

Value-Based Technical Debt Model and Its Application

Marek G. Stochel, Mariusz R. Wawrowski, Magdalena Rabiej

Motorola Solutions
Kraków, Poland

{marek.stochel, mariusz.wawrowski, magdalena.rabiej}@motorolasolutions.com

Abstract—The majority of software development today is being

conducted in a value-neutral setting, where each functionality

once being locked down as a part of software release is treated

as equally important. This limited visibility of the real value

perceived by customer inside software engineering

organizational departments has significant consequences in the

way the technical quality of the product is being evaluated and

maintained. The relentless pursuit of efficiency in the software

engineering domain requires a broader view of long-term

economical consequences of any product-related decision.

Technical debt typically is an internalized (engineering-based)

assessment. We propose to expand the understanding and

visibility of the technical debt by introducing a model driven

approach to provide the means to assess the technical debt

impact on perceived product quality parameters, such as

codebase/design and architecture, engineering productivity,

and finally the company’s business return on the engineering

investment. Furthermore, the case studies presented in this

paper are focused on the application of the technical debt

concept—how it could be identified, measured and what are

the consequences of not managing it. The key principles of this

concept were proved to be valid while evaluating the

development of a major software system release. Finally, the

need for balanced view for the technical debt management

strategy is discussed, to ensure pay-off benefits are aligned
with time-to-market expectations.

Keywords—Technical Debt; Software Life Cycle; Software

Economics; Software Development and Maintenance; Wisdom of

Crowds; Value Based Software Engineering.

I. INTRODUCTION

The technical debt metaphor refers to the product’s
deficiencies, caused by shortcuts or incomplete engineering
knowledge, which may speed up software development and
delivery, but inevitably have their drawbacks and incur
additional, delayed costs [7][8]. Unfortunately, due to its
mostly internalized nature (engineering-based), technical
debt is sometimes hardly recognized even by the very
business unit where it was created and which is responsible
for business return on the engineering investment. We claim
that focus should be not only on the product/solution
deficiencies, but also on how the value perceived by
customers and profitability of a business unit are directly or
indirectly impacted. The significant problem with managing
technical debt and establishing pay-off strategy lies in the
definition of the value to the customer/product/business
return. Therefore, we believe that binding technical debt to
the real value for the customer and hence the products return

on investment (ROI) for the business (profitability) provides
a better understanding of the potential consequences of not
managing it. Additionally, awareness of the current and
predicted product/solution condition is raised as a leading
indicator.

The realization of value during software development
was also the rationale for Boehm’s Value Based Software
Engineering concept [1][2], for which we propose a slight
adjustment (marked by the dashed line) of the value
realization feedback process to explicitly measure and
manage technical debt (Fig. 1).

Figure 1. Value realization feedback process enhanced with technical debt

cost assessment

As a consequence, technical debt is analyzed and
discussed in this paper as a three-layered model, consisting
of codebase/design debt, architecture debt, and portfolio
debt. From this perspective long-term consequences for
engineering and business are visible and understandable,
leading to an established communication strategy across
these functional areas. This aligns the effort spent in the
oftentimes numerous departments of an organization during
the planning and execution phases. Missing any of these
critical layers of value-added granularity will provide a
considerably less robust prioritized definition, and as a result,
a distorted view of potential consequences of the technical
debt the organization has already experienced and
accumulated and may well continue to do so.

While introducing the model-based approach and the
discussing underlying rationale, this paper provides also
specific examples of how to calculate the technical debt
value for subsequent layers, and how the total technical debt
value may be coherently assessed. This discussion is
supported by the results of two experiments. The first one
was conducted to compare the subjective and objective ways
of assessing the technical debt, the second—to understand
the consequences of the missing knowledge about technical
debt and related management strategy. Finally, we discuss

Develop/update
business case;
time-phased
cost, benefit
flows; plans;
assumptions

Perform
to plans

Determine corrective actions

Value
being

realized?

Technical
debt cost
accept-
able?

Assump-
tions still
valid?

Yes Yes

Yes

No No No

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the consequences the proposed model incurs and suggest
further areas of the research and investigation.

