ICONS 2018 : The Thirteenth International Conference on Systems

CoStack: Collaborative Stack Sharing for Real-Time Embedded Systems

Fabian Mauroner

Institute of Technical Informatics
Graz University of Technology
Graz, Austria
Email: mauroner@tugraz.at

Abstract—Embedded real-time systems are targeting for econom-
ical stack memory usage and predictable execution flows, what
is challenging to unify. In this paper, we propose CoStack, a
collaborative stack sharing approach across tasks. CoStack allows
defining a collaborative stack memory that can be used by a
higher prioritized task if the stack runs out-of-memory. Thus,
CoStack virtually reduces the stack memory consumption, lead-
ing to a lower memory requirement, and concurrently remains
predictable, what is desired for real-time systems. This paper
presents an experimental evaluation of CoStack, the synthesized
results in a Field Programmable Gate Array (FPGA) and some
implementation details of CoStack.

Keywords—Embedded Systems; Stack handling; Operating-
System-Awareness; FPGA implementation

I. INTRODUCTION

Modern real-time embedded systems require, due to their
growing complexity and flexibility, evermore memory to fulfill
all their challenging requirements. However, embedded sys-
tem’s memory is a restricted resource; thereby, it has to be
used in an efficient way.

Global variables are always available for the complete
embedded system’s life, but local variables are only available
and allocated on demand. Therefore, local variables are dy-
namically allocated on a specific space in the memory, named
stack frame. The stack pointer, indicating the threshold of valid
and non-valid data in the stack frame, grows if a local variable
is allocated or if Central Processing Unit (CPU) registers are
temporally stored (e.g., on function prologue and epilogue).
The stack pointer shrinks if the local variables or temporally
stored registers are not needed anymore.

In state-of-the-art real-time Operating Systems (OSs) [1][2]
for each task an own individual stack frame is allocated; al-
though, it is not fully utilized simultaneously. Therefore, [3][4]
show approaches to use a common shared stack frame among
all tasks. This reduces the overall stack memory consumption,
but restricts the schedulability of all tasks. The reason therefor
is that a stack cannot grow if the task’s stack pointer is not
on the top of the common stack frame. Otherwise, it would
destroy data from another task in the common stack frame.
Therefore, an individual stack frame is assigned to the tasks in
real-time systems by accepting an increasing overall memory
consumption. The reason therefor is, for real-time systems, the
schedulability and satisfaction of real-time constraints is an
essential requirement. This has to be improved to reduce the
required computation power and CPU frequency, to reduce the
costs and power of the developed embedded real-time system.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

Marcel Baunach

Institute of Technical Informatics
Graz University of Technology
Graz, Austria
Email: baunach@tugraz.at

Consequently, both, efficient stack memory and schedula-
bility must be unified to improve the memory consumption
and to fulfill all the real-time requirements.

Observations showed [5] that not each task fully utilizes its
individual stack frame simultaneously, wherefore the approach
to share stack memory space among all tasks is used. To
avoid the restriction of the schedulability, it must be avoided
or at least timely bound that a task is blocked for requesting
stack memory. That is possible with the concept of address
virtualization [6]. However, this concept requires an additional
hardware component, namely the Memory Management Unit
(MMU). It translates all Virtual Memory (VM) addresses into
Physical Memory (PM) addresses. However, an MMU is only
rarely found in embedded systems, because it requires a lot
of power and it introduces non-predictable memory accesses.
That has to be avoided for real-time systems, which aim for
predictability. Therefore, in [7] we presented a dynamic stack
sharing approach, which uses VM addresses only for the stack
memory and ensures a predictable stack memory access and
stack pointer adjustment if the underlying memory architecture
behaves predictable, too.

Since the memory is a scarce resource, the software de-
veloper has to use it sparsely. However, sometimes it is not
possible to optimize the code (e.g., to use an algorithm with
less stack memory consumption). Thus, to avoid an out-of-
stack, the software developer must guarantee enough stack
memory spaces for all tasks at any time. Otherwise, a task
would be unpredictably blocked and deadlines may be violated.

