
papagenoPCB: An Automated Printed Circuit Board Generation Approach
for Embedded Systems Prototyping

Tobias Scheipel and Marcel Baunach

Institute of Technical Informatics
Graz University of Technology

Graz, Austria
E-mail: {tobias.scheipel, baunach}@tugraz.at

Abstract—Designing an embedded system from scratch is becom-
ing increasingly challenging these days. In fact, the design process
requires extensive manpower, comprising engineers with different
fields of expertise. While most design principles for embedded
systems start with a search for a suitable computing platform
and the design of proper hardware to meet certain requirements,
our novel vision involves using a completely different approach:
The remainder of the embedded system can be automatically
generated if the application software is available. In order to
achieve automatic Printed Circuit Board (PCB) generation, we
describe an approach, papagenoPCB, in this paper, which is a part
of a holistic approach called papagenoX. papagenoPCB provides a
way to automatically generate schematics and layouts for printed
circuit boards using an intermediate system description language.
Therefore, the scope of the present work was to develop a concept,
which could be used to analyze the embedded software and
automatically generate the schematics and board layouts based
on predefined hardware modules and connection interfaces. To be
able to edit the plans once they have been generated, a file format
for common electronic design automation applications, based on
Extensible Markup Language (XML), was used to provide the
final output.

Keywords–embedded systems; printed circuit board; design au-
tomation; hardware/software codesign; systems engineering.

I. INTRODUCTION

Embedded systems are relevant in almost every part of
our society. From the simple electronics in dishwashers to
the highly complex electronic control units in modern and
autonomous cars – today, daily life is nearly inconceivable
without those systems. As the technology improves, the com-
plexity of embedded systems inevitably and steadily increases.
A whole team of engineers usually plans, designs, and imple-
ments a novel system in several iteration steps. An example of
such a process in the automotive industry is shown in Figure 1.

Designing an embedded system can be prone to errors
due to a multitude of possible sources of such errors. This
presents one major challenge when designing such a system:
The challenge of how to eliminate error sources and make
design processes more reliable and, therefore, cheaper. Nowa-
days, most design paradigms choose a bottom-up approach.
This means that a suitable computing platform is chosen
after defining all requirements with respect to these explicit
requirements, prior experience, or educated guesses. Then,
software development can either start based on an application
kit of a computing platform, or some prototyping hardware
must be built beforehand. If the requirements change during
the development process, major problems could possibly arise,

Specification,
Implementation and Test
of Software Components

System
Integration and Test

Creation of
System Architecture

Software
Integration and Test

Analysis and Specification
of SW-Architecture

on error

Figure 1. Automotive design process according to the V-Model [1].

e.g., new software features cannot be implemented due to
computing power restrictions or additional devices cannot be
interfaced because of hardware limitations. Another problem
could arise if connection interfaces or buses become over-
loaded with too much communication traffic after the hardware
has already been manufactured.

To tackle these problems, we propose a holistic approach,
papagenoX, and a sub-approach, papagenoPCB, which are
discussed in detail in the following sections. papagenoX is a
novel approach that has been developed for use while creating
embedded systems with a top-down view. Therefore, it uses
application source code to automatically generate the whole
embedded system in hardware and software. One part of the
concept behind this approach is papagenoPCB. This concept
handles the automatic generation of schematics and board
layouts for printed circuit board design with standardized
XML-based [2] output from intermediate system description
models. To do so, a module-based description of the system
hardware and software needs to be made. Furthermore, con-
nections between the hardware modules on wire level are done
automatically. The concept and its related challenges were
the main topics of the work described in this paper, whereas
software analysis and model generation is part of work that
will be conducted in the future with papagenoX.

The paper is organized as follows: Section II includes
a summary of related work. The rough idea of the holistic
vision of papagenoX (this paper includes a detailed description
of the first part of this concept) is illustrated in Section III,
whereas Section IV starts with the system description format
within papagenoPCB. In Section V, an explanation is given
of the necessary steps taken to create the final output, and
Section VI includes a proof of concept example. The results of

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

an analysis on the scalability and performance of the developed
generator are presented in Section VII. The paper concludes
with Section VIII, in which the steps that need to be taken to
achieve a final version of papagenoX are described.