II. REVIEW OF LITERATURE

Although Cunningham refers to technical debt as a result
of gaining knowledge during development [7][8], rather than
deliberate choice, we should not neglect the fact that
sometimes the latter is justifiable, as suggested by Brazier
[3]. Some may suggest that technical debt should be tightly
coupled only with the coding aspects that were caused
deliberately, as it was referred by Fowler [12]. Furthermore
he states that the question should be whether the technical
debt metaphor is useful to discuss the design problems. This
was supported by the technical debt quadrant concept
referring to whether the debt is prudent or reckless, and
running into it was deliberate or inadvertent [12]. Other
authors expand the technical debt metaphor and propose the
Modern Portfolio Theory [15] to calculate technical debt and
the resulting associated risk. The risk based approach for
software architectural decisions was also discussed by
Fairbanks [10]. Following that path (usefulness of the
metaphor), we propose to integrate these aspects tying
technical debt to real business value in order to enhance
communication and visibility.

III. THE MODEL

Understanding technical debt and how it changes over
time should be performed consistently across the
organization for both the product and the portfolio. In order
to achieve this goal we propose a three-layered model
aligned with a typical software product development
lifecycle (Fig. 2). Note that codebase/design debt is
aggregated by architectural debt, and this in turn is
aggregated by portfolio debt.

Figure 2. The three-layered model of technical debt

The rationale for this approach stems from a software
development process analysis. The P-Diagram approach
[17], usually employed for process risk assessment and
impact analysis, was used for this purpose (Fig. 3). From this
perspective technical debt can be thought of as an unintended
byproduct of the software product development process as
well as a noise factor of current development practices. Thus,
we define technical debt as:

• Caused by the very nature of the software product
development practices,

• Creating negative feedback loops, which impact all
the intended outputs: product quality, engineering
productivity, and organizational profitability,

• Being impacted by control factors, including—but
not limited to—technical debt management strategy.

Figure 3. Technical debt in the context of software product development

process

A. Technical debt—“the process view”

The software product development process constitutes
the framework for technical debt assessment. Any omission
of these aspects inevitably leads to an incomplete view of the
technical aspects concerned and may result in a technical
debt management strategy counterproductive from the
organizational perspective.

The P-Diagram components (Fig. 3) are defined as
follows:

Inputs (Signal): requests for a change in the product,
driven by the customer (Voice of Customer—VoC), the
market (VoM), and/or the business (VoB).

Outputs—Intended results (Ideal Function)
• Product Quality: product characteristics, as

perceived by both customers and producers,
• Engineering productivity (Voice of Process,

organizational capability): functionality delivered
considering effort spent, may be presented as the
engineering organization throughput (optimized cost,
quality, schedule, scope according to baseline
capability index),

• Profitability (marketing/sales): the business return on
the engineering investment between and within
projects. This can be measured as the percentage
gross margin.

Outputs—Unintended results (Error States): the
technical debt itself, which may be referred to as product and
process characteristics, internally perceived by the
organization (business unit).

Control factors: They comprise all factors, which
influence and control the software development process,
decreasing its variability thus improving predictability. For
example:

• Engineering development environment: Tools,
quality control processes, continuous software
integration

Portfolio Debt

V
is
io
n

Architecture Debt

S
tra
te
g
y

Codebase/Design Debt
Tactics

SW Product

Development

Product Quality

E
n
g.E

n
viro

nm
e
nt:

tools &
 co

ntrol p
rocesse

s

K
now

le
dg
e M

a
na
gem

en
t

P
rod

uct Te
chn

olo
gy

(V
oT
)

Technical Debt

O
th
er n

oise

facto
rs…

E
ng
Te
am
 S
tab

ility
(e

.g. a
ttrition

)

O
th
er co

ntrol facto
rs…

…

…

Control

Factors

Noise

Factors

Ideal Function

Error States
(Unintended Result)

Te
chn

icalD
eb
t

M
a
na
ge
m
en
t S
tra
te
gy

B
usiness

P
ressu

re
s

Engineering
Productivity

Signal

Customer Needs
(VoC)

Business Needs
(VoB)

Market Needs
(VoM)

Profitability

206Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

• Knowledge management/sharing: Activities
pertaining to information interchange, supporting
seamless communication, and ensuring optimal work
assignments

• Technology/product management: Activities
controlling technical inflation [11] with focus on
technology alternatives, ensuring robust testability

• Technical debt management strategy
Noise Factors: They are out of the direct control of the

engineering organization, for example: business pressures,
stability of engineering organization (attrition), and the
technical debt itself.

B. Technical debt trend—assessment and prediction

Despite the technical debt value being calculated, it will
naturally evolve. The question how to address these changes
should be reflected in the technical debt management
strategy. As technical debt from an unintended byproduct
becomes the noise factor later (Fig. 3), the trend impacting
predictability of intended results needs to be constantly
monitored.