A. Related work

In the recent years, there has been done a lot of research
to reduce the stack memory consumption, with completely
different approaches:

Wang et al. proposed the preemptive threshold scheduling
in [8], which is used in the ThreadX real-time OS [9]. It is
based on Rate Monotonic (RM) scheduling and extends each
task with a threshold priority, beyond its nominal priority. If
a task is scheduled, its threshold priority is the new priority
that must be exceeded to preempt the task by another task’s
nominal priority. This solution leads to non-preemptive task
groups and these are able to use a common shared stack
frame. Further, it may improve the schedulability compared to
the standard RM scheduling. Nevertheless, sharing the stack
memory is not possible between non-preemptive task groups
and/or preemptive tasks; thus, sharing the stack memory is
limited.

32

ICONS 2018 : The Thirteenth International Conference on Systems

In [10], Chu et al. proposed to use a binary translation and
a specific kernel by using VM addressed stacks in embedded
systems. Thus, their approach allocates only that memory that
is required, but the authors showed that for each stack pointer
access and adaptation the required run-time is enormous.

Yi et al. [11] showed an approach, where a tool analyzes
the stack consumption of each task and modifies the developed
code on compile time. The modified code calls the on demand
stack library at each prologue and epilogue of a function. In
their use case scenario, the stack memory consumption indeed
reduces; however, the execution time increases by 10 %.

Other solutions proposed to allocate the stack memory on
the heap. In older works, as for instance [12], on each function
prologue and epilogue the heap allocation and deallocation is
called, respectively. However, these calls lead to a large run-
time overhead for each function.

Works as [13][14] also allocate the stack on the heap. With
analyses at compile time, they are able to reduce the large run-
time overhead for allocating and deallocating stack memory
on the heap. Nevertheless, run-time checks are still required
to allocate and deallocate the stack memory.

Middha et al. [5] propose to allocate an individual stack
frame to each task. If a task overflows (i.e., out-of-stack) its
individual stack frame, their approach allocates unused stack
memory in another task’s individual stack frame. Without code
optimization, their run-time consumption increases by around
23 %; with an optimization about 3 %. However, the optimized
solution restricts programming features as function pointers
and recursive functions.

None of the mentioned works is able to free stack memory
voluntarily for a higher prioritized task if no stack memory
is available. In [15], Baunach proposed CoMem that is a
collaborative memory management in the heap memory for
dynamic memory. There, each memory block (in the heap) is
handled as a system resource. If a task requests the memory
block and is used by another lower prioritized task, the lower
prioritized task will be informed. That task has then the control
to free the memory block or not.

CoMem enables a collaborative usage of memory blocks in
the heap but not for the stack memory. Therefore, in this paper
we present CoStack, a collaborative stack sharing concept
based on a hardware extension, which enables the reduction of
the whole stack memory consumption by defining parts in the
source code in which the stack memory is collaborative. With
the state-of-the-art approaches, there is no possibility to give a
higher prioritized task the advantage to use the stack memory
instead of a lower prioritized task that owns collaborative
stack memory that might voluntarily be released. CoStack
ensures the allocation of the required stack memory for higher
prioritized tasks by freeing collaborative stack memory from
lower prioritized tasks if an out-of-stack condition would
result. CoStack does not require a code analysis at compile
time; therefore, it is possible to use our approach also in
highly dynamic environments, as the Internet of Things (IoT),
Industry 4.0, or automotive applications.

The rest of the paper is organized as follows: First,
Section II describes in detail the fundamentals of CoStack.
Second, Section III analyses the memory improvement and
shows the schedulability analysis. Next, Section IV demon-
strates implementation aspects in our development platform.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

Section V shows the CoStack evaluation with an example and
the synthesized results for a Field Programmable Gate Array
(FPGA). Last, we summarize this work in Section VI.