II. RELATED WORK

As this work dealt with the automatic generation of
hardware and extensively utilized hardware definition models,
it was influenced by existing solutions such as devicetree,
which is used, e.g., within Linux [3]. The devicetree data
structure is used by the target Operating System’s (OS) kernel
to handle hardware components. The handled components
can comprise processors and memories, but also the internal
or external buses and peripherals of the system. As the data
structure is a description of the overall system, it must be
created manually and cannot be generated in a modular
way. It is mostly used with System-on-Chips (SoCs) and
enables the usage of one compiled OS kernel with several
hardware configurations. Different approaches have been
taken to use annotated source code to extract information
about the underlying system. Annotations can be used to
analyze the worst-case execution times [4][5] of software
in embedded systems. Other approaches that have been
taken have used back-annotations to optimize the power
consumption simulation [6]. These annotations have allowed
researchers to gain a better idea of how the system works
in a real-world application, meaning that the annotated
information is based on estimations or measurements. As far
as the automatic generation of schematics and board layouts
is concerned, few solutions have been developed towards
design automation. Some authors have dealt with the question
of how to generate schematics using expert systems so their
appearance is more pleasing to human readers [7]. Some
work has even been carried out on the generation of circuit
schematics by extracting connectivity data from net lists [8].
These approaches are all based on various kinds of network
information and cannot be used to extract system data out of
– or are even aware of – application source code or system
descriptions.

All the approaches mentioned above have some advantages
and inspired this work, as no solution has yet been proposed
for how to automatically generate PCBs from source code.

III. MAIN IDEA OF papagenoX
papagenoX stands for Prototyping APplication-based with

Automatic GENeration Of X; it prospectively contains a
toolchain that can be used to automatically generate the soft-
ware, reconfigurable logic, and hardware of the final prototype
of system X by simply using application software source
code. In this context, system X could be an automotive Elec-
tronic Control Unit (ECU), a Cyber-Physical System (CPS),
or an Internet-of-Things (IoT) device. After generating X,
papagenoX should also be able to check whether a new
application version is still compatible with previously designed
systems, or if it is not, which restrictions apply.

As depicted in Figure 2, papagenoX uses Application
Software (ASW) to generate software code that includes Ba-
sic Software (BSW) and an executable ASW, reconfigurable
logic code in some hardware description language for Field
Programmable Gate Arrays (FPGAs), as well as schematics

BSW FPGA PCB

ASW

Figure 2. The main idea behind the papagenoX approach.

and layouts for PCBs. In this context, the term BSW subsumes
operating systems with, e.g., drivers, services. Even though the
papagenoX approach envisions generation of reconfigurable
logic, it differs from, e.g., SystemC [9], because it also
generates hardware on the PCB level.

In this paper, the very first step taken to generate a PCB
from an intermediate system model (prospectively extracted
from source code) is described.

IV. SYSTEM DESCRIPTION FORMAT

The system description format in papagenoPCB is module-
based. This means that every possible module, e.g., a Micro-
controller Unit (MCU) board or different peripherals must be
defined before they are connected with each other. The whole
description and modeling approach taken is generic, which
enables its easy adaptation to different use cases. The structure
was defined according to a JavaScript Object Notation (JSON)
[10] format, and three different kinds of definition files were
established:

A. Module Definition: One single file that defines the hard-
ware module, its interfaces and its pins, and a second file
that contains the design block for creating schematics and
board layouts concerning this module.

B. Interface Definition: Generic definition of several differ-
ent interfaces between modules.

C. System Definition: Contains modules and connections
between these; is abstractly wired with certain interface
types.

All three types will be explained below. The example modules
show footprints of a Texas Instruments (TI) LaunchPadTM [11]
with a 16-bit, ultra-low-power MSP430F5529 MCU [12].

A. Module Definitions and Design Blocks
The module definition of a TI LaunchPadTM is shown

in Figure 3. Apart from a name and a design block file
property, this definition consists of an array of interfaces and
pins. The design block file property refers to an EAGLE [13]
design block file, comprising of a schematic placeholder (cf.
Figure 4), and a board layout placeholder (cf. Figure 5). These
placeholders will later be placed on the output schematics and
board layouts. The array of interfaces may contain several
different interface types of which the module is capable. The
property type determines the corresponding interface type. In
the case presented, two Serial Peripheral Interfaces (SPIs) are
present. Both contain a name, the type SPI, and several pins.