Understanding the measured impact and process
capability we are able to predict whether a technical debt
level is acceptable. The metric here should provide
information how the product’s current owner cares about
maintenance and quality of the product, and how the value of
technical debt changes over time according to the
information provided by the portfolio and architecture teams.
We also need to understand how value is being realized, and
this information may be provided by a Value Based Software
Engineering approach (presented earlier in Fig. 1). As a
result, the current value of the technical debt may be
determined in the broader context of the three-layered
technical debt model. Additionally we are able to establish a
threshold of how high the tech debt value might be when
immediate action or a change in strategy is required and
whether a technical debt pay-off is justifiable from the cost
perspective.

IV. CODEBASE/DESIGN DEBT

The codebase/design debt is the most objective aspect of
technical debt. It is a concept claiming that various source
code quality indicators may be combined into one
meaningful value easier to manage. This metric may be
expressed as the effort required to change the existing
codebase into an easy to maintain, well structured and
testable code.

There are various aspects of both static and dynamic code
characteristics that can be taken into consideration to create
one meaningful technical debt metric. One can use code
complexity measures provided by standard tools, such as
Klocwork [16] or FXCop [13], to ensure that good coding
practices are followed. Other tools may provide information
that robust unit test coverage was assured. Enforcing well
defined coding standards leads to a lesser number of defects
introduced during integration to the version control engine,
thus reducing the debt. Delaying integration of local software
changes leads to a debt increase: the greater the delay, the
less probability of an effortless integration. In principle, the

set of measures and tools should explicitly reflect the
software product’s true characteristics in its intended
environment.

A. Measurement Approaches

One approach, proposed for Java-based projects, is the
Sonar approach [14]. Sonar is an Open Source Software
quality management tool, which leverages the existing
ecosystem of quality open source tools (for example:
Checkstyle [4], PMD [20], Maven [18], and Cobertura [6]),
to offer a fully integrated solution for development
environments and continuous integration tools. Being
accompanied by technical debt plug-in, Sonar is able to
monitor static and dynamic metrics on the project and
enforce coding best-practice rules, supporting defect
prevention effort.

Another way to assess technical debt in codebase/design
may be Wisdom of Crowds technique, which is based on the
approach proposed by Surowiecki [22]. This technique has
already proved successful in the prediction of defect
distribution among system areas [23] and, although not
mentioned explicitly, it was a major component of a
proposed test case prioritization approach [24]. The software
development team, if mature, can readily assess the code
quality with precision and predictable results. However, in
order to properly assess technical debt using the Wisdom of
Crowds method, the following conditions must be met:

• Diversity of opinion—each person should have an
opportunity to voice private information (even if it is
his/her view of known facts),

• Independence—we have to assure that people can
voice their concerns/opinions, and not repeat those
of more senior, influential ones,

• Decentralization—we have to ensure the opportunity
to present different perspectives, as people are able
to specialize and provide conclusions based on local
knowledge,

• Aggregation—the mechanism to turn private
judgments into a collective opinion.

A more detailed overview of importance of these factors
and rationale behind them in the context of experimental
setup may be found in [23].

B. Context of the three-layered model

Technical debt introduced in the codebase/design phase
is tightly coupled with the code being implemented. It has
direct impact on the codebase cohesion, coupling, process
flow, etc. Additionally, in the Agile approach, design phase
is reduced to minimum. So the overall code and design
quality is the responsibility of a software development team
and can be assessed together using the codebase debt in the
broader context of the three-layered model. Importantly, the
technical debt ratio in a product is more of a metric how the
historical decisions were made, so it should not be used for
comparison of the organizations’ maturity. Technical debt
trend shows the efforts of the current software development
team.

Monitoring technical debt trend in the product can give a
software development team an early problem indicator,

207Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

before these software problems are actually released (where
technical debt ratio has significantly grown during the
project). Another way to use technical debt ratio is to
compare particular areas of the same code, to identify where
investment is required before any new feature is
implemented. In order to establish consistent technical debt
management strategy the team may define a baseline ratio
for codebase/design debt that reflects the acceptable debt
level for the product and optimize the particular code areas to
limit this debt ratio below the desired threshold. However,
some questions have to be answered: When to stop
optimizing? Should the code be optimized until it is “clean”
and 100% testable? Software development team may not
possess this knowledge. It is the business/architecture team
that knows what the software product’s roadmap and
strategy is: whether it is a onetime development with no
maintenance planned or mission critical software that will be
maintained for years. A decision on acceptable level of
codebase/design technical debt should be taken by the
software development team, on the basis of a feedback loop
from business/architecture to avoid sub-optimization.