II. COLLABORATIVE STACK SHARING

The collaborative stack sharing approach is based on
StackMMU presented in [7]. First, we introduce the termi-
nology and the system assumption. Second, we introduce the
fundamentals of StackMMU. Third, we show the extension
of the basic StackMMU, which is needed for providing the
required information to the hardware. Last, the collaborative
stack sharing approach, CoStack, is described in detail.

A. Terminology and Assumption

For CoStack we assume a Reduced Instruction Set Com-
puter (RISC) load/store single-core CPU with Control Status
Registers (CSRs), which are CPU registers accessible by
specific instructions. Further, we define a multi-tasking system
with 7 € T as a task in the set of tasks 7". For each task 7
we define, the priority p,, the Worst Case Execution Time
(WCET) with C- defining the time executing on the CPU, and
the period or minimum interarrival time with 7 for periodic
or sporadic tasks, respectively. The longest time, in which a
priority inversion [16] occurs (i.e., a lower prioritized task runs
instead of a higher prioritized task) is denoted as the blocking
time B, of task 7. Further, we assume that the context switch
in the OS and the OS itself consumes no computation time. The
stack usage o (t) € Ny defines the stack memory consumption
of task 7 at time ¢ € Ny, what can be analyzed with static code
analyzers.

B. StackMMU

The StackMMU [7] uses VM addresses for the stack mem-
ory. Thus, each task’s stack pointer points to a virtual address
and StackMMU translates that address to a PM address. For
that, the memory is divided into a common area and into
a stack area, as depicted in Figure 1. In the common area,

FREE ULL
DATA MEMORY

block size

START END

Dcommon area Dstack area (used memory) Dstack area (unused memory)

Figure 1. Memory layout of the StackMMU.

all the global data of a task is stored and accessed by PM
addresses. The memory for the stack is located, in the stack
area. Thereby, the stack area is again divided into blocks,
called pages. Each page has the same size and is configurable
including the start and end of the whole stack area at startup.
A linked list contains all available pages, whereby the FREE
register points to the first free available page. Thus, if a task
requires more stack memory and exceeds the available memory
in the last appended page, the StackMMU assigns a new page
to that task. Thereby, the hardware uses the register FREE
and updates the Task Control Block (TCB) of the task with
the address of the new allocated page. On a stack memory
access, first, the hardware reads the PM base address in the

33

ICONS 2018 : The Thirteenth International Conference on Systems

TCB; and second, it accesses the content in the stack area. If
the stack page is not required anymore, the hardware frees
the page and updates all the required pointers (i.e., FREE
and the pointer to the next free page in the page). Before a
specific stack operation (i.e., growth, access, or shrinkage) is
executed, all three operations are performing a read memory
operation leading to an additional memory access. However,
if the memory access is deterministic, as in many embedded
systems, the whole stack operation is also executed in a
predictable time as desired for real-time systems.

C. MultiStackMMU

StackMMU restricts the size of the stack pointer change
for growing and shrinking in one instruction to the size of a
stack page. That limitation is handled by a modified compiler.
However, we purged that limitation with MultiStackMMU.

Here, if a stack grows or shrinks more than one page, the
hardware extension performs the assignment or deassigment
of pages one after another, respectively. This leads to a
longer run-time to perform these operations; nevertheless, the
execution time remains predictable if the memory accesses
itself are deterministic.

Through this extension, the modified compiler, which lim-
ited the stack pointer change to one stack page size, is not
required anymore. Besides, the hardware is now aware of the
number of required pages on a stack memory request, neces-
sary for performing our collaborative stack sharing approach
CoStack.

D. CoStack

As long as in the stack area are available more unused
pages than required by a task, the pages are properly assigned
to the task by the MultiStackMMU approach. However, if
there are not enough available pages, an out-of-stack con-
dition occurs. An out-of-stack condition is handled by the
OS; nevertheless, the task will be unpredictably blocked until
stack memory is available. This would lead to a reduction of
the system performance and may lead to real-time constraint
violations. Thus, to reduce the possibility of an out-of-stack
condition, enough stack memory must be provided.