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

1 {
2 name: "MSP430F5529_LaunchPad",
3 design: "MSP430F5529_LaunchPad.dbl",
4 interfaces: [{
5 name: "SPI0",
6 type: "SPI",
7 pins: { MISO: "P3.1", MOSI: "P3.0",
8 SCLK: "P3.2", CS: ’any@["P2.0", "P2.2"]’ }
9 }, {

10 name: "SPI1",
11 type: "SPI",
12 pins: { MISO: "P4.5", MOSI: "P4.4",
13 SCLK: "P4.0", CS: any }
14 }
15],
16 pins: ["P6.5", "P3.4", "P3.3", "P1.6",
17 "P6.6", "P3.2", "P2.7", "P4.2", "P4.1",
18 "P6.0", "P6.1", "P6.2", "P6.3", "P6.4",
19 "P7.0", "P3.6", "P3.5", "P2.5", "P2.4",
20 "P1.5", "P1.4", "P1.3", "P1.2", "P4.3",
21 "P4.0", "P3.7", "P8.2", "P2.0", "P2.2",
22 "P7.4", "RST" , "P3.0", "P3.1", "P2.6",
23 "P2.3", "P8.1"]
24 }

Figure 3. Module definition of a TI LaunchPadTMwith two SPI interfaces.

+
3V

3

+
5V

GND

GND

TI Launchpad Placeholder

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J1

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J5

STAND1

STAND2

STAND3

STAND4

P6.5
P3.4
P3.3
P1.6
P6.6
P3.2
P2.7
P4.2
P4.1

P6.0
P6.1
P6.2
P6.3
P6.4
P7.0
P3.6
P3.5

P2.5
P2.4
P1.5
P1.4
P1.3
P1.2
P4.3
P4.0
P3.7
P8.2 P8.1

P2.3

P3.1
P2.6

P3.0
RST
P7.4
P2.2
P2.0

Figure 4. Schematics of a placeholder design block for a
TI LaunchPadTM [11].

Pins within interfaces can either be directly assigned to
hardware pins (e.g., MISO: "P3.1" in line 7) or left for
automatic assignment (e.g., CS: any in line 13). It is also
possible to automatically assign a wire from a dedicated pool
by using any@somearray (cf. line 8) syntax. Each module
definition file is associated with its corresponding design block.
It is of utmost importance that pin names are coherent in
both module representations, as coherence of naming later en-
sures that proper interconnections are made between modules.
Furthermore, a standard format for power supply connections
must be used to avoid creating discrepancies between modules.
The bus speed of the SPI was not taken into account in
this work and will be addressed in future developments. As
depicted in Figure 5, the board layout of a module only
consists of its pins. The main idea here was to create a
motherboard upon which modules can be placed using their
exterior connections (e.g., pin headers or similar connectors).
Therefore, the placeholder serves as interface layout between
fully assembled PCB modules, such as the LaunchPadTM, and
can then be connected to other modules through interfaces.

Figure 5. Board layout of a placeholder design block for a
TI LaunchPadTM [11].

1 {
2 interfaces: [
3 {
4 type: "SPI",
5 connections: [
6 { "master.MOSI" : "bus.MOSI" },
7 { "master.MISO" : "bus.MISO" },
8 { "master.SCLK" : "bus.SCLK" },
9 { "slave.MOSI" : "bus.MOSI" },

10 { "slave.MISO" : "bus.MISO" },
11 { "slave.SCLK" : "bus.SCLK" },
12 { "master.CS" : "wiremultiple" },
13 { "slave.CS" : "wiresingle" }
14]
15 }
16]
17 }

Figure 6. Interface definition containing SPI.

B. Interface Definitions
After defining the modules, the generic interfaces must be

defined. The interface definition collection is centralized in
a single file, and its structure is shown in Figure 6. In this
example, only SPI [14] has been defined with its standard
connections. As the format is generic, other interface types,
e.g., Inter-Integrated Circuit (I2C, [15]) or even a Controller
Area Network (CAN, [16]), are also feasible. It also shows
how masters and slaves within this communication protocol are
connected to the bus wires. As the SPI also has so-called Chip
Select (CS) wires for every slave selection, special treatment
must be used here: A slave only has one CS wire, which is
marked with wiresingle (cf. line 13), whereas a master has as
many CS wires as it has slaves connected to it (marked with
wiremultiple; cf. line 12).

