
Moonlighting Scrum: An Agile Method for Distributed Teams with Part-Time

Developers Working during Non-Overlapping Hours

Philipp Diebold, Constanza Lampasona

Fraunhofer Institute for Experimental Software Engineering

Kaiserslautern, Germany

{philipp.diebold, constanza.lampasona}@iese.fraunhofer.de

Davide Taibi

Software Engineering Research Group

University of Kaiserslautern

Kaiserslautern, Germany

taibi@cs.uni-kl.de

Abstract—Scrum and several agile development processes are

becoming increasingly popular since they offer the ability to

manage volatile requirements. This applies to many types of

projects and teams. In case of development teams with

moonlight developers working for at most ten non-overlapping

hours per week, not all Scrum practices can be applied. In this

paper, we introduce Moonlighting Scrum, an adaptation of

Scrum aimed at optimizing effectiveness and efficiency by

minimizing the amount of communication to the least

necessary and maximizing the time invested in development.

Our aim is to accomplish this by modifying Scrum practices to

achieve a trade-off between development and communication

effort to produce the best final results, given the available

resources and time. An application of Moonlighting Scrum

took place in a real cooperative project and provided

interesting results.

Keywords-agile software development; Scrum; distributed

development

I. INTRODUCTION

The adoption of agile software development processes
has increased over the years. Agile methodologies are
known for being lightweight, which implies moving from
heavyweight processes to methods allowing shorter
development cycles and more intensive customer
involvement. For this reason, many companies have been
moving from plan-based development to agile development.

As mentioned by Boehm and Turner [3], these two
approaches to software development are considered as
opponents. Software development teams often need to stick
to one specific process with a defined name and tailor it to
their own needs [3]. We believe that the choice of a specific
process should be based on tailoring the most advantageous
practices from agile and plan-based approaches that best fit
the respective team’s and project’s needs. To answer the
issue with which we are confronted, we need such tailoring
and a combination of approaches.

We encountered this issue during a software
development project we are currently involved in and where
requirements evolve over time, which suggested that we use
an agile approach. Moreover, our developers are mainly
students or researchers doing development in addition to
their main activities (study or research), with part-time
contracts for at most eleven hours per week without time
constraints. Because they are developers in their second job,
we call them moonlighters.

In addition to the short time they have available to invest
in the project, there is the problem that they are working
during different time slots, which makes daily meetings very
difficult and pair programming impossible. This suggested
the use of a less agile process.

Nonetheless, and although they work part-time, there is
still the need for coordinating their work and monitoring
project progress.

All these variables in the context of our development
projects led us to research the following questions:

RQ1: How much communication is needed to

achieve a project’s goals? (Effectiveness)

RQ2: How much communication is needed before

communication overhead becomes too large?

(Efficiency)
Our goal is to find an adequate balance or combination

of plan-based and agile approaches which best fits the
context of our development projects: distributed
moonlighters working during non-overlapping times. The
proposed development approach is an adaptation of Scrum,
which integrates existing development methods into an agile
environment. It addresses a process “to produce best end
results, given the current resources and time available” [9,
pg. 25]. The approach should be helpful for teams in a
similar context because such a constellation is very common
in software development, e.g., for open source project or at
German universities.

In Section II, we discuss different methodological
approaches to software development and their advantages
and disadvantages for our development context. In Section
III, we introduce an adaptation of a distributed Scrum
method that fits our needs, called Moonlighting Scrum. In
Section IV, we show how we applied the process in a real
project and the measurement plan we applied. Finally, in
Section V, conclusions and future work are presented.

II. RELATED WORK

Today’s software development processes range from
heavy weight plan-based development, such as the waterfall
model [15], to incremental and lightweight agile
methodologies, such as Extreme Programming [1]. The
spiral model combines some aspects of the waterfall model
and introduces risk management as a regular step during the
process. Unlike the waterfall model, the spiral model
iterates through several steps during the entire product
development. On the opposite side, agile methodologies

318Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

include some aspects of iterative models allowing for fast
reaction to changes in requirements (Figure 1).