Instead of blocking the task as long as not enough stack
memory is available, CoStack deallocates stack memory from
tasks that define their used stack memory as collaborative.

If CoStack detects that the required stack memory pages
exceed the free available pages, a collaborate exception is
triggered and the OS must handle it. Thereby, the stack growth
is aborted by the hardware and the OS saves the context of the
task. After rescheduling that task, the stack growth instruction
will be repeated (i.e., the program counter of the stack growth
instruction is stored in the TCB). In the exception handler, the
OS searches a lower prioritized task that provides collaborative
stack memory. Then, the OS modifies the program counter and
schedules the collaborative task. The collaborative task frees
the collaborative stack memory and yields itself to return to
the OS. There, the scheduler selects the highest prioritized
runnable task, which may be the same as the previous one. If
a task, that requires stack memory, is scheduled and enough
unused pages are available, the required pages are assigned
to the task. Otherwise, once again a collaborate exception is
triggered and the OS iterates through the tasks as before to

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

search a collaborative task. In case that there are no lower
prioritized tasks with collaborative stack memory, the OS
has to define a handling strategy to handle this failure as in
standard out-of-stack approaches.

Figure 2c demonstrates how a code part can be tagged with
collaborative stack. The macros in Figure 2a, Figure 2b, and
Figure 2d generate the code for handling CoStack properly.
Additionally to the tagged code, which uses a collaborative
stack memory, a handler is defined. The handler is only
executed if the collaborative stack memory was deallocated for
performing some clean-up work, similar to the catch primitive
in programming languages such as Java or C++.

Figure 2a shows how the collaborative stack mechanism is
performed. First, it checks if the currently running task already
defines a collaborative code part. If so, the collaborative code
part is already a part of an upper tagged collaborative code
part and the try part is immediately executed. Otherwise, the
handler address and the collaborate frame pointer are stored
in the task’s TCB. Additionally, the callee saved registers
are stored on the stack, to restore them if the collaboration
must be performed. Afterwards, the try part is executed. If
there was no other task requiring the collaborative stack, the
callee saved registers on the stack are discarded because the
program flow was not manipulated. Otherwise, the program
counter continues at the label COLLABORATE after a context
switch. There, the callee saved registers are restored and the
collaborative stack memory space is freed, by using the stored
collaborate frame pointer. After that, the collaborate frame
pointer in the TCB is cleared and the syscall yield () is
called for a self-preemption to allow the OS to schedule a
higher prioritized task that may wait for stack memory.

III. ANALYSIS

In this section, we analyze the memory utilization of the
collaborative stack sharing approach CoStack and compare it
with the StackMMU approach. Further, we show the schedu-
lability analysis of CoStack.

A. Memory Consumption

In the StackMMU approach, the stack grows and shrinks
with the stack page size page_size. There, the size of
the stack changes over time ¢, depending on the required
memory o, (t) by a task 7 at time ¢. Thus, the stack memory
consumption of the whole system U is calculated as follows:

{ or(t)

U(t,page_size) = Z age_size

-‘ -page_size
TeT

ey
Let S denote the totally assigned stack space. To avoid an
out-of-stack condition, the stack memory consumption U is
not allowed to exceed the totally assigned stack memory S.
Otherwise a task would be unpredictably blocked what restricts
the schedulability:

VteNyg: U(t,page_size) < S 2)

With the introduction of the collaborative stack sharing
approach, each task 7 may define some collaborative stack
memory k. (t) at time ¢t € Ny. This collaborative stack
memory « is available for all higher prioritized tasks, leading

34

ICONS 2018 : The Thirteenth International Conference on Systems

-
return OS_SUCCESS;

}

1

2

3

4| if (tp->coll_fp == NULL) {

5 register uintptr_t «sp asm ("sp");
6 uintptr_t *«fp = sp;

7 tp->handler = &&COLLABORATE;

8 tp->coll_fp

fp;

