ICONS 2015 : The Tenth International Conference on Systems

Natural Language Processing of Textual Requirements

Andres Arellano Edward Carney Mark A. Austin
Government of Chile, Lockheed Martin, Department of Civil Engineering,
Santiago, Chile College Park, MD 20742, USA University of Maryland,

Email: andres.arellano@gmail.com Email: edward.carney@Imco.com College Park, MD 20742, USA
Email: austin@isr.umd.edu

Abstract—Natural language processing (NLP) is the application Il. PROJECTOBJECTIVES

of automated parsing and machine learning techniques to angze o

standard text. Applications of NLP to requirements engineeng Significant work has been done to apply natural language
include extraction of ontologies from a requirements spetication, ~ processing (NLP) to the domain of requirements engineering

and use of NLP to verify the consistency and/or completion [2] [3] [4]. Applications range from using NLP to extract
of a requirements specification. This work-in-progress papr ontologies from a requirements specification, to using NLP
describes a new approach to the interpretation, organizatin to verify the consistency and/or completion of a requiretaen
and management of textual requirements through the use of gpecification. This work-in-progress paper outlines a fam
application-specific ontologies and natural language prassing. \york for using NLP to assist in the requirements decom-
?;Vweplgrlqsgntgets;]gen nind freai(nigcvlvsoerkaorrl)rcz;tognaglif?gcfitwn?cr)edetlogf tgr?t position process. Our research objectives are to use modern
aircraft language processing tools to scan and tag a set of requitgmen
and offer support to systems engineers in their task of aefini
Keywords-Systems Engineering; Ontologies; Natural Language and maintaining a comprehensive, valid and accurate body of
Processing; Requirements; Rule Checking. requirements. Section Il describes two aspects of our work
progress: (1) Working with NLTK, and (2) Integration of NLP
with ontologies and textual requirements. A simple aircraf
l. INTRODUCTION application is presented in Section IV. Section V covers the
conclusions and directions for future work.
Model-based systems engineering development is an ap-
proach to systems-level development in which the focus and 1. WORK IN PROGRESS
primary artifacts of development are models, as opposed)))
to documents. As engineering systems become increasinghPpic 1. Working with NLTK. The Natural Language Toolkit
complex the need for automation arises [1]. A key elemenfNLTK) is a mature open source platform for building Python
of required capability is an ability to identify and manage Programs to work with human language data [5].
requirements during the early phases of the system design
process, where errors are cheapest and easiest to cortalt. W raw text pos-tagged sentences
engineers are looking for semi-formal and formal models tc i) TS
work with, the reality remains that many large-scale prgjec v
begin with hundreds — sometimes thousands — of pages ¢ _pentence iy I
textual requirements, which may be inadequate because thi o s
are incomplete, under specified, or perhaps ambiguous-Stat i ke
of-the art practice involves the manual translation of text v v

into a semi-formal format (suitable for representation in a tokenization B I

nition

requirements database). A second key problem is one ¢ S
completeness. For projects defined by hundreds/thousdnds Tokefiaad setentes
. .. . (list of lists of strings)
textual requirements, how do we know a system description i — R 8
complete and consistent? The motivating tenet of our rekear part ot speech (st of tuples)

tagging

is that supporting tools that make use of computer procgssin
could significantly help software engineers to validate the
completeness of system requirements. Given a set of textual Figure 1. Information extraction system pipeline archiitee.
descriptions of system requirements, we could analyze them

making use of natural language processing tools, exti@actin

the objects or properties that are referenced within the reFigure 1 shows the five-step processing pipeline. NLTK pro-
quirements. Then, we could match these properties againsides the basic pieces to accomplish those steps, each one
a defined ontology model corresponding to the domain ofvith different options and degrees of freedom. Startinghwit
this particular requirement. This would throw alerts ine&as an unstructured body of words (i.e., raw text), we want to
of lacking requirements for some properties. obtain sentences (the first step of abstraction on top oflsimp

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5 93

ICONS 2015 : The Tenth International Conference on Systems

5
ey ———— e ——
B E——— ———— " e e ——— —_—
When WRB IPRP workVBP asRB abT NP ., IPRP tly RB enjoy VBF my PRPS NP
e |
seniorJJ systems NNS engineer NN work MM

Figure 2. Output from building a chunking grammar.