C. System Definition
The final step taken was to define the system itself, which

was built from modules and the connections between them.
To do so, a single project file must be created, as illustrated
in Figure 7. Initially, all necessary modules are imported
and named accordingly within the modules array. Once de-
fined, they can be interconnected using the previously defined
interface definitions. In our example, LaunchPadTM MSP1
was connected to a microSD board SD1 of type ”MicroSD
Breakout Board” [17] via SPI. This particular SPI connection
is called SPI Connection1 of type SPI and has two participants
with different roles: MSP1 as a master and SD1 as a slave. This
system definition will prospectively be generated and extracted

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

1 {
2 modules: [
3 { name: "MSP1",
4 type: "MSP430F5529_LaunchPad"},
5 { name: "SD1",
6 type: "MicroSD_BreakoutBoard"}
7],
8 connections: [
9 {

10 name: "SPI_Connection1",
11 type: "SPI",
12 participants: [
13 { name: "MSP1", role: "master" },
14 { name: "SD1", role: "slave" }
15]
16 }
17]
18 }

Figure 7. A system model containing two modules connected via SPI.

out of the ASW code by papagenoX. The papagenoPCB
approach is taken to generate PCBs only.

V. IMPLEMENTATION OF PCB GENERATION

After having defined the modules, interfaces, and im-
plemented a system definition, PCB generation can start.
The generation consists of two major steps: (A.) establishing
connection wires based on predefined module and system
definitions, and assigning dedicated pins and (B.) generating
XML-based schematic files from its output. The final step
(C.), which is carried out to deal with the final layout of the
schematics, must be done (in part manually) afterwards. The
generator is developed as a Java command line application
to maintain platform-independence and ensure that it can be
integrated into standard tool chains and build management
tools.

A. Connection Establishment and Pin Assignment
During this first step, JSON data structure analysis presents

the main challenge. The whole system must be interconnected
appropriately using the previously explained definition files.
To do so, all connections within the system definition must be
matched at the beginning of the process. This task subsumes
the discovery of connections between modules, their mapping
to certain interface types, and the final wire allocation required
to interconnect all participants. Specifically, each connection
has a type and a finite number of participants with different
roles, interfaces, and pins. These pins must then be connected
to the newly introduced wires, belonging to the communica-
tion. Several different types of wires can be used to connect
the participants with each other:

The easiest wires to use are common wires, which can be
assigned to a pool of free pins of the module. These wires are
marked with wiresingle within the interface definition. Due to
the fact that all unused General-Purpose Input/Output (GPIO)
pins of a module can be used for this purpose, they need to
be assigned last.

Furthermore, every participant can connect itself directly to
bus wires via its dedicated pins, depending on, e.g., the type of
MCU used. In the case of an MSP430 MCU, certain pins are
electrically connected to an interface circuit, as defined in its
module definition (cf. Figure 3). These pins must, therefore,
be matched with the connection’s wires (cf. Figure 6). The
interface definition must match roles and pins accordingly to
correctly interconnect the participants of each connection.

Another type of wires that can be used are multiple wires.
If we take SPI as an example, the master needs to have
as many chip-select wires as slaves with which it wants to
communicate. Therefore, this type of wire – marked with
wiremultiple, as previously defined – must clone itself to obtain
the number of wires needed.

These different types of wires must be connected to the
pins of the modules to establish a proper connection or
net according to the interface definition. The interconnected
modules with their nets form a holistic JSON-based description
of the system.

B. Schematic and Board Layout Generation
Utilizing the interconnected system description, schematics

and board layouts can be generated. In our case, EAGLE’s
XML data structure [2] was used to form a dedicated output
file for schematics and board layouts. To generate those plans,
(1) design blocks for each module must be loaded, (2) the
previously found connections must be applied and (3) the
connected design blocks must be placed on an empty schematic
plan or board layout.

(1) In this step, each module has to be instantiated by loading
the corresponding design block of its type.

(2) This step must carried out to form the whole sys-
tem according to the JSON-based holistic description.
Therefore, pins of each module must be assigned to
the wires of a connection within the system. To do
so, each connection again must be applied separately
to each participant. As the system description already
contains information, as to which pin of a module must
be connected to which wire, this can be done quite easily.

(3) This step, which is the computationally most expen-
sive step, must be carried out to merge the connected
instances of each module into an empty plan, as a
great deal of XML parsing is required here. To create
consistent plans, the design blocks must be prepared well
beforehand to avoid, e.g., inconsistencies within board
layers or signal names. To keep the modules from over-
lapping, a two-dimensional translation of each module
must be executed as part of each merge procedure as
well. In total, two merging steps are required for each
module – one for the schematic and one for the board
layout. As this approach generates connection PCBs
(”motherboards”) where one can plug in modules, only
placeholders are used.