9 asm volatile (" addi sp, sp, —-48" ::: "sp");
10 asm volatile (" sw s0, -0(%0) \n\t

11 e

12 sw sl1l, —-44(%0)":: "r" (fp));

volatile int try_return = try();
/+here the 0S may manipulate the PC to:

15 tp->context [CONTEXT_PC] = tp->handler; x/

16 if(try_return == OS_SUCCESS) {

17 tp->coll_fp = NULL;

18 asm volatile (" addi sp, sp, 48" ::: "sp");

19 } else {

20 COLLABORATE:

21 {'asm volatile (" 1w s0, -0(%0) \n\t

22 : e

2tk 1w s11, —44(%0)" :: "r" (fp));

T
:sp = tp->coll_fp;
‘tp->coll_fp = NULL;
ixield();

N

(a) Macro defines the code for handling the collaboration.

- -

A 9 o s B —

1l do {

__label COLLABORATE;

3| register os_tcb_t xtp asm
4| volatile int try(void) {

("tp");

(b) Start of the collaborative stack part macro.

(int task0 (void) {
while (1) {
-)COLLABORATIVE_STACK {
uint8_t test[600];
/* other code */
sleep (TIME_MS(1));
/+ other code =/
-)) COLLABORATE_STACK {
9 /% executed if
task collaborate =/
=%} COLLABORATE_STACK_END;
12 }
13}

(c) Task requires a 600 Byte array which memory is tagged as collaborative.

1 }

2| } else

3 try () ;

4/ } while(0);

(d) End of the collaborative stack part.

Figure 2. Macros for the collaborative stack sharing approach with a usage example.

to the available collaborative stack pages K, at time t for

. c |

Viipr, <pr

As mentioned in Section II, if a higher prioritized task
requires non-available stack memory but collaborative stack
memory is available, the collaborative task deallocates its
collaborative stack memory to make it available for the higher
prioritized task. This means that the stack memory consump-
tion is virtually reduced, leading to the next equation that must
be hold to avoid an out-of-stack condition:

Vt e No,VT €T: U(t,page_size)— K, (t) < S @)

Thus, CoStack contributes to the reduction of the totally
assigned stack memory S by collaboratively sharing stack
memory as shown by comparing the equation (2) with (4).

K, (t)

K. (t _
(1) page_size

J -page_size (3)

B. Schedulability Analysis

The freeing of the collaborative stack memory is performed
in the respective lower prioritized tasks. Thus, a priority
inversion occurs: The lower prioritized task frees the stack
memory and blocks the higher prioritized task because the
required stack memory is not available. Thus, we are investi-
gating the maximum blocking time B, of task 7 for the RM
schedulability analysis [16]:

Cr
T,

[¢]

BTn —1
)
jyn—l

Tn—1

T;n—l

4.+ +max (B) < n(Q%—l) 5)

e
T,

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

In CoStack, the blocking time compounds on some admin-
istrative work and the freeing of the stack memory. Thereby,
the time for freeing the stack memory is not constant, because
MultiStackMMU is based on pages, which must be released
one after another. Therefore, we are defining the collaborate
time t%,(t) of task 7/ at time t (see Figure 2a), which defines
the time required by the collaborative task 7/ to perform
all the operations to free 7/’s collaborative stack memory.
Consequently, the blocking time B, of task 7 can be calculated

as follows:
> (6)

Viipr, <pr

B, := max{t% (t)}

vteEN

The blocking time B, is the sum of the longest collaborate
time tfi of all lower prioritized tasks 7;. Thus, the blocking
time highly depends on the requested stack memory, the
collaborative stack memory of each collaborative task, the
number of lower prioritized collaborative tasks, and the time
when the stack memory is requested.

IV. IMPLEMENTATION DETAILS

We implemented the collaborative stack sharing approach
into our mosartMCU research platform, running with the
mosartMCU-OS.