Figure 1. Spectrum of software development processes

Nevertheless, no process fits well to every project

context and therefore several other processes have appeared
in the literature. In this work, we will introduce the most
important approaches we took into account during the
design of our model: plan-based development in general and
agile development processes such as Scrum, Distributed
Scrum, and Extreme Programming.

A. Plan-based Development

Plan-driven development approaches (also known as
document-centered approaches) such as the waterfall [15],
V-Modell XT [7], iterative, or spiral process models [4] are
mainly document-centered approaches differing in their
execution of the different Software Engineering (SE) phases
and have several common requirements on assuring good
software quality in their performance. Normally, they are
performed for larger projects with larger teams, but with
smaller teams the amount of project management stays
almost the same [5]. Additionally, plan-based projects try to
avoid refactoring because it is very expensive [2], even in a
large project, as changes can influence many parts of the
product. In contrast to other approaches, plan-based
development covers current and future requirements in the
architecture. However, this also implies early stable
requirements. The developers using such an approach need
to work in a plan-oriented manner and have adequate skills
or access to external knowledge. The customers of products
developed with such plan-based development need to be
collaborative, representative, and empowered, since they are
mainly involved at the beginning when it comes to making
decisions about the requirements.

Plan-based approaches have several disadvantages for
the project we want to perform because we only have a
small team where all team members are distributed and
work during different time slots. In addition, most of the
requirements are not stable – and might even not be finished
at the beginning of the project. This might lead to a
considerable number of refactoring steps, which are
expensive in plan-based development.

B. Scrum

The vast majority of Scrum practices are not new to SE.
Scrum was developed at Easel Corporation in 1993 [1],
basically with the same idea behind Barry Boehm’s Spiral
Model [4].

Scrum speeds up the requirements adaptability of the
spiral model with some agile practices from Extreme
Programming [13], such as pair programming and daily
meetings.

Scrum is a lightweight, iterative, and incremental
development model based on three principles: transparency,
inspection, and adaptation.

Moreover, Scrum prescribes formal practices for
inspection and adaptation:

• Sprint Planning Meeting
• Daily Scrum: daily meeting where each member

answers three questions:
o What did I do yesterday that helped the

team meeting the sprint goal?
o What will I do today to help the team meet

the sprint goal?
o Do I see any impediment that prevents me

or the team from meeting the sprint goal?
• Sprint Review
• Sprint Retrospective
Because of the practical requirements, we cannot apply

Scrum directly in our team but need to adapt it in a
distributed way.

C. Distributed Scrum

Distributed teams always face different issues when
applying development models. If we increase team
distribution, we need to introduce a classification in
cooperative SE using globally distributed teams [11]:

• Collocated: Team members are all in the same
location.

• Collocated Part-Time: Team members are usually all
in the same location but some of them occasionally
work off-site. They face similar issues as distributed
teams even if they have the opportunity to meet face
to face.

• Distributed with Overlapping Work Hours: Team
members have a few hours during the workday in
which they interact with each other. Scrum meetings
can be held during the overlapping time. Sprint
planning meetings are more difficult and tend to be
less efficient.

• Distributed with No Overlapping Work Hours:
Teams have no interaction during their working
hours.

In addition to the different levels of distributed teams,

we also have to take into account different models that can
be considered when using Scrum with distributed teams [17]
(Figure 2):

• Isolated Scrums: Teams are isolated across
geographies.

• Distributed Scrum of Scrums: Scrum teams are
isolated across geographies and integrated by a
Scrum of Scrums that meets regularly across
geographies.

• Totally integrated Scrums: Scrum teams are cross-
functional with members distributed across
geographies. Additionally, each team has members
in several locations and has its own Scrum Master.

319Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 2. Strategies for distributed Scrum teams [10]

Several works report on the application of Scrum with
one of these three categories [8][10][12][13][16].

Sutherland reports on two examples of project
management with distributed Scrums of Scrums and fully
distributed Scrums [17][18]. These works led to the
conclusion that distributed teams can be as productive as
small collocated teams if the entire set of teams works as a
single team with a global development infrastructure
(repository, tracking and reporting tool, and daily meetings).
Unlike our work, all teams were composed of several
developers working full time and focused on team
interaction with daily meetings.