C. Experiment 1: Sonar vs. Wisdom of Crowds

As it was mentioned earlier in this section, some tools
exist, which provide the technical debt calculation, for
example Sonar for Java-based products. However, more
complex products or development environments may pose a
serious challenge to find a consistent approach to evaluate
the status of the product. This was the rationale behind
comparing objective assessment provided by Sonar to the
subjective measurement strategy based on the Wisdom of
Crowds approach.

This experiment was conducted in one of the main
components of a major system release. The developers
prioritized modules according to the following criteria:

1. Where introducing changes is the most difficult
2. Which are poorly written (refactoring required)
3. Where there is high amount of latent defects
Survey results were compared to technical debt ratio

calculated by Sonar. The results were analyzed for any
correlation between objective measurements and subjective
assessment of the technical debt value. The Pearson
Correlation coefficient was calculated between each of the
criteria and values provided by Sonar. In each case,
correlation for the objectively measured technical debt (by
Sonar) and the engineering assessment was significant. The
first criterion is the closest to how technical debt is usually
perceived—the consequences of earlier short-cuts of
incomplete knowledge for current work (state of the product
being maintained). Not surprisingly, the highest correlation
with objective Sonar assessment was observed—the
correlation coefficient reached 0.84 (Fig. 4). For criteria 2
and 3, the correlation was also significant, reaching 0.75 and
0.67, respectively.

There is one more aspect, which was considered in this
assessment. An additional question was asked: Do you think
it is necessary to pay-off technical debt in an area before any
changes are introduced? The correlation with technical debt
value reported by Sonar is significant (0.61); however we

should also focus on the specific measurement points, where
although debt is low, engineers insist on paying off the debt.
This provides further insight into architectural or portfolio
debt concerns.

Figure 4. Correlation of objective and subjective assessment methods

(difficulty of introducing changes in software modules).

These three criteria mentioned earlier by no means
exhaust technical debt concept, but may provide a
representative guideline for the assessment. Modules, which
accumulated higher technical debt, are perceived as:

• Most difficult to have changes introduced,
• Badly written (require refactoring),
• Highly riddled by defects.
Statistically significant correlation was observed. This

assessment provides us with a good overview of the quality
perceived by engineering (e.g. maintainability) as well as
overall quality visible to the customer (e.g. error proneness
of certain system areas).

If we use all the answers as a basis for aggregation,
instead of aggregating them question by question, the
Pearson correlation coefficient still remains high (0.77).
Therefore, we claim that having common understanding of
technical debt and its consequences, the subjective
measurement based on the Wisdom of Crowds method can
provide reliable and consistent results in comparison with
objectively defined measurements (in this case Sonar
output). This fact opens a possibility of measuring the
technical debt in more complex software products, even of a
heterogeneous nature.

D. Experiment 2: Naturalistic observation—technical debt

management

The following study was conducted to answer the
question whether it is worthwhile to consider technical
debt—not only as quality indicator for already existing code,
but perhaps as a quality gate for software development
activities. Unfortunately, delayed payment for what cannot
be easily measured, or not knowing the potential
consequences and value (real costs) usually causes technical
debt to be neglected and accumulate over time, until it is
very difficult and costly to address. Without a value
associated to this, it is usually omitted during task
prioritization. In this experiment, we wanted to understand
how two similar modules behave if one is optimized against
technical debt concerns and the second is not.

D
iff
ic
ul
ty
 o
f i
nt
ro
du
ci
ng
 c
ha
ng
es

(W
is
do
m
 o
f C
ro
w
ds
)

Technical debt in days (Sonar)

Correlation of objective and subjective technical debt
assessment methods

Pearson correlation coefficient = 0.84

208Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Typically, preparation of an experimental set-up focuses
on establishing a controllable environment. Unfortunately
the very activity of preparing for the experiment may impact
its results. This is manifested in the social proof phenomenon
described by Cialdini [5]; in our case, engineers may try to
figure out what is the expected “good” result and therefore
inadvertently optimize their work against it. Providing some
framework before the experiment, even without any
explanation about the quality of the value to be compared
against, may also cause additional obstacles—such as
cognitive bias, known as anchoring [25], impacting the
results. In this particular case, we were in a very good
position as the study was actually a naturalistic observation
[21], i.e., no direct researcher influence was disturbing the
engineering activities. The retrospective analysis of the
results was performed.

We were assessing two similar database replication
handler modules, which were developed for two similar
database engines. The first one was taking into consideration
technical debt and adhering to the rules defined by Sonar
plug-in (module_1), and the second one was developed
without the knowledge and proper application of that
concept (module_2). Both modules were handling data
synchronization and monitoring mechanisms, and the same
development approach was used: pair programming during
similar timeframe. Looking into technical debt as reported by
Sonar, the value for module_1 was 2.5 times smaller than for
module_2.