A. mosartMCU

The mosartMCU (i.e., Multi-Core Operating-System-
Aware Real-Time MCU) project implements OS awareness
into embedded multi-core systems. The open RISC-V [17]
architecture, maintained by the University of California of
Berkeley, is the specification of the softcore mosartMCU. The

35

ICONS 2018 : The Thirteenth International Conference on Systems

mosartMCU is based on the offered open source Verilog im-
plementation vScale. vScale implements all the 32 Bit integers
and the multiplication/division instructions [18] and executes
the instruction in a three stage pipeline. The specification
specifies 32 registers whereas the compiler does not use the
register tp. That register indicates the TCB, which contains
information about the task including its priority, of the cur-
rently running task. We extended the basic implementation
with an automatic read operation, triggered by the hardware if
the register tp is changed. Therefore, the hardware is always
aware of the currently running task’s priority. In parallel to
the normal execution, a read operation is automatically per-
formed by using an additional connection to the data memory
through a dual-port memory. This dual-port memory is also
used by some other extensions (e.g., [19]). Further, the CPU
specification defines three different operating modes, whereas
the mosartMCU supports only the non-privileged user-mode
and the privileged kernel-mode. These operating modes define
permissions for some instructions and for accessing CSRs,
which are hardware registers used to configure and to get
information from the Microcontroller Unit (MCU).

B. mosartMCU-OS

The mosartMCU-OS is a real-time OS supporting the OS-
awareness extension of the mosartMCU. Besides other OS-
awareness concepts, it only has to initialize some CSRs (i.e.,
stack area) and the references of the next free available pages
at startup, for supporting MultiStackMMU. After that, the
MultiStackMMU operates transparent to the OS. However, the
OS must be extended to support our proposed collaborative
stack sharing approach.

C. Collaborative Stack Management

In a CSR, the hardware provides the number of required
stack pages after a collaborate exception. The exception
handler stores the number of required pages into the TCB
of the currently running task. After executing the exception
handler, the OS does its management work and selects a task
according to the RM scheduling policy. Before leaving the
OS, by restoring all the task’s registers, the OS checks if
the scheduled task requires more pages than available. The
number of available pages is provided by the hardware through
another CSR register. If there are more pages available than
required, the OS lefts and resumes with the scheduled task.
Otherwise, the OS searches, starting by the lowest prioritized
task, a collaborative task that is recognized by the information
in the TCB. If a collaborative task is found, the scheduler
selects that task for executing. Thereby, the scheduler changes
the program counter to continue at the collaborate handler,
also stored in the TCB. The collaborate code restores its callee
saved registers, frees the collaborate stack memory, and yields
itself to return to the OS.

V. EXPERIMENTAL EVALUATION

We experimentally evaluated the collaborative stack sharing
approach in the mosartMCU, running with 50 MHz in a Xilinx
Artix-7 FPGA. First, we demonstrate the cooperative stack
sharing, measured with an oscilloscope; and second, we show
the synthesized results for the FPGA.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

A. CoStack Evaluation

This evaluation illustrates CoStack on a collaborative
600 Byte stack memory provided by task 7/, once the stack
memory is not available for the higher prioritized task 7.
Figure 3 depicts the execution flow with the signal os showing

o2

os i .
[
* coll_sched H ’—‘ H

I tralloc o

. stack alloc _

> . Vol
A43ps 243ps -430 ns 157 ps 357ps 557 s 7.57 s 957 s 116 s

P " B, ;

Figure 3. Execution flow example of CoStack.

the execution of the OS, the signal coll_sched demonstrating
the part in the scheduler that is responsible for searching
and scheduling a collaborative task, and the signal stack_alloc
showing the time for allocating the required 600 Bytes stack
memory to task 7. Table I lists all the measured times, and

TABLE I. Measured times for the example in Figure 3.

