.41 187.28
Subgraph Mining 7.55 27.10 54.69 131.63 440.51 412.46 450.87 4712.54 5.87 40.05 69.91 149.03 389.21 436.68 611.15

Ranking Calculation 0.56 2.25 6.51 16.62 34.82 36.47 45.86 533.59 0.58 2.77 7.23 16.33 33.87 38.31 55.12
Total 104.17 124.57 157.22 243.43 570.43 543.87 591.90 5257.20 207.46 241.75 275.54 363.67 621.91 673.34 864.51

TABLE IV. RANKING POSITION AND PERCENTAGE OF FUNCTIONS TO BE EXAMINED TO FIND THE BUGS

pq-Grams NoTED ZhangShasha
5 10 15 20 25 30 35 - 5 10 15 20 25 30 35

Position 7 7 31 9 8 8 8 8 7 6 9 8 9 8 8Bug 1 Percentage 1.10% 1.10% 4.87% 1.41% 1.26% 1.26% 1.26% 1.26% 1.10% 0.94% 1.41% 1.26% 1.41% 1.26% 1.26%
Position 5 5 9 9 9 10 9 9 5 5 9 9 9 9 9Bug 2 Percentage 0.68% 0.68% 1.22% 1.22% 1.22% 1.36% 1.22% 1.22% 0.68% 0.68% 1.22% 1.22% 1.22% 1.22% 1.22%
Position 105 105 341 27 3 1 15 17 105 337 342 352 1 1 1Bug 3 Percentage 13.51% 13.51% 43.89% 3.47% 0.39% 0.13% 1.93% 2.19% 13.51% 43.37% 44.02% 45.30% 0.13% 0.13% 0.13%

V. EVALUATION

This section presents the results of applying three different
algorithms to the dataset described in section IV.

A. Experimental Setup

We implemented three algorithms to test the validity of
our dataset reduction hypothesis. The first is the algorithm by
Eichinger et al. [6] as explained in section II. Due to perfor-
mance issues, subtree reduction (see subsection II-B) could not
be applied in such a large dataset. Thus, simple tree reduction
is used in its place. The mining step is performed through the
ParSeMiS [15] implementation of CloseGraph, while InfoGain
(ranking step) was implemented using WEKA [16].

The two other algorithms (ZhangShasha and pq-Grams)
were implemented similarly, inserting a dataset reduction step
before the graph mining step. Both implementations use the
call trace selector of Figure 2, while different values of the
n parameter are tested. The first implementation realizes the
ZhangShasha algorithm and the second implementation the pq-
Grams algorithm in order to reduce the size of the dataset.

All experiments were performed using an 8-core processor
with 8 GB of memory. The graph reduction, dataset reduction
and subgraph mining steps were performed in parallel. Graph
reduction was performed on 8 threads, where each thread
performed simple tree reduction to a fragment of the dataset.
The TED algorithms were applied in parallel using 4 threads
(using more threads was impossible due to memory limita-
tions) that calculated the TED for each correct-incorrect pair of
the dataset. Finally, CloseGraph was executed using 8 threads,
while the trace parsing and ranking steps were sequential.

B. Experimental Results

The algorithms are evaluated both in terms of effectiveness
and performance. Concerning certain parameters, p and q of
the pq-Grams approach were given the values 2 and 3 respec-
tively, having little impact on performance and effectiveness,
and CloseGraph was run with a 10% support threshold.

The performance results are shown in Table III, where the
NoTED approach is the one not using any TED algorithm to
reduce the size of the dataset. Due to space limitations in paper
length, the average measurements are shown for all three bugs,

instead of separate ones for each bug. In terms of performance,
both proposed implementations (pq-Grams and ZhangShasha)
clearly outperform the NoTED approach. In particular, even
when n equals 35, the pq-Grams algorithm requires no more
than 10 minutes, whereas the NoTED approach requires al-
most 90 minutes. The ZhangShasha algorithm is also quite
compelling requiring less than 15 minutes to run. Thus, the
pq-Grams and ZhangShasha approaches are approximately 9.5
and 6.5 times faster than the NoTED approach, respectively.

Concerning all approaches, the mining step is indeed the
most inefficient. Although ranking might also seem inefficient,
its elapsed time depends mainly on the output of the min-
ing step. Concerning the graph reduction step, simple tree
reduction performs quite efficiently. Although graph reduction
techniques deviate from the scope of this paper, note that
subtree reduction required many hours to reduce the graphs.

Performance results are also shown in Figure 5b, where
the vertical axis is in logarithmic scale in order to sufficiently
illustrate the steps of the algorithms. As expected, performance
is largely affected by the number of graphs taken into ac-
count, i.e., the n parameter. The impact of n is depicted in
Figure 5a; the execution time of both approaches is high-order-
polynomial with respect to consecutive values of n. This is
expected since subgraph mining algorithms, such as CloseG-
raph, are affected by the size of the graphs and the size of the
dataset. Further analyzing Figure 5a, the peak at n = 25 is not
totally unexpected since the performance of subgraph mining
algorithms may be affected by numerous properties, such as
the structure of the graph. In any case, concerning the proposed
algorithms, pq-Grams executes faster than ZhangShasha for all
values of n, while NoTED is certainly less efficient.

Table IV provides effectiveness measurements for locating
the three bugs, for all different algorithms. The “Position”
attribute of the table indicates how many functions should the
developer examine in order to locate the bug. This metric is
created using the final ranking of the functions and identifying
the position of the “buggy” function. Using the total number
of functions, which for bugs 1, 2, and 3 is 637, 737, and 777
respectively, the percentage of the program’s functions that
should be examined to locate the bug is also provided.