The chart presented below shows the defects found and
their distribution among testing phases (Fig. 5). What can be
observed is that number of defects found in module_1 was
2.6 times smaller than number of defects found in module_2.
Moreover for module_1 test screening effectiveness was
much better at earlier phases (80%), as only 20% escaped
this activity and was found during system tests. No defects
were found post release. For the second module, similar box
test effort was capable of finding 8% of defects, 69% were
found by system tests, and finally 23% were found post
release.

Figure 5. Comparison of defect arrival distribution between modules.

The development cost of the module written neglecting
technical debt concerns was 10% smaller. But, as a result,

the cost of fixing the problems in this module was almost
two times higher than the initial creation effort. The results
confirmed that neglecting technical debt incurs not only
problems with maintenance later, but also causes higher
amount of defects found both during development process
and post release ones. We claim that technical debt value is a
reliable prediction of future software product quality.

V. ARCHITECTURE DEBT

Numerous publications emphasize the fact that
architecture is not only the macroscopic recognition of
design, but constitutes the backbone of the system,
orthogonal to its functionality, for example [10]. More
importantly, the selection of architecture is a choice between
multiple ways of implementing the system that accomplish
an established set of functionalities. The choice of
technology solutions—a decision made in the early phases of
the project—implies a more or less explicit choice of the
relevant architecture and may prevent the efficient
refactoring later (inherent activity in projects using Agile
approach). Therefore, reconstruction of the architecture,
especially based on a specific technology, becomes much
more costly. In this respect, the architecture related decisions
should be the result of continuous, long-term analysis of
customer needs, leading to an optimal solution selection.
Moreover, changing the architecture or technology of
software development needs to be a result of a complex
analysis of the business process, and qualitative assessment
against technical debt. So, the question arises: what metrics
should be used to evaluate the architecture? One approach
may be the Architecture Tradeoff Analysis Method
(ATAM), which offers “utility tree” analysis [19].
Architecture technical debt assessment can be done using
quality factors like: modifiability, scalability, and latency.
For example, modifiability directly affects the characteristics
of the cost of change, which can be treated as expression of
technical debt at an architecture level. It is essential that the
assessment of architecture should be done in reference to the
Voice of Business. Following the conceptual model of
“Portfolio Management” [15], it is necessary to assess
technical debt for each artifact created in the software
production process. Nevertheless, information on technical
debt from the architecture level is critical because it
accumulates technical feedback from the engineering teams
(involved in software development and test activities), and
directly takes into consideration information from the
business (portfolio). Fig. 6 shows a model of decision
making at the architecture level, which provides a roadmap
for software product, technology, and development process
based on all factors mentioned earlier. These roadmaps
define engineering strategy, which is driven by value and
considers organizational capability.

Technical debt in this model is presented as a trend in the
cost of software changes, and its calculation should take into
account the estimated cost of changes expected by the
customers in time. This prediction should also include the
estimated cost of change as if it were to be done in
alternative architecture or technology. As a result, the
architecture technical debt can be expressed as a set of

209Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

characteristics representing the cost of changes for the
current architectural solution and alternative ones. This
assessment should constitute a feedback to the process of
business analysis on portfolio level, where profitability trend
of the investment should be determined.

Figure 6. Technical debt limited to the context of architecture deliverables

VI. PORTFOLIO DEBT

The rationale behind portfolio debt layer (highly
dependent on external factors) lies in a strategic alignment of
effort spent by different organizational departments and
common understanding of the goal to be pursued. Referring
to the technical debt model shown in Fig. 2, a portfolio level
is accompanied by Vision for a given product in terms of
sales, market needs, technology, etc. Vision guides the
strategy definition (architecture layer) and helps to align the
software development effort (codebase/design layer). As a
result, the profitability aspect needs to be taken into account,
what can be expressed as:

 ��������	
�~ ������
�������

������

 (1)

where Cost(t) is defined as:

 Cost(t) = Ctools,IDE,COTS + Cmigration + CSW changes + Cother (2)

The selected technology should enable the organization
to make an optimal decision, which aims at the highest ROI
considering present and future customer needs and sufficient
time to market. The result of optimizing the objective
function (1) is a certain amount of observed technical debt.
For example, lack of investment in new technology and
refactoring at some point may just not yield the targeted ROI
based upon VoB. Continued analysis of this trend can lead to
a decision change, however still vulnerable to the risk of
established customer goals volatility, emerging alternative
technologies, or significant changes in market conditions.