]
IS "l T e—
NP work VBP as RB NP truly RB enjoy VBP NP
A\" ——— ——:—__::ﬂ__:":_'f_-—/_%::—_—::_— s _._,.,——"--"‘"'_ﬂ_-":{""-—\._.
When WRB PRP alT seniorJJ systems NMNS engineer NN v+ | PAP my PRPS work NN

Figure 3. Output from the example on chinking.

words) and have access to each word independently (withowain the sentence: a noun, a verb, an adjective, a pronoun,
loosing its context or relative positioning to its sentdnddis preposition, conjunction, numeral, article and inteie{10].
process is known atokenizationand it is complicated by the This process is known agart of speech taggingor simply
possibility of a single word being associated with multiple POS tagging[11]. On top of POS tagging we can identify
token types. Consider, for example, the sentence: “Thesthe entities We can think of thesentitiesas “multiple word
prerequisites are known as (computer) system requiremente®uns” or objects that are present in the text. NLTK provides
and are often used as a guideline as opposed to an absol@e interface for tagging each token in a sentence with supple
rule.” The abbreviated script of Python code is as follows: mentary information such as its part of speech. Severaktagg
are included, but aoff-the-shelfone is available, based on the
text = "These prerequisites are known as (conputer) Penn Treebank tagset [12]. The following listing shows how

systemrequirenments and are often used as a simple is to perform a basic part of speech tagging.
gui del i ne as opposed to an absolute rule."

tokens = nl tk.word_tokeni ze(ny_string)

print tokens my_string = "Wien | work as a senior systens
- engineer, | truly enjoy ny work."
[' These', 'prerequisites’, 'are’, 'known', 'as’, tokens = nltk.word_tokeni ze(ny_string)

(', 'conputer’, '), 'system, 'requirenents’, print tokens

"and’, 'are’, 'often’, 'used’, 'as', 'a’,

"guideline’, 'as', 'opposed’, 'to’, 'an’, tagged_t okens = nltk.pos_tag(tokens)
"absolute’, 'rule’, ’.’] print tagged_tokens

=>

[("Wen', "WRB'), ("I, "PRP'), ('work’, 'VBP),
The result of this script is an array that contains all the (*as’, 'RB'), ('a, 'DI"), ('senior’, 'JJ'),
text's tokens, each token being a word or a punctuation(’systems’, *'NNS'), ("engineer’, "NN), (',', '’
character. After we have obtained an array with each token(' , "PRP"), (*trul yi(; "RB'), (“enjoy’, 'VBP),
(i.e., word) from the original text, we may want to normalize (myt, TPREST)L (Pworkt, RN (LT)
these tokens. This means: (1) Converting all letters to towe i . _ .
case, (2) Making all plural words singular ones, (3) Remgvin The first thing to notice from the output is that the tags
ing endings from verbs, (4) Making all verbs be in presentaré two or three letter codes. Each one represent a lexical
tense, and (5) Other similar actions to remove meaninglesg@tegory or part of speech. For instance, WRB stands for
differences between words. In NLP jargon, the latter is kmow Wh-adverb including how, where why, etc. PRP stands for
as stemming in reference to a process that strips off affixesPersonal pronounRB for Adverly JJ for Adjective VBP for
and leaves you with a stem [6]. NLTK provides us with higherPresent verb tenseand so forth [13]. These categories are
level stemmershat incorporate complex rules to deal with the More detailed than presented in [10], but they can all beettac
difficult problem of stemming. The Porter stemmer that use®ack to those ten major categories. It is important to noge th
the algorithm presented in [7], the Lancaster stemmer,cbaséhe Possibility of one-to-many relationships between adwor
on [8], or the built in lemmatizer — Stemming is also known asand the tags that are possible. For our test example, the word
lemmatization referencing the search of themmaof which work is first classified as a verb, and then at the end of the
one is looking an inflected form [6] — found in WordNet. sentence, is class[fled as a noun, as expectgd. Moreover, we
Wordnet is an open lexical database of English maintainefPund two nouns (i.e. objects), so we can affirm that the text
by Princeton University [9]. The latter is considerablyvets IS Saying something abosystemsan engineerand a work

than all the other ones, since it has to look for the potentiaBut we know more than that. We are not only referringato
stem into its database for each token. engineer but to asystems engineeand not only asystems

engineer but a senior systems engineerhis is our entity
The next step is to identify what role each word playsand we need tgecognizeit from the text (thus the section

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5 94

ICONS 2015 : The Tenth International Conference on Systems

(

Model w

id :integer

name :string
created_at :datetime
updated_at :datetime

(Entity

)

id :integer

name :string
model_id :integer
created_at :datetime

updated_at :dat
A
(Property W
id :integer

name :string
entity_id :integer
created_at :datetime
updated_at :datetime

Figure 4. UML diagram of the application models.

etime
—
System
id :integer

entity_id :integer
model_id :integer
name :string
created _at :datetime

\ updated_at :datetime)