Finally, the two generated XML structures are exported and
saved into different files for further usage.

C. Routing Generated Schematics and Board Layouts
As layouting and routing of PCBs is a non-trivial task, and

engineers need a great deal of experience when performing a
task like this, papagenoPCB cannot be used to produce final
variants of a board. It is recommended to use EAGLE’s auto-
routing functionality or manual routing to finalize the already
well-prepared layouts.

VI. PROOF OF CONCEPT

The proof of concept comprises the generation of the
system definition as shown in Figure 7. As mentioned before,
the system created consists of two modules interconnected with

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

+
5V

+
3V

3

GND
+

3V
3

+
5V

GND

GND

MicroSD Breakout Board

TI Launchpad Placeholder

1
2
3
4
5
6
7
8

JP1

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J1

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

J5

STAND1

STAND2

STAND3

STAND4

SPI_CONNECTION1.SCLK

SPI_CONNECTION1.SCLK

SPI_CONNECTION1.MISO
SPI_CONNECTION1.MISO

SPI_CONNECTION1.MOSI

SPI_CONNECTION1.MOSI

WIRE0

WIRE0

CD_SD1

P6.5_MSP1
P3.4_MSP1
P3.3_MSP1
P1.6_MSP1
P6.6_MSP1

P2.7_MSP1
P4.2_MSP1
P4.1_MSP1

P6.0_MSP1
P6.1_MSP1
P6.2_MSP1
P6.3_MSP1
P6.4_MSP1
P7.0_MSP1
P3.6_MSP1
P3.5_MSP1

P2.5_MSP1
P2.4_MSP1
P1.5_MSP1
P1.4_MSP1
P1.3_MSP1
P1.2_MSP1
P4.3_MSP1
P4.0_MSP1
P3.7_MSP1
P8.2_MSP1 P8.1_MSP1

P2.3_MSP1
P2.6_MSP1

RST_MSP1
P7.4_MSP1
P2.2_MSP1

Figure 8. Raw output of the schematics generated as displayed in EAGLE.

J
1

J
1

J
5

J
5

J
P
1

J
P
1

Figure 9. Raw output of the board layout generated as displayed in EAGLE.

one SPI bus, whereas the processor board serves as master. The
schematics generation step yields in the drawing depicted in
Figure 8.

Compared with the LaunchPadTM’s design block shown
in Figure 4, one can see the differences in the net names.
As examples, P2.0 has been replaced with WIRE0, and P3.0
is now assigned to SPI CONNECTION1.MOSI. These wires
connect to pins 7 and 6 of the MicroSD Breakout Board on
the left, respectively. Also, each unconnected pin gets a suffix
describing its module (cf. MSP1). These newly introduced
net names are the results of the wire generation explained
in Section V-A. As the reusability of schematic plans is
an important aspect, the feature of non-overlapping module
placement can be emphasized as well. The result of the board
layout generation step is shown in Figure 9, as described
in Section V-B. The fine lines show non-routed connections
between the pins. As the plan will be manufactured as a real
hardware PCB, no part can overlap. Routing of the board has
to be either performed manually or by using a design tool’s
built-in auto router. A feasible layout variant is presented in
Figure 10. EAGLE can also be used to check the correctness
of the XML file format.

VII. SCALABILITY AND PERFORMANCE

In this Section, we describe measurements and investi-
gations that concern the performance of the PCB-generating
process. All discussed evaluations use one setup as a reference.
The application was executed with a Java 10 virtual ma-
chine on an Intel Core i7 7500U@2.7GHz with 16 gigabytes
of RAM. Table I shows the mean execution time and the

Figure 10. Board layout after auto-routing in EAGLE.

combined output XML file size of the generation process of
different test case scenarios, which are explained below. All
test cases featured a different number of participants (part.)
which consisted of masters (M) and slaves (S) with different
connection types.