[(tos; | ts | tosy, | t, | Br | trauoc |
[3.74ps [1.02ps [4.08 pus [1.94ps [9.76 us [11.00ps]

following emphasizes some specific points in time of Figure 3:

e At time %y, task 7 requests 600 Byte stack memory.
The memory is not available; therefore, the OS is
called by a collaborate exception. There, the OS saves
the context of task 7, does its management work
including the work for scheduling the collaborative
task 7/ (i.e., t5), and restores its context. All this in
total consumes %, .

e At time t;, the OS returns, and task 7/ is running.
Instead of continuing with the previous preempted pro-
gram counter it continues at the label COLLABORATE.
There, its callee saved registers are restored, the col-
laborative stack memory k., is released, and the task
yields to return to the OS, which again schedules
task 7. These operations reflect the collaborate time
tk,.

o After leaving the OS (i.e., tpg,) on time t5, there is
enough stack memory available for task 7; therefore,
the required stack memory is allocated to task 7.

The blocking time B, (i.e., t¥, including the OS overheads
tos, and tps,) and the stack allocation time %410 are not
constant, because they depend on the number of collaborative
tasks, the location of the task in the searching list, and the
number of required and collaborate stack pages. However, the
execution is still predictable because MultiStackMMU works
predictable. Further, CoStack avoids an out-of-stack, because
the collaborative task 7/ voluntarily frees its collaborative stack
memory ~,, for the higher prioritized task 7. Otherwise, task 7
would not be able to execute, because no stack memory is

36

ICONS 2018 : The Thirteenth International Conference on Systems

TABLE II. Resource comparison of the original and the extended

mosartMCU.
{ mosartMCU]
[Original [MultiStackMMU | CoStack |
[LUTslces [2799 | 1283 [4298 |
[FF shices [2078 | 2378 [2378 |
[max. frequency [[73.992MHz | 63.339MHz | 63.391 MHz |
[Dynamic power [16 mW [21 mW [21 mW |

available; consequently, this might result into an unpredictable
blocking of task 7 and to possibly violated real-time con-
straints.

B. Synthesized Results

The synthesized results, provided by the Xilinx Vivado
2017.3 development toolchain, for the Xilinx Artix-7 FPGA
are listed in Table II. It compares Look Up Table (LUT) slices,
Flip-Flop (FF) slices, the maximum achievable frequency, and
the dynamic power of the original mosarfMCU, and the ex-
tended versions MultiStackMMU and CoStack. If we compare
the original mosartMCU with the extended versions, it is
remarkable that the original version requires about 65 % and
87 % of LUTs and FFs, respectively. The increased resource
utilization is caused by the VM address translation and some
other registers that are required for handling the StackMMU
approach. However, comparing the two extended mosartMCU
versions, the resource utilization remains negligible the same.

For the maximal achievable frequency, and the dynamic
power consumption the table represents a similar behavior.
For the former, the large frequency reduction is caused by
the implementation of the StackMMU in the already longest
path of the original mosartMCU. For the latter, the dynamic
power increases due to the additional required LUTs and
FFs. However, for the two extended mosartMCU versions, the
maximum achievable frequency remains almost the same and
both require the same amount of power.

VI. CONCLUSION

Memory is a rare and expensive resource in embedded sys-
tems. This makes the economical usage of memory important.
The stack memory has the potential to optimize the overall
memory consumption because its size changes dynamically
over the time. The paper proposes CoStack, an extension of
the dynamically sharing stack memory concept StackMMU
with collaborative stack memory. A task tags a code part with
collaborative stack memory and if a higher prioritized task
requires stack memory that is not available at that moment, the
collaborative task deallocates the collaborative stack memory
for enabling the higher prioritized task to continue. Our analy-
sis shows that the whole stack memory requirement is virtually
reduced. Further, we showed the impact of CoStack in the
schedulability analysis for RM scheduling. The experimental
evaluation shows that the synthesized results for the FPGA
remain almost constant. Therefore, CoStack contributes to a
reduction of the memory usage by introducing a collaborative
stack sharing mechanism and remains predictable as aimed for
real-time systems.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-626-2

ACKNOWLEDGMENT

This research project was partially funded by
AVL List GmbH and the Austrian Federal Ministry of
Sciences, Research and Economy (bmwfw).