For example, technical debt may show the estimate
variation of the cost of change in time for the three possible
technologies. Customers waiting for new and more complex

features push the existing solution to the technological
frontier. This prevents the effective implementation of new
products or improvement of the existing ones.

Let us assume that a new technology emerges, which is
very promising and the software team might be prone to
immediate migration. However, this incurs a risk that
expensive migration might not be justifiable from ROI
perspective, as the benefits will not be realized in the
expected timeframe. In such a case, a better strategy might
be an evolutionary migration, where the current software is
gradually modified (code refactoring) to compensate
technical debt in relation to the new technology. The
decision about final migration can be made when technical
debt is reduced accordingly (Fig. 7).

Figure 7. Technical debt driven by Voice of Customer optimized to

control the refactoring of architecture

The decision about migration to a new technology is
dictated by potential profitability of the estimated cost of
change reflected by the Voice of Customer (VoC). The new
technology may require additional investment but it will be
balanced by potential financial benefits that can be calculated
on the basis of VoC and VoB information. Modern Portfolio
Management offers a statistical method to calculate this risk,
making decisions about technical debt reduction
economically justifiable [15].

The need for accurate assessments and quantification of
future customer/market needs and its associated ROI is
evident. The approach of sales prediction (proposed by
Eades [9]) may be used as a reference for measuring impact
of technical debt on the value perceived by customers and
company profitability. Having the sales pipeline properly
filled in, the potential value (yield) for a particular
functionality can be estimated at any point of time (Fig. 8),
as well as technical debt value associated with it. However,
when assessing market opportunity, not only value
(interpreted as sales prediction) should be taken into account
but also how it is aligned with product long-term portfolio
planning and potential market needs. In summary, the nature
of the portfolio debt trend may not be linear, as the debt
reveals itself as a result of certain external factors. Therefore

Software

Architecture

Product Roadmap

Process Roadmap

Technology Roadmap

E
ngin

ee
ring

e
nviron

m
en
t

S
W
 Te
st &

D
eve

lopm
en
t

E
stim

atin
g
P
rocess

Technical Debt

B
usin

ess
P
ressures

E
m
erging

Tech

nolo
gy

…

…

Control
Factors

Noise Factors

Signal
Ideal Function
(Intended Result)

Error States
(Unintended Result)

Te
chn

icalD
eb
t

M
ana

ge
m
e
nt S

tra
teg

y

P
rodu

ctTechno
log
y

(V
oT
)

Customer Needs
(VoC)

Business Needs
(VoB)

Market Needs
(VoM)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

C
os
t
of
 C
ha
ng
e

Technical Debt
Architectural decisions driven by portfolio management

Migration to emerging technology

Non-standard system

Standard API

Emerging technology using API

0

0 . 5

1

1 . 5

2

2 . 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

S
iz
e
of
 W
or
k

Time/Release

Value of work - Profitability is based
on Voice of Customer

210Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

codebase/design and architecture layers have to take some
degree of assumptions and risks (even if unconsciously).
This further emphasizes the importance of communication
links presented in the next section.

Figure 8. Solution Selling Pipeline Milestone Chart

VII. COMMUNICATION NEEDS

Assessing technical debt as an inherent aspect of the
software development process reveals the critical need for
seamless communication and organizational alignment to
understand and manage all three defined layers of the
technical debt model. To remove obstacles with information
interchange the communication links as presented in Fig. 9
should be established.

Figure 9. Addressing communication needs related to technical debt

The discussed communication needs may be addressed using
a matrix matching feature development schedule with
potential benefits to be gained from technical debt pay-off.
Such a matrix (table) complements the practical use of the
three-layered model discussed in this paper. The sample
matrix implementation is presented in Fig. 10. SW Change
Request rows represent Technical Debt Items (TDI)
assessed against quality attributes. For each TDI pay-off cost
(column Cost) and savings per each roadmap feature
(columns Feature A, B, etc.) are estimated. Each feature is
assigned to a planned software release (top row: releases R1,
R2, etc.) and has a total development cost associated with
(row Cost). As a result different scenarios may be evaluated,
for example: what is the benefit of having a particular TDI
paid off in releases R1 or R2, how does it change when
scope of releases R1 and R2 will be released together? Such
a matrix supports also discussions on the budgeting
scenarios. Let us assume that a fixed budget (450k$) was
planned for a given project. The total cost of the
functionality planned for releases R1 and R2 reaches 500k$.