TABLE I. MEAN EXECUTION TIMES FOR DIFFERENT SCENARIOS.

test scenario description execution time file size
1 SPI conn. (scenario 1)

0 2 part. (1 M, 1 S) 678.98 ms 94 KiB
1 3 part. (1 M, 2 S) 793.56 ms 100 KiB
2 4 part. (1 M, 3 S) 893.89 ms 105 KiB
3 5 part. (1 M, 4 S) 983.56 ms 110 KiB
4 6 part. (1 M, 5 S) 1 060.70 ms 116 KiB
5 7 part. (1 M, 6 S) 1 151.37 ms 122 KiB

2 SPI conn. (scenario 2)
0 4 part. (1 M and 1 S each) 910.93 ms 115 KiB
1 6 part. (1 M and 2 S each) 1 079.78 ms 126 KiB
2 8 part. (1 M and 3 S each) 1 242.88 ms 137 KiB
3 10 part. (1 M and 4 S each) 1 388.39 ms 149 KiB
4 12 part. (1 M and 5 S each) 1 500.44 ms 160 KiB
5 14 part. (1 M and 6 S each) 1 613.93 ms 171 KiB

1 I2C conn. (scenario 3)
0 2 part. (1 M, 1 S) 693.04 ms 105 KiB
1 3 part. (1 M, 2 S) 813.64 ms 111 KiB
2 4 part. (1 M, 3 S) 918.96 ms 117 KiB
3 5 part. (1 M, 4 S) 1 010.40 ms 123 KiB
4 6 part. (1 M, 5 S) 1 107.56 ms 129 KiB
5 7 part. (1 M, 6 S) 1 198.17 ms 135 KiB

1 I2C and 1 SPI conn. (scenario 4)
0 3 part. (1 M, 1 S each) 828.13 ms 127 KiB
1 5 part. (1 M, 2 S each) 1 020.54 ms 138 KiB
2 7 part. (1 M, 3 S each) 1 195.82 ms 150 KiB
3 9 part. (1 M, 4 S each) 1 337.50 ms 162 KiB
4 11 part. (1 M, 5 S each) 1 493.75 ms 173 KiB
5 13 part. (1 M, 6 S each) 1 612.04 ms 185 KiB

Each test case is based on the example described in
Section VI but with different constellations concerning the
numbers and types of participants and connections. All test
cases were executed 100 times. Four types of test scenarios
with six test cases each were conducted: Within the first
scenario, just one SPI connection was present, with a vary-
ing number of slaves each test case. The second scenario
comprised two SPI connections with an increasing number of
slaves. Test scenario three had one I2C connection and was
similar to scenario one, whereas scenario four included SPI and
I2C connections to a single master with an increasing number
of slaves. The devolution of the mean execution time (in ms)
in all test scenarios is shown in Figure 11. When comparing all
scenarios, the trend observed is quite similar: All performance
graphs show a linear devolution with an additive, logarithmic-

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

0 1 2 3 4 5
Test Case Number

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700
Ex

ec
ut

io
n

Ti
m

e
/ m

s
scenario 1
scenario 2
scenario 3
scenario 4

Figure 11. Performance graph for different test cases.

like component. The linear component is due to the linear
increase in the complexity of the test cases. The logarithmic-
like growth observed can be explained by the decreasing,
additive overhead of the linear component when processing
similar connection reasoning, as well as the XML schematic
and layout data. This is also the reason why doubling the
numbers in the first test case yielded in much higher values
than in test case two. Test scenario four is the only one
that displays a steeper curve. This is due to the combination
of different connection types, yielding less-optimal algorithm
executions. As XML processing is quite costly, some further
optimizations are needed. As the overall file size displayed
linear growth, no correlation was observed between file size
and execution time.

VIII. CONCLUSION AND FUTURE WORK

In conclusion, papagenoPCB represents a novel, top-down
approach that can be taken to develop an embedded system.
With just having a model-based system description at hand,
it is possible to use papagenoPCB to generate hardware
schematics and board layouts accordingly. This opens up a
numerous new possibilities on higher abstraction levels. It is
feasible to carry out automatic bus balancing or bandwidth
engineering before building the hardware. The use of these
concepts requires the availability of in-depth information about
the electrical and mechanical characteristics of all parts of a
PCB, so that the hardware can be optimized regarding non-
functional metrics such as bandwidth or power consumption.
Due to the generic design, new models can be integrated
easily, and it will be even possible to take a non-module-
based approach on the device level (if the proper definitions
are available).