However, not much work has been done to date
regarding how to reduce the effort for each team member in
teams working during non-overlapping hours.

D. Extreme Programming

Extreme Programming [1] is another lightweight
software development methodology, which also arose from
the need for agility in the development process. Its main idea
consists of taking best development practices to the extreme
by eliminating anything that might interfere with
productivity. The methodology emphasizes incremental
development as a response to changing customer needs. Its
creator Beck claims that it is especially suitable for small to
medium-sized teams. The main practices include pair
programming, refactoring, and simple design.

Extreme Programming has been criticized because of its
lack of emphasis on design and documentation, which would
encourage hacking [9]. It also requires pair programming,
which suggests that it might require more effort. People also
criticize that it requires constant customer availability and
very disciplined teams, which could make its adoption more
difficult.

For our context, Extreme Programming is the least
suitable methodology, as the team members work only part-
time and during different time slots.

TABLE I. COMPARISON OF DEVELOPMENT PROCESSES

 Requirements

and SE

Practices

Meetings and

Communication
Roles

Location and Working

Hours

R
eq

u
ir

em
en

ts
 c

h
an

g
e

d
u

ri
n
g

 p
ro

je
ct

R
ef

ac
to

ri
n

g

P
ai

r
p

ro
g

ra
m

m
in

g

D
ai

ly
 m

ee
ti

n
g

R
ev

ie
w

 a
n

d
 r

et
ro

sp
ec

ti
v

e

P
la

n
n
in

g
 m

ee
ti

n
g

In
it

ia
l

m
ee

ti
n

g

S
cr

u
m

 m
as

te
r

D
ev

el
o
p
er

s

P
ro

d
u

ct
 o

w
n
er

/C
u

st
o

m
er

P
ro

je
ct

 m
an

ag
er

C
o
ll

o
ca

te
d
 d

ev
el

o
p
er

s

C
o
ll

o
ca

te
d
 p

ar
t-

ti
m

e
d
ev

el
o

p
er

s

D
is

tr
ib

u
te

d
 t

ea
m

s,
 o

v
er

l.
 h

o
u

rs

D
is

tr
ib

u
te

d
 t

ea
m

s,
 n

o
n

-o
v

er
l.

 h
o
u

rs

D
is

tr
ib

u
te

d
 d

ev
el

o
p
er

s.
 n

o
n

-o
v
er

l.
 h

o
u

rs

Plan-Based x x x x x x x x x

Moonlighting Scrum x x (x) x x x x x x x

Scrum x x x x x x x x x x x x x

XP x x x x x x x x

III. MOONLIGHTING SCRUM

Distributed teams with part-time developers working
during non-overlapping hours are used in several projects.
Moreover, at the University of Kaiserslautern,
development is often assigned to students with part-time
contracts, which requires them to work for a small
number of hours per week, in their spare time.

Applying the existing development processes to these
teams is always challenging. Table I compares some of
the most important development methodologies with
Moonlighting Scrum. As we can see from Table I, plan-
based development and XP cannot be applied at all, while
Scrum has some points in common.

Moonlighting Scrum is a Scrum extension that helps
developers to structure the development process with the

320Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

goal of releasing the best product possible with the
available resources in time.

Just like Scrum, Moonlighting Scrum requires sprint
planning meetings, sprint reviews, and retrospectives
(Figure 3). During the meetings, the whole team and the
product owner must meet in person or via video
conference.

In Scrum, sprints last from two to three weeks,
whereas in Moonlighting Scrum they last from one to two
weeks.

Because of the physical distribution and the non-
overlapping time for the developers, pair programming
cannot be applied and the daily meetings prescribed by
Scrum cannot be attended in person.

Figure 3. Moonlighting Scrum process schema

Code quality and inspection are the responsibility of
the Scrum master, who is in charge of checking overall
quality and help the developers preserve a minimum
amount of code quality. Moonlighting Scrum is thought to
deliver the highest quality possible if limited resources are
available.