Our approaches seem to perform not only closely, but also
even more effectively than the NoTED approach, as long as

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

5 10 15 20 25 30 35

n

0

200

400

600

800

1000

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

ZhangShasha

pq-Grams

(a)

n=
5

n=
10

n=
15

n=
20

n=
25

n=
30

n=
35

N
oT

ED
n=

5
n=

10
n=

15
n=

20
n=

25
n=

30
n=

35

pq-Grams ZhangShasha

0
100

101

102

103

104

105

106

107

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

Ranking Calculation

Subgraph Mining

Dataset Reduction

Graph Reduction

Graph Parsing

(b)

5 10 15 20 25 30 35

n

0

5

10

15

20

P
e
rc

e
n
ta

g
e
 o

f
fu

n
ct

io
n
s

(%
)

pq-Grams

NoTED

ZhangShasha

(c)

Fig. 5. Average performance and effectiveness diagrams for the bugs of the dataset. Diagrams (a) and (b) provide the elapsed time for each run of the algorithm.
Diagram (a) depicts the total elapsed time of the pq-Grams and ZhangShasha approaches versus the value of parameter n (which denotes the number of traces
retained from each of the two sets, correct and incorrect), while diagram (b) illustrates the performance for each phase of the algorithms in logarithmic scale.
Diagram (c) illusrates the percentage of functions to be examined in order to detect the bug, versus n.

n is large enough. In fact, the pq-Grams and ZhangShasha
approaches provide a better ranking for the third bug if n is
greater than or equal to 25. Effectiveness is also satisfactory
for the first two bugs. The diversity of the results for the three
bugs is rather expected since the size of the traces is different
for each bug (see Table II). Thus, the third bug produces a
much more difficult test case than the other two.

The impact of n on effectiveness is illustrated in Figure 5c,
which depicts the percentage of functions required to be exam-
ined versus n for the three implementations. The effectiveness
of our algorithms is indeed significant for large enough values
of n. Although small n values result in less satisfactory results,
this is rather expected since useful trace information is lost.
However, selecting an appropriate n value not only reaches but
also surpasses the effectiveness of the NoTED algorithm.

VI. CONCLUSION AND FUTURE WORK

Although there are several approaches for locating non-
crashing bugs in source code, many of them suffer from
scalability issues. With support from the experimental results
of subsection V-B, we argue that our approaches achieve
scalability without compromising effectiveness. According to
our findings, reducing also the size of the dataset, as opposed
to reducing only the graphs, yields quite promising results.

Concerning the dataset reduction step, both TED algo-
rithms are very efficient. Although the performance of Zhang-
Shasha is satisfactory, using pq-Grams provided faster runs and
better function rankings. Conclusively, when only the relative
edit distance of tree pairs is important, approximate TED
algorithms, such as pq-Grams, perform similarly to exact ones.

The field of dynamic bug detection is far from exhausted
when it concerns creating a scalable and effective algorithm.
We argue, however, that our algorithms are a step in the right
direction. Future research includes further testing to explore
their efficiency in different datasets. In addition, further anal-
ysis of TED algorithms could lead to more effective solutions.
Finally, the dataset reduction and subgraph mining steps can
also be improved by designing new approaches. In any case,
dataset reduction should definitely be taken into account.

REFERENCES

[1] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” SIGPLAN Not., vol. 38, no. 5, May 2003,
pp. 141–154.

[2] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 5, Sept. 2005, pp. 286–295.

[3] M. Renieris and S. Reiss, “Fault localization with nearest neighbor
queries,” in Automated Software Engineering, 2003. Proceedings. 18th
IEEE International Conference on, 2003, pp. 30–39.

[4] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining Behavior Graphs
for ”Backtrace” of Noncrashing Bugs,” in SDM, 2005.

[5] G. Di Fatta, S. Leue, and E. Stegantova, “Discriminative pattern mining
in software fault detection,” in Proc. of the 3rd international workshop
on Software quality assurance (SOQUA), 2006, pp. 62–69.

[6] F. Eichinger, K. Böhm, and M. Huber, “Mining edge-weighted call
graphs to localise software bugs,” in European Conference on Machine
Learning and Knowledge Discovery in Databases, 2008, pp. 333–348.

[7] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM), 2002, pp. 721–724.

[8] Y. Chi, Y. Yang, and R. R. Muntz, “Indexing and mining free trees,” in
Proc. of the Third IEEE International Conference on Data Mining, ser.
ICDM ’03, 2003, pp. 509–512.

[9] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”
in Proc. of the 9th ACM international conference on Knowledge
Discovery and Data Mining, ser. KDD ’03, 2003, pp. 286–295.

[10] K.-C. Tai, “The tree-to-tree correction problem,” J. ACM, vol. 26, no. 3,
July 1979, pp. 422–433.

[11] K. Zhang and D. Shasha, “Simple fast algorithms for the editing
distance between trees and related problems,” SIAM J. Comput., vol. 18,
no. 6, Dec. 1989, pp. 1245–1262.

[12] N. Augsten, M. Böhlen, and J. Gamper, “Approximate matching of hi-
erarchical data using pq-grams,” in Proceedings of the 31st international
conference on Very large data bases (VLDB), 2005, pp. 301–312.

[13] “daisydiff: A java library to compare html files,” [retrieved August,
2013]. [Online]. Available: http://code.google.com/p/daisydiff/

[14] “Software & algorithms, ISSEL,” [retrieved August, 2013]. [Online].
Available: http://issel.ee.auth.gr/software-algorithms/

[15] M. Philippsen, M. Wörlein, A. Dreweke, and T. Werth, “Parsemis: The
parallel and sequential mining suite,” [retrieved August, 2013]. [Online].
Available: www2.informatik.uni-erlangen.de/EN/research/ParSeMiS/

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, Nov. 2009, pp. 10–18.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