7 ;
SystemRequirement)

id :integer

title :string
description :text
system_id :integer
created_at :datetime

\ updated_at :datetime

software has two main components: The web application that
provides the user interfaces, handles the business logit, a
manages the storage of models and systems. This component
was built using Ruby on Rails (RoR), a framework to create
web applications following the Model View Controller patte
[14]. The views and layouts are supported by the front-end
framework Bootstrap [15]; These scripts are written using
Python. Figure 4 is a UML diagram showing all the models.
The modelscorresponding to the MVC architecture of the
web application, reveal the simple design used to represent
an Ontology and a System. The first one consists of a Model
— named after an Ontology Model, and not because it is a
MVC model — that has many Entities. The Entities, in turn,
have many Properties. The latter is even simpler, congistin
only a Systemthat has manySystem Requirementslost of

the business logic resides in the models. Notice, in pdaticu
system-level interpretation of results from the naturaglaage
processing.

IV. SIMPLE AIRCRAFT APPLICATION

We have exercised our ideas in a prototype application,
step-by-step development of a simplified aircraft ontology
model and a couple of associated textual requirements. The
software system requires two inputs: (1) An ontology model
that defines what we are designing, and (2) A system defined
by its requirements. We manage a flattened (i.e., tabular)
version of a simplified aircraft ontology. Figure 5 shows the
aircraft model we are going to use.

Ontology Model E

+Model: Transportation
+Entity: Aircraft
+Engines

+Wings

+5lides

+Throttle Levels
+Altitude Indicator
Length: 254 meters
Passengers Capacity

name). In order to do this, we need to somehow tag groups c:
words that represent an entity (e.g., sets of nouns thataappe
in succession('systems’, 'NNS’), (‘'engineer’, 'NN)) NLTK
offers regular expression processing support for ideintfy
groups of tokens, specifically noun phrases, in the text. Th&his simple ontology suggests usage of a hierarchical model
rules for the parser are specified defingr@mmarsincluding ~ structure, with aircraft properties also being represeritg
patterns, known ashunking or excluding patterns, known as their own specialized ontology models. Second, it makesesen
chinking As a case in point, Figures 2 and 3 show the tredo include a property in the model even if its value isn't set.

structures that are generated when chunking and chinkimg aNaturally, this lacks valuable information, but it doeseyivs
applied to our test sentence. the knowledge that that particular property is part of theleip

so we can check for its presence. The next step is to create
Topic 2. Integration of NLP with Ontologies and Tex- a system model and link it to the ontology. We propose a
tual Requirements. In order to provide a platform for the one-to-one association relationship between the systehaan
integration of natural language processing, ontologied anontology, with more complex relationships handled through
systems requirements, and to give form to our project, wi bui hierarchical structures in ontologies. This assumptionpsi
TextReq Validatiora web based software that serves as a proofies development because when we are creating a system we
of concept for our objectives. The software stores ontologynly need to refer to one ontology model and one entity.
models in a relational database (i.e., tables), as well as &he design of the system is specified througktual system
system with its requirements. It can do a basic analysiseseth requirements To enter them we need a system, a title and
requirements and match them against the model’s propertiea description. Figure 6 shows, for example, all the system
showing which ones are covered and which ones are not. THeRequirements for the systetdMDBus 787 Notice that each

Figure 5. Simplified ontology model for an aircraft.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5 95

ICONS 2015 : The Tenth International Conference on Systems

TextReq Validation Systems Requirements Modals Entities Properties A
Id Title Description System Actions
1 Aplane needs wings A wing Is a type of fin with a surface that produces aerodynamic force for flight or propulsion through the 1 Edit
atmosphere ﬁ
3 The plane needs throttle levers Each thrust lever displays the engine number of the engine it controls 1 Edit
4 The length of the plane The length of the entire aircraft should be 254 meters 1 Edit
5 The plane should have engines An aircraft engine s the component of the propulsion system for an aircraft that generates mechanical power 1 Edit
ead
& The capacity is 255 The aircraft needs to have a passengers capacity of 255 1 Edit
passengers m
Figure 6. Panel showing all the requirements for the sydtenDBus 787
requirement has a title and a description, and it belongs to a Comput. Soc, 1997, pp. 36-45. [Online]. Available:

specific system. The prototype software has views (details n
provided here) to highlight connectivity relationshipsvbeen [3]
the requirements, system model (in this case, a simplified
model of a UMDBus 787), and various aircraft ontolology
models. The analysis and validation actions match the syste 4
properties taken from its ontology model against inforomati
provided in the requirements. The output from these acti®ns
shown in Figures 7 and 8, respectively.
(5]
V. CONCLUSIONS ANDFUTURE WORK 6]
When a system is prescribed by a large humber of (non
formal) textual requirements, the combination of previgus
defined ontology models and natural language processihg tec
nigues can play an important role in validating and verifyin
a system design. Future work will include formal analysis
on the attributes of each property coupled with use of NLP
to extract ontology information from a set of requirements.
Rigorous automatic domain ontology extraction requires al8l
deep understanding of input text, and so it is fair to say
that these techniques are still relatively immature. A sdco
opportunity is the use of NLP techniques in conjunction with (9]
a repository of acceptable “template sentence structums” [10]
writing requirements [16]. Finally, there is a strong need
for techniques that use the different levels of detail in theyy;
requirements specification, and bring ontology models from
different domains to validate that the requirements beddiog [12]
the supposed domain. This challenge belongs to the NLP area

[7]

of classification [13]
REFERENCES
[14]
[1] M.A. Austin, and J.S. Baras, “An Introduction to Infortin-Centric [15]
Systems Engineering”. Toulouse, France: Tutorial FO6,OSE, June
[16]
2004.
[2] V. Ambriola and V. Gervasi, “Processing Natural Lan-
guage Requirements,” in Proceedings 12th |IEEE Interna-
tional Conference Automated Software Engineering. IEEE

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5

http://ieeexplore.ieee.org/Ipdocs/epic03/wrapperdarnumber=632822

C. Rolland and C. Proix, “A Natural Language Approach Require-

ments Engineering,” in Advanced Information Systems Eeejiimg.

Springer, 1992, pp. 257-277.

K. Ryan, “The Role of Natural Language in Require-
ments Engineering,” in [1993] Proceedings of the IEEE
International Symposium on Requirements Engineering. EEE
Comput. Soc. Press, 1993, pp. 240-242. [Online]. Available
http://ieeexplore.ieee.org/lpdocs/epic03/wrapperdarnumber=324852

NLTK Project, “Natural Language Toolkit NLTK 3.0 documtgtion.”
[Online]. Available: http://www.nltk.org/

C. Manning and H. Schuetze, Foundations of Statistical
Natural Language Processing. The MIT Press, 2012.
[Online]. Available: http://www.amazon.com/Foundate8tatistical-
Natural-Language-Processing-ebook/dp/B007L7LUKO
M. Porter, “An Algorithm for Suffix
Program: electronic library and information systems,
vol. 14, no. 3, Dec. 1980, pp. 130-137. [Online].
Available: http://www.emeraldinsight.com/journalsrttissn=0033-
0337&volume=14&issue=3&articleid=1670983&show=html

C. D. Paice, “Another Stemmer,” ACM SIGIR Forum,
vol. 24, no. 3, Nov. 1990, pp. 56-61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=101306.101310

Princeton University, “About WordNet - WordNet - About diliNet.”
[Online]. Available: http://wordnet.princeton.edu/

M. Haspelmath, “Word Classes and Parts of Speech,” 2(Dtline].
Available: http://philpapers.org/rec/HASWCA

S. Bird, E. Klein, and E. Loper, Natural Language Preoes with
Python. O’Reilly Media, Inc., 2009.

University of Pennsylvania, “Penn Treebank ProjecfOnline].
Available: http://www.cis.upenn.edu/ treebank/

B. Santorini, “Part-of-Speech Tagging Guidelines ftime Penn
Treebank Project (3rd Revision),” 1990. [Online]. Availab
http://repository.upenn.edu/cigeports/570

Ruby on Rails. See http://rubyonrails.org/ (Accesdddrch 2015).
Bootstrap. See http://getbootstrap.com/2.3.2/ g&sed, March 2015).
E. Hull, K. Jackson, and J. Dick, Requirements Engimger Springer,
2002. [Online]. Available: http://www.amazon.com/Regments-
Engineering-Elizabeth-Hull-ebook/dp/BO00PY410W

Stripping,”

96

ICONS 2015 : The Tenth International Conference on Systems

Basic Properties

Property Value
Chars 547
Len tokens 94
Sentences 1
Porter stems 94
Lancaster stems 94
Wnl stems 94

Objects

AL aircrait | plane | engins | capacity | lengh | propuision | aimosphers | component J fin
 flight] foroe } fever | number | power | surface | system | throttle | thrust] type]
NNS

NP

Figure 7. Basic stats from the text, and a list of the entitexognized in it.

System Validation

Veried propertes
Unverified properties

Figure 8. This is the final output from the application workfldt shows what properties are verified (i.e., are presenhénsystem requirements) and which
ones are not.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-399-5 97