In the future, work must be carried out to extract system
models from ASW source code. Therefore, we are working
on introducing annotations into our operating system envi-
ronment [18], which will enable us to automatically gener-
ate system definition files. These annotations can either be
introduced into the code as compiler keywords (e.g., pragmas,
defines) or as comments. As some work is already being
conducted to improve the automatic portability of real-time

operating systems [19], the proposed approach could be used
to build a system for which only the application code must be
programmed. The rest of the system can then be generated au-
tomatically. Even suitable and application-optimized processor
architectures [20] could be created by taking this approach.
The ultimate goal is to establish papagenoX as a universal
embedded systems generator using only annotated ASW code.

ACKNOWLEDGMENT

This research project was partially funded by
AVL List GmbH, the Austrian Federal Ministry of Education,
Science and Research (bmbwf), and Graz University of
Technology.

REFERENCES
[1] J. Schäuffele and T. Zurawka, Automotive Software Engineering, ser.

ATZ/MTZ-Fachbuch. Springer Fachmedien Wiesbaden, 2016.
[2] Autodesk, Inc., EAGLE XML Data Structure 9.1.0, 2018.
[3] devicetree.org, Devicetree Specification, Dec. 2017, release v0.2.
[4] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-

performance Timing Simulation of Embedded Software,” in Proc. of
the 45th Annual Design Automation Conference, June 2008, pp. 290–
295.

[5] B. Schommer, C. Cullmann, G. Gebhard, X. Leroy, M. Schmidt, and
S. Wegener, “Embedded Program Annotations for WCET Analysis,”
in WCET 2018: 18th Int’l Workshop on Worst-Case Execution Time
Analysis, Barcelona, Spain, Jul. 2018, pp. 8:1–8:13.

[6] S. Chakravarty, Z. Zhao, and A. Gerstlauer, “Automated, Retargetable
Back-annotation for Host Compiled Performance and Power Model-
ing,” in Int’l Conference on Hardware/Software Codesign and System
Synthesis, Piscataway, NJ, USA, 2013, pp. 1–10.

[7] G. M. Swinkels and L. Hafer, “Schematic generation with an expert
system,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 9, no. 12, pp. 1289–1306, Dec 1990.

[8] B. Singh et al., “System and method for circuit schematic generation,”
US Patent US7 917 877B2, 2011.

[9] IEEE Standards Association, IEEE 1666-2011 - IEEE Standard for
Standard SystemC Language, Sep. 2012.

[10] ECMA International, ECMA-404: The JSON Data Interchange Syntax,
2nd ed., Dec. 2017.

[11] Texas Instruments, MSP430F5529 LaunchPadTM Development Kit
(MSP--EXP430F5529LP), Apr. 2017.

[12] ——, MSP430x5xx and MSP430x6xx Family User’s Guide, Mar. 2018,
[retrieved: Jan, 2019]. [Online]. Available: http://www.ti.com/lit/ug/
slau208q/slau208q.pdf

[13] Autodesk, Inc., “EAGLE,” [retrieved: Jan, 2019]. [Online]. Available:
https://www.autodesk.com/products/eagle/

[14] S. Hill et al., “Queued serial peripheral interface for use in a data
processing system,” US Patent US4 816 996, 1989.

[15] NXP Semiconductors, Inc., UM10204: I2C-bus specification and user
manual, Apr. 2014, rev. 6.

[16] International Organization for Standardization, ISO 11898: Road vehi-
cles – Controller area network (CAN) , 2nd ed., Dec. 2015.

[17] Adafruit Industries, Micro SD Card Breakout Board Tutorial, Jan. 2019,
[retrieved: Jan, 2019]. [Online]. Available: https://cdn-learn.adafruit.
com/downloads/pdf/adafruit-micro-sd-breakout-board-card-tutorial.pdf

[18] R. Martins Gomes, M. Baunach, M. Malenko, L. Batista Ribeiro,
and F. Mauroner, “A Co-Designed RTOS and MCU Concept for
Dynamically Composed Embedded Systems,” in Proc. of the 13th
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, 2017, pp. 41–46.

[19] R. Martins Gomes and M. Baunach, “A Model-Based Concept for
RTOS Portability,” in Proc. of the 15th Int’l Conference on Computer
Systems and Applications, Oct. 2018, pp. 1–6.

[20] F. Mauroner and M. Baunach, “mosartMCU: Multi-Core Operating-
System-Aware Real-Time Microcontroller,” in Proc. of the 7th Mediter-
ranean Conference on Embedded Computing, Jun. 2018, pp. 1–4.

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

