
An Integrated Testbed Environment for the Web of Things

Mina Younan
Computer Science Department

FCI - Minia University
Minia, Egypt

E-mail: mina.younan@mu.edu.eg

Sherif Khattab, Reem Bahgat
Computer Science Department

FCI - Cairo University

Cairo, Egypt

E-mails: {s.khattab, r.bahgat}@fci-cu.edu.eg

Abstract – This paper proposes a testbed architecture for the

Web of Things (WoT) using simple components. Sensor

networks have become one of the most researched topics

currently, due to proliferation of devices equipped with sensors

and actuators for monitoring and controlling their

surrounding environment (e.g., places and devices). Although

simulators, like Cooja, and Web sites, like Thingspeak, give the

ability to build simple Internet of Things (IoT) and WoT

applications, they are not compatible with many testing

purposes in WoT. Getting real datasets that cover the main

features of WoT is one of the most important factors in WoT

testing and research. The proposed testbed environment allows

for generating datasets and using them offline and online. It

integrates small equipment elements (sensors and actuators)

that convert things into Smart Things (SThs). Moreover, it

augments IoT by SThs virtualization through Web

applications. The main components and detailed design of the

testbed are described. Then, a case study of searching for SThs

and Entities of Interest (EoIs) is explained using a real dataset

generated from the proposed testbed. The proposed testbed

architecture incorporates the sense of smart environments and,

hence, is expected to enhance testing results in WoT.

Keywords – Internet of Things (IoT); Web of Things (WoT);

searching in WoT; Smart Things; Test Environment.

I. INTRODUCTION

The number of devices and things connected to the

Internet will be increasing and is expected to reach the order

of billions by 2020 [1][2], as soon as the Internet Protocol

(IP) becomes the core standard in the fields of embedded

devices. As a result, the number of Internet users will be less

than the number of devices connected to it. The Internet of

Things (IoT) focuses on the infrastructure layer needed for

connecting things and devices to the Internet. IoT addresses

the connectivity challenge by using IP and IPv6 for

embedded devices (i.e., 6LoWPAN) [3]. Sensor networks

have become one of the most researched topics currently [2]

[4]. This is due to the proliferation of devices equipped with

sensors and actuators that provide information about and

control of their surrounding environments. Sensors allow

the state of things (e.g., places, devices, etc.,) that sensors

represent to be inferred. In a sense, sensors and actuators

convert things to Smart Things (SThs) and things‟

environments to smart spaces.

The Web of Things (WoT) virtualizes the IoT and

focuses on the application layer needed for building useful

applications over the IoT. Services, such as searching for

SThs and Entities of Interest (EoIs) in the WoT, in addition

to Web-based applications for controlling and monitoring

services in smart spaces using friendly user interfaces are

core power features in the WoT. However, there is no

general method for testing and benchmarking research in

IoT and WoT [4][5][6][7].

Muhammad et al. [6] summarize differences between

concepts of emulators, simulators, and physical testbeds.

They concluded that physical testbeds provide more

accurate results. MoteLab [4] is a testbed for Wireless

Sensor Networks (WSNs). It addresses challenges related to

sensors‟ deployment and the time consumed for building a

WSN. It features a Web application to be accessed remotely.

The need for WSN testbeds is highlighted by challenges and

research topics, which shed light on a specific set of features

to be embedded within the testbed and its tools [6] [7]. For

instance, not only datasets about sensor readings are needed

but integrating the readings with information about the

underlying infrastructure (i.e., the IoT layer) is needed as

well; this integration is the goal of the testbed proposed in

this paper.

This paper proposes a testbed architecture for WoT. It

addresses the general needs of WoT testing and focuses on

the Web search problem and its related issues, such as

crawling (i.e., preparing WoT pages for crawling). The

problem of how to find SThs and EoIs that have dynamic

state that change according to environment events [8][9] has

sheer importance in drawing conclusions, deductions, and

analysis in various fields. The proposed testbed can be used

as a WoT application, which monitors real devices in real-

time and can be used as a WoT simulator to do the same

process on WoT datasets instead of devices. It aims at

collecting datasets that contain information about things

(i.e., properties and readings) formatted using multiple

markup languages. The collected datasets are designed to

help in testing in many problem domains [8] [10].

The remainder of the paper is organized as follows. The

next section defines dataset requirements. In Section 3, the

related work of creating searchable IoT and WoT domains

using IoT and WoT simulators and datasets is discussed.

Section 4 describes the proposed system architecture. In

69Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

Section 5, the implementation of the proposed system is

described followed by a case study. Finally, conclusions and

important ideas for future work are presented in Section 6.

II. DATASET REQUIREMENTS

Things, SThs, resources, and EoIs are main concepts in

IoT and WoT. They have differences in meaning but the

main goal is that they are used for integrating the physical

world into the virtual world [11]. In WoT, what needs to be

retrieved (i.e., searched for) includes SThs (e.g., TV sets),

EoIs (e.g., buildings), IP addresses, current values [8], and

general information like device‟s web banners [9].

Generally, searching is done on SThs and EoIs that have

dynamic locality [8][12][13] caused and fired by other

events or objects in the network. For testing and evaluating

the search process in IoT and WoT, simulators should

reflect as many IoT and WoT challenges to achieve accurate

results. To achieve this, datasets are used and replayed by

applications that act as emulators of WoT.

In general, the main challenges that face testing of

smart spaces, IoT, and WoT are: (1) the huge number of

sensors and SThs, which makes communication services,

monitoring, and analysis of sensor information require non-

trivial amounts of CPU time and storage, (2) the dynamic

state of SThs, which means that sensor readings and

information about SThs properties and devices to which

they are attached are in continuous change, and (3) the non-

standardized naming of SThs properties (e.g., name,

services, and location) and formats (e.g., microformats and

microdata) that are used in WoT applications, which makes

retrieval of information about objects and their attached

sensors difficult.