An investment in paying off technical debt items (170k$)
provides us with the savings of 275k$ only when features A,
B, C, D are implemented together. Summarizing, having all
technical debt items paid off, the gained benefits enable the
company to develop all features within the fixed budget (3):

 450k$ > 500k$ + 170k$ − 275k$ (3)

Figure 10. Technical debt vs. portfolio assessment matrix

However, the time to market for individual features may
be different, what may impact selling value. Such an
assessment may lead to the decision of making separate
releases, acknowledging the technical debt presence and
maximizing the profits. As a result the portfolio analysis
makes the roadmap change frequently, reflecting changing
market conditions and embracing engineering feedback. Any
external change is being reflected in ongoing
synchronization of the roadmap, thus optimizing profits and
ROI stemming from an engineering investment. Additionally
having technical debt properly assessed and being paid off
according to the long term needs, engineering organization
achieves easier maintainability of the owned code base over
a longer period of time.

VIII. CONCLUSIONS

The model proposed in this paper exemplifies the need
for a framework, in which the technical debt has to be
assessed and reveals clear rationale behind it. Moreover,
various approaches to evaluation and quantification of
technical debt were presented.

To answer the question what if the cost prohibits using
advanced analytical approaches, or there are no tools to
support such an analysis (e.g. heterogenic solutions, auto-
generated code)?, we claim that a properly conducted
subjective assessment based on the Wisdom of Crowds is
capable of providing sufficient and reliable information to
help in understanding the technical debt in such
environments and may also support prioritization of
refactoring tasks.

Technical debt prioritization may be considered in a
three-layered perspective. The consequences of this model
show how the defined layers (codebase/design, architecture
and portfolio) depend upon and are related to each other.
Neglecting any one of these dependencies may result in sub-
optimization. Moreover, from a business perspective such an

Milestone Revenue Win Odds Milestone description Yield

T sales-at-T $ Territory

S sales-at-S $ 10% Qualified Suspect 10%*sales-at-S $

D sales-at-D $ 25% Qualified Sponsor 25%*sales-at-D $

C sales-at-C $ 50% Qualified Power Sponsor 50%*sales-at-C $

B sales-at-B $ 75% Decision Due 75%*sales-at-B $

A sales-at-A $ 90% Pending Sale 90%*sales-at-A $

W sales-at-W $ 100% Win 100%*sales-at-W $

Portfolio
/

Architecture

Codebase
/

Design
Product

• Voice of Customer
• Voice of Business
• Voice of Market
• Voice of Technology
• etc

Feedback from existing customers

tech debt reduction (code/design
improvements)

Limitations due to technical
debt (e.g. technical inflation,
architecture constraints)

How to quantify the debt
(alignment/understanding)

R1 R1 R2 R1

Feature

A

Feature

B

Feature

C

Feature

D

100 80 120 200

R1 R2 R1+R2

Unit test environment Testability 20 20 10 0 10 20 -20 20

Design granularity

for subsystem S
Modifiability 15 0 0 30 10 -5 15 25

Component C

response time
Performance 35 50 5 0 40 60 -35 60

New SW Integrated

Development

Environment IDE

(CoTS)

Maintenance,

 Modifiability
100 10 0 80 10 -80 -20 0

Product roadmap - features vs. releases R1, R2,…

SW Change Request

(Technical Debt Item)

Quality

attribute

Cost

[k$] savings per feature
Savings in

211Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

effort may be treated as a waste (overproduction), which
may impede further improvement activities initiated by
engineering.

Technical debt management strategy should be the key
concern, not relentless pay-off. The understanding and
prioritization of the debt may be done on a value-basis,
providing a bridge between the business and engineering,
and a common strategy for the technical debt management.
Furthermore, experiments indirectly stressed the importance
of portfolio analysis, to confirm for which software
components refactoring effort may be prioritized.

 Even a high technical debt value may be discarded if a
particular product is close to its retirement. A different
approach may be taken when the product is planned to be
expanded, to constitute the baseline for other products
(according to predicted market needs). Another concern is
maintenance time—for long-term projects, where
maintenance is scheduled for years, the debt will have a
different value comparing to the solutions for products,
which have a significantly shorter life. Lastly, the criticality
of issues which may occur is also a very important aspect, as
mission critical communications should be treated differently
than cell phone games.

IX. FUTURE DIRECTIONS

Current work is focused on the validation of the three-
layered technical debt model and calibration of measurement
approaches among several organizational departments.
Additionally there are further concerns which may be
addressed by the future research. Several of them are
mentioned below:

Technical debt communication:
• How to address the communication needs avoiding

known “traps” in the organizations’ psychological
and sociological composition (as team cooperation
and software development are social activities).