REFERENCES

[1] “Micrium uC/OS-III,” URL: https://www.micrium.com/rtos/ [accessed:
2018-02-27].

[2] “The FreeRTOS Kernel,” URL: http://www.freertos.org/ [accessed:
2018-02-27].

[3] “Contiki: The Open Source OS for the Internet of Things,” URL: http:
/Iwww.contiki-os.org [accessed: 2018-02-27].

[4] T. P. Baker, “A stack-based resource allocation policy for realtime
processes,” in Proc. of the 11th IEEE Real-Time Systems Symposium
(RTSS), Dec 1990, pp. 191-200.

[S] B. Middha, M. Simpson, and R. Barua, “MTSS: Multitask Stack
Sharing for Embedded Systems,” ACM Trans. on Embedded Computer
Systems, vol. 7, 2008, pp. 41:1-46:37, ISSN: 0001-0782.

[6] J. Fotheringham, “Dynamic Storage Allocation in the Atlas Computer,
Including an Automatic Use of a Backing Store,” Communications of
the ACM, vol. 4, 1961, pp. 435-436, ISSN: 0001-0782.

[7]1 F. Mauroner and M. Baunach, “StackMMU: Dynamic Stack Sharing
for Embedded Systems,” in Proc. of the 22nd IEEE Int. Conference
on Emerging Technologies and Factory Automation (ETFA), Sep 2017,
pp. 1-9.

[8] Y. Wang and M. Saksena, “Scheduling Fixed-Priority Tasks with
Preemption Threshold,” in Proc. of the 6th Int. Conference on Real-
Time Computing Systems and Applications (RTCSA), 1999, pp. 328—
33s.

[9] “ThreadX,” 2018, URL: https://rtos.com/solutions/threadx/real-time-
operating-system/ [accessed: 2018-02-27].

[10] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “SenSmart: Adaptive
Stack Management for Multitasking Sensor Networks,” IEEE Trans.
on Computers, vol. 62, 2013, pp. 137-150, ISSN: 0018-9340.

[11] S.Yi, S. Lee, Y. Cho, and J. Hong, OTL: On-Demand Thread Stack
Allocation Scheme for Real-Time Sensor Operating Systems. Springer
Berlin Heidelberg, 2007, pp. 905-912, in Computational Science —
ICCS 2007, ISBN: 978-3-540-72590-9.

[12] E. A. Hauck and B. A. Dent, “Burroughs’ B6500/B7500 Stack Mech-
anism,” in Proc. of the Spring Joint Computer Conference, ser. AFIPS
’68 (Spring), 1968, pp. 245-251.

[13] D. Grunwald and R. Neves, “Whole-program Optimization for Time
and Space Efficient Threads,” in Proc. of the 7th Int. Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), ser. ASPLOS VII, 1996, pp. 50-59.

[14] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable Threads for Internet Services,” in Proc. of the 9th
ACM Symposium on Operating Systems Principles (SOSP), ser. SOSP
’03, 2003, pp. 268-281.

[15] M. Baunach, “CoMem: collaborative memory management for real-time

operation within reactive sensor/actor networks,” Trans. on Real-Time
Systems, vol. 48, 2012, pp. 75-100, ISSN: 1573-1383.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Pro-
tocols: An Approach to Real-Time Synchronization,” IEEE Trans. on
Computers, vol. 39, Sep 1990, pp. 1175-1185, ISSN: 0018-9340.

[17] “RISC-V,” URL: https://riscv.org/ [accessed: 2018-02-27].

[18] A. Waterman, Y. Lee, R. Avizienis, D. Patterson, and K. Asanovic,
The RISC-V Instruction Set Manual, 2016, URL: https://riscv.org/
specifications/ [accessed: 2018-02-27].

[19] F. Mauroner and M. Baunach, “EventIRQ: An Event based and Priority
aware IRQ handling for Multi-Tasking Environments,” in Proc. of the
20th Euromicro Conference on Digital System Design (DSD), Aug
2017, pp. 102-110.

37