Therefore, as reported in [12], we substituted morning
meetings with an online forum by creating a thread for
every six working hours to which each developer posts
his/her comments by replying to three questions:

 What have you completed, with respect to the
sprint goal, since the last daily meeting?

 What specific tasks, with respect to the sprint goal,
do you plan to accomplish until the next daily
meeting?

 What obstacles got in the way of completing this
work?

The Scrum Master also has to take care of

communication efficiency by reducing or increasing the

online reporting interval, and is in charge of increasing or

decreasing the reporting time based on the team’s

efficiency.

For this reason, the team members must also answer

two additional questions in their online report:

 When did you work (start-end)?

 How much time did you spend on writing this
report?

The developers are working for at most ten hours per
week and are requested to work for at least two hours
continuously. Consequently, the time needed to write the
report at the beginning and at the end of their work might
take up an important percentage of their working time.

In classical Scrum, daily meetings take 15 minutes.
Taking into account 40 working hours per week, daily
meetings should take up approximately 3% of the
working time.

 In contrast, Moonlighting Scrum requires an online
report, which usually takes from 5 to 8 minutes, every
four to six working hours [12], with at least one report per
week. If the developers work for more than six hours per
week, they are requested to report twice. The estimated
working time used for both cases is 3.5%.

TABLE II. EFFORT REQUIRED

Hours/

week

Weeks/

sprint

Hours/

meeting

Minutes/

daily report

Scrum 40 2-3 4 15

Moonlighting

Scrum
4-10 1-2 2 8

Sprint planning, review, and retrospective meetings in

Scrum take four hours per sprint, with sprints lasting from
two to three weeks and effort ranging from 3.3% to 5%
[12][14].

In Moonlighting Scrum, meetings take suggested two
hours with an approximate effort ranging from 6.6% to
12.5% (Table II).

Taking into account the communication issues in a
highly distributed team with non-overlapping hours,
communication time does not grow significantly, ranging
from a maximum of 8% in Scrum to a maximum of
15.5% in Moonlighting Scrum (Table III).

TABLE III. ESTIMATED COMMUNICATION

Moonlighting Scrum is applicable to a wide range of

projects, from university- and research-based projects to
open source projects. In general, the process requires
more relative effort for communication than Scrum but
allows developing code in a controlled and structured
way. The process is applicable whenever we are faced
with distributed developers working during non-
overlapping hours.

IV. APPLICATION OF MOONLIGHTING SCRUM

Moonlighting Scrum has been applied for the initial
development of the software project Technology
Repository and Process Configuration Framework [6].
The development started in February 2013 and the first
version of the tool was released at the end of May 2013.

 Meeting time
Reporting

time
Overall time

Scrum 3.3% - 5% 3% 6.3%-8%

Moonlighting

Scrum
6.6%-12.5% 3% 9.6%-15.5%

321Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A. Team Organization

The development team is composed of six people.
Some of them are employees of Fraunhofer Institute for
Experimental Software Engineering IESE, while the
others work for the “Software Engineering Research
Group - Processes and Measurement” of the University of
Kaiserslautern. All developers have an intermediate level
of experience in software development, while none of
them has any experience with agile methodologies.

The developers work part-time, with weekly working
hours ranging from four to ten, and together spent a total
of 39 hours per week on this project.

In order to manage the whole project, from
development to communication aspects, we adopted a
development infrastructure covering several aspects. The
team meets in person during the sprint meeting or, in
exceptional cases, via video conference, whereas online
reports are recorded in a forum by creating a post for each
report.

Sprint retrospectives, planning, and retrospective
discussions are led by means of an online integrated tool
[19], which allows us to record sprint reports, manage
product backlog, and draw burn-down charts.

In addition to this infrastructure and in order to
increase collaboration between team members, we also set
up a Subversion [13].

B. Process Measurement and Improvements

In order to answer the research questions (RQ1 and
RQ2), we defined a Goal-Question-Metric measurement
plan that allowed us to derive appropriate productivity
and communication metrics that impact on effectiveness
and efficiency (Table IV).

To define a usable measure for productivity, we
considered User Stories (US) as the basic measurement
unit.