• How much proprietary information is to be shared
with broader audience? How to ensure it is properly
handled?

ROI assessment:
• What factors should be taken into account assessing

technical debt impact on engineering productivity?
What is their relative impact and importance?

• How to assess and address the nonlinear traits of
value-based technical debt trend?

Mathematical formulae:
• How the interdependence among technical debt

layers can be approximated by mathematical
formula—expanding the model proposed by Guo
and Seaman [15]? How it may be deployed to
measure technical debt in the company with rich
software legacy, with no technical debt evidence
consistently tracked?

X. ACKNOWLEDGMENTS

We want to express our gratitude to James Joseph
Waskiel and ElŜbieta Stochel who supported the work,
relentlessly editing and reviewing the paper.

REFERENCES

[1] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Eds.
Value-Based Software Engineering. Springer, 2005.

[2] B. Boehm and L.G. Huang, “Value-Based Software Engineering: A
Case Study,” IEEE Computer, March 2003, pp. 33-41.

[3] T. Brazier, “Managing Technical Debt,” Overload Journal, Vol. 77,
Feb. 2007, retrieved on Feb. 13, 2012, from:
http://accu.org/index.php/journals/1301

[4] Checkstyle, http://checkstyle.sourceforge.net

[5] R. Cialdini, Influence: Science and Practice, 4th ed. Pearson
Education, 2000.

[6] Cobertura, http://cobertura.sourceforge.net

[7] W. Cunningham, “Ward Explains Debt Metaphor,” retrieved on
Feb. 11, 2012, from:
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

[8] W. Cunningham, “The WyCash Portfolio Management System,”
OOPSLA’92 Experience Report, Mar. 26, 1992, retrieved on Feb. 11,
2012, from: http://c2.com/doc/oopsla92.html

[9] K. Eades, The New Solution Selling: The Revolutionary Sales
Process That is Changing the Way People Sell, 2nd ed. McGraw-Hill,
2003.

[10] G. Fairbanks, Just Enough Software Architecture. A Risk-Driven
Approach. Marshall & Brainer, 2010.

[11] M. Fowler, “Technical Debt”, Feb. 26, 2009, retrieved on Feb. 13,
2012 from: http://www.martinfowler.com/bliki/TechnicalDebt.html

[12] M. Fowler, “Technical Debt Quadrant”, Oct. 14, 2009, retrieved on
Feb. 10, 2012 from:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

[13] FXCop, http://msdn.microsoft.com/en-us/library/bb429476.aspx

[14] O. Gaudin, “Evaluate your technical debt with Sonar,” Jun. 11, 2009,
retrieved on Feb. 5, 2012 from: http://www.sonarsource.org/evaluate-
your-technical-debt-with-sonar/

[15] Y. Guo, C. Seaman, “Portfolio Approach to Technical Debt
Management,” Proceeding of the 2nd working on Managing technical
debt (MTD '11), May 2011, pp. 31-34

[16] Klocwork, http://www.klocwork.com

[17] E. Maas and P.D. McNair, Applying Design for Six Sigma to
Software and Hardware Systems, Prentice Hall, 2009.

[18] Maven, http://maven.apache.org

[19] R. L. Nord, M. R. Barbacci, P. Clements, R. Kazman, M. Klein,
L. O’Brien, and J. E. Tomayko, Integrating the Architecture Tradeoff
Analysis Method (ATAM) with the Cost Benefit Analysis Method
(CBAM). Carnegie Mellon University, 2004.

[20] PMD, http://pmd.sourceforge.net

[21] J.J. Shaughnessy, E.B. Zechmeister, and J.S. Zechmeister, Research
Methods in Psychology, 5th ed. McGraw-Hill, 2000.

[22] J. Surowiecki, Wisdom of Crowds. Why the Many are Smarter Than
the Few. Abacus, 2005.

[23] M. G. Stochel, “Reliability and accuracy of the estimation process.
Wideband Delphi vs. Wisdom of Crowds,” Proceedings of 35th
Annual IEEE International Computer Software and Applications
Conference, Jul. 18-21, 2011, Munich, Germany, pp. 350-359.

[24] M. G. Stochel and R. Sztando, “Testing optimization for mission-
critical, complex, distributed systems,” Proceedings of 32nd Annual
IEEE International Computer Software and Applications Conference,
Jul. 28-Aug. 1, 2008, Turku, Finland, pp. 847-852.

[25] A. Tversky and D. Kahneman, “Judgement under Uncertainity:
Heuristics and Biases,” Science, New Series, Vol. 185, No. 4157,
Sep. 27, 1974, pp. 1124-1131.

212Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