Since the development is carried out by means of a
Rapid Application Development (RAD) Tool (Microsoft
Visual Studio 2012), we do not collect code metrics such
as lines of code, code complexity, or other metrics
because the vast majority of the code is generated
automatically by the RAD tool; however, we did define
metrics.

Communication time is expressed in terms of time
needed to write the online reports and attend the sprint
meetings. Total communication time is calculated
summing up these two per person. As an example, the
training sprint meeting lasted 120 minutes but considering
that five people attended the meeting, the total time for
the training sprint was 600 minutes (10 hours).

As shown in Table IV, we managed to achieve a sprint
meeting duration of two hours or less, except for sprint 1
where the vast majority of topics involved training issues
related to the previous training sprint. Total
communication time (without reading the online reports)
decreased and became stable after two sprints, with effort
ranging from 13% to 18%.

On average, communication time required 17% of the
total time: 16.4% for the sprint meetings, 0.6% for the

online reports, and 83% for development. As a result of
this experiment, communication time was slightly higher
(17%) than expected (9.6%-15.5%).

TABLE IV. MOONLIGHT SCRUM COLLECTED DATA

Productivity Communication

#
 d

a
y

s
p

e
r

S
p

r
in

t

T
o

t
w

o
r
k

in
g
 h

o
u

rs

#
A

ss
ig

n
e
d

 U
se

r

S
to

r
ie

s

#
C

o
m

p
le

te
d

 U
se

r

S
to

r
ie

s

O
n

li
n

e
r
e
p

o
r
t

ti
m

e

(m
in

u
te

s)

S
p

r
in

t
m

e
e
ti

n
g

 t
im

e

(m
in

u
te

s)

C
o

m
m

u
n

ic
a

ti
o

n

ti
m

e/
to

ta
l

ti
m

e
(%

)

Training

Sprint
10 16 3 3 8 120 63%

Sprint 1 9 50 4 3 26 150 26%

Sprint 2 10 56 6 5 30 120 18%

Sprint 3 14 78 7 6 22 120 14%

Sprint 4 15 84 7 5 27 90 13%

Sprint 5 10 56 5 4 16 120 14%

Sprint 6 11 61 7 5 18 120 17%

Sprint 7 11 61 5 4 26 120 17%

Sprint 8 12 67 3 2 24 120 17%

The application of this process will continue for another

three months for project maintenance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a solution aimed at finding
an adequate process for distributed teams with part-time
developers working during non-overlapping hours who
only have a small amount of effort available per week (ten
or less hours per week). Our idea consists of making a
trade-off between plan-based and agile development
processes. The proposed process is an adaptation of
Scrum aimed at optimizing the effectiveness and
efficiency of the developers. This means that our goal is
to optimize productivity by minimizing the amount of
communication to the minimum necessary and
maximizing the time invested in development. Our aim is
to achieve this with the following instruments:

• Sprint planning, sprint reviews, and retrospective
meetings are done in person or via video
conference;

• Developers must work for a minimum of two
continuous hours;

• Daily meetings are replaced by writing a report in
an online forum every six working hours;

• Developers voluntarily report the effort they invest
into development and reporting;

• Scrum Master performs code reviews.

The application of Moonlighting Scrum on a real

project confirmed that the process can be successfully

322Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

applied in the university context and helps to keep track
of the development steps and to maintain low
communication effort.

The project where we applied Moonlight Scrum will
continue for another three months for the maintenance
phase.

As expected, the process helped us keep track of the
development progress. After some initial training and
after resolving some technology issues resulting from the
new activities required from our developers as well as
from the complexity of the domain infrastructure (cyber-
physical systems), we were able to maintain low
communication overhead.

In future, we will encourage our colleagues working
on similar projects to use Moonlighting Scrum process to
obtain more evidence to improve it. This should also be
done with some open-source development as well as
industrial projects to generalize the results.

In addition to this generic aspect we will also try to
improve the approach by using other collaboration tools
or improving the communication with an online-chat
conference system.

ACKNOWLEDGMENT

This paper is based on research being carried out in the
ARAMiS (BMBF O1IS11035Ü) project funded by the
German Ministry of Education and Research (BMBF).

REFERENCES

[1] K. Beck andC. Andres,“Extreme programming explained.
Embrace change” Addison-Wesley Boston, ed. 2, 2005, pp.
64-69.

[2] B. Boehm,“Get ready for agile methods, with care”
Computer, vol. 35(1), Jan. 2002, pp. 64-69, doi:
10.1109/2.976920.

[3] B. Boehm and R. Turner,“Balancing agility and discipline.
A guide for the perplexed” Addison-Wesley Boston, 2004.

[4] B. Boehm,“A spiral model of software development and
enhancement” IEEE Computer, vol. 21(5), May 1988, pp.
61-72, doi:10.1109/2.59 .

[5] M. Ceschi, A. Sillitti, G. Succi, and S. De Panfilis,“Project
management in plan-based and agile companies” IEEE
Software, vol. 22(3), May-June 2005, pp. 21-27,
doi:10.1109/MS.2005.75.

[6] P. Diebold, “How to configure SE development processes
context-specifically?”Proc. International Conference on
Product-Focused Software Development and Process
Improvement (PROFES), Springer LNCS, June 2013, pp.
355-358, doi:10.1007/978-3-642-39259-7_33.

[7] German Federal ministry of the Interios, „V-Model XT.
Definition and Documentation on the Web.”Online,
http://www.v-model-xt.de, July 2013.

[8] I. Gorton and S. Motwani,“Issues in cooperative software
engineering using globally distributed teams” Information
and Software Technology, vol. 38(10), Jan. 1996, pp. 647-
655, doi:10.1016/0950-5849(96)01099-3.

[9] J. Hunt,“Agile software construction”Springer London,
2005.

[10] J. Kontio, M. Hoglund, J. Ryden, and P. Abrahamsson,
“Managing commitments and risks: challenges in
distributed agile development” Proc. International
Conference on Software Engineering (ICSE), IEEE Press,
May 2004, pp.732-733, doi:10.1108/ICSE.2004.1317510.

[11] M. Korkala, and P. Abrahamsson, “Communication in
distributed agile development: a case study”Proc.
EUROMICRO Conference on Software Engineering and
Advanced Applications, IEEE Press,Aug. 2007, pp. 203-
210, doi:10.1109/EUROMICRO.2007.23.

[12] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, “Applying
SCRUM in an OSS Development Process: Empirical
Evaluation.” Proc. International conference on Agile
Software Development (XP), Springer LNBI, June 2010,
pp 147-159, doi:10.1007/978-3-642-13054-0_11.

[13] N. Sridhar, M. RadhaKanta, and M. George, “Challenges of
migrating to agile methodologies.” Communications of the
ACM – Adaptive complex enterprises (CACM), vol. 48,
May 2005, pp. 72-78, doi:10.1145/1060710.1060712.

[14] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using
scrum in a globally distributed project: a case study.”
Software Process: Improvement and Practice – Global
Software Development, vol. 13(6), Nov. 2008, pp. 527-544,
doi:10.1002/spip.v13:6.

[15] W. Royce, “Managing the development of large software
systems: concepts and techniques” Proc.Technical Papers
of Western Electronic Show and Convention
(WESCON),IEEE Press, Aug. 1970, pp. 1-9.

[16] J. Sutherland,“Agile development: lessons learned from the
first Scrum”Cutter Agile Project Management Advisory
Service: Executive Update, vol. 5, 2004, pp. 1-4.

[17] J. Sutherland, G. Schoonheim, and M. Rijk, “Fully
distributed scrum: replicating local productivity and quality
with offshore teams.” Proc. Annual Hawaii International
Conference on System Sciences (HICSS), IEEE Press, Jan.
2009, pp. 1-8, 2doi:10.1109/HICSS.2009.225.

[18] J. Sutherland, A. Viktorov, J. Blount, and N.
Puntikov,“Distributed Scrum: agile project management
with outsourced development teams.” Proc. Annual Hawaii
International Conference on System Sciences (HICSS),
IEEE Press, Jan. 2007, pp. 274a.

[19] RallyDev http://www.rallydev.com (Last access July 2013)

323Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.rallydev.com/