To identify dataset requirements for testing the Web

search process in WoT, WoT data are classified according

to type, static or dynamic. The first type is static

information (IoT level), which includes (1) information

about sensors (e.g., information about sensor properties like

ID, name, brand, image, description, authoritative URL,

manufacturer, and list of services that it offers) and (2)

information about entities (e.g., device, thing, and place)

including entity properties, such as logical paths, list of

hosted devices, and possible states by which the entity is

described. The second WoT data type is dynamic

information (WoT level), which includes (1) sensor

readings or state, (2) current entity state, which changes

according to sensor reading or other factors that the entity

state depends on [8][14]. A dataset for testing Web search in

WoT should ideally contain the following items: (1) files

that contain schematics of the buildings and locations of

sensors, (2) files that contain other static information about

sensors (written in different formats), (3) a file for each

sensor type that contains a table for readings of all sensors

that have that type as a time series to aid in testing sensor

similarity search and analysis [15], and a file for all devices

in the network that contains sensor readings as a time series

so that it can be used for browsing the WoT. Examples of

these files will be described later. For accessing these files,

headers of tables (sensor definitions) should follow a certain

structure for creation and accessing (e.g., sensor name and

virtual and physical location).

III. RELATED WORK

In the light of the previous requirements, this section

discusses the usage of sensor datasets in the literature. To

summarize our observations, if the research is only

interested in values measured by sensors or in states of EoIs

(e.g., being online or offline), then the used dataset is based

on the WoT level, whereas if the research is interested in the

sensor network infrastructure, then the used dataset is based

on the IoT level. An integrated dataset contains information

about both sensor readings and network infrastructure, that

is, it is based on both IoT and WoT levels.

A. IoT Simulations

There is no general way for simulating IoT [5][6][16].

Moreover, there are situations in which simulators and real

datasets containing raw information (e.g., sensor readings

[17]) or information about the IoT layer are not enough for

modeling an environment under testing, as the datasets miss

the sense of one or more of the challenges mentioned earlier

and thus, miss the main factors for accurate WoT

evaluation. Also, many datasets are not actually related to

the problem under investigation, but were generated for

testing and evaluating different algorithms or methods in

other researches. For instance, an evaluation of WSNs‟

simulators according to a different set of criteria, such as

Graphical User Interface (GUI) support, simulator platform,

and available models and protocols, concludes that there is

no general way for simulating WSNs, and hence IoT and

WoT [5][16]. None of these criteria address the previous

challenges. So, it is desirable to embed the unique IoT and

WoT challenges within datasets and to make simulators

support as much of these challenges.

WSN Simulators. Several studies [5][6][16]

summarize the differences between existing simulators

according to a set of criteria. The Cooja simulator is one of

the most valuable tools [5][16] in WSNs that aids

researchers to simulate WSNs relatively easily using a

supported GUI. Cooja allows to add different types of

sensors (motes) and to attach them to binaries or source

codes that have been previously developed. Cooja supports

applications (e.g., written in the nesC [18] language after

building in the TinyOS [19]) for different sensor targets. For

example, the RESTful client server application [20]

simulates a simple IoT. Cooja has a main advantage that it

allows users to create their network using a non-trivially

large number of sensors with different types, to get

information about sensors (readings and properties), to

control sensors, and to change their states as well. However,

there are limitations and difficulties for testing the

extensible discovery service [10] and sensor similarity

search [15] in Cooja, because there is no information about

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

network infrastructure and entities, in particular static

information about sensors, written in different formats, and

schematics information of the buildings and locations of

sensors.

WSN Physical Testbeds. Physical testbeds produce

accurate research results [6]. Different testbeds are found in

this field due to different technologies and network scales.

Providing a Web interface for users is a main feature in

testbeds. MoteLab [4] supports two ways for accessing the

WSNs, (1) offline, by retrieving stored information form a

database server and (2) online, by direct access to the

physical nodes deployed in the environment under test.

Datasets can be downloaded from MoteLab‟s Web site.

However, the WoT challenges mentioned previously are not

fully supported in MoteLab. User accessibility in MoteLab

is similar to what is done in the proposed testbed.

SmartCampus [21] tackles gaps of experimentation

realism, supporting heterogeneity (devices), and user

involvement [7] in IoT testbeds. CookiLab [22] is another

WSN testbed. It gives users (researchers) the ability to

access real sensors deployed in Harvard University.

However, it does not support main WoT features, such as

sensor formats and logical paths as a property for sensor

nodes and entities.

Nam et al. [23] present an Arduino [24] based smart

gateway architecture for building IoT. Their architecture is

similar to the architecture of the testbed environment

proposed in this paper. For example, both their approach

and ours use periodic sensor reporting. The Sense

Everything, Control Everything (SECE) server stores

information sent by Arduinos to be accessible anywhere at

any time. Also, they provide the „Bonjour‟ application that

discovers all connected Arduinos and lists the devices

connected on each Arduino. The information is sent in

JavaScript Object Notation (JSON) format back to the

application [23]. However, the framework does not cover all

scenarios that WoT needs, especially for searching. For

example, information of logical paths and properties of

entities and information of the devices that the components

simulate or measure are missing. At Intel Berkeley research

lab [17], 54 sensors were deployed, and sensor readings

were recorded in the form of plain text, which can be used

as a dataset for sensor readings.

B. WoT Simulations

Using websites (e.g., [25][26][27]), a WoT environment

can be built online by creating channels then attaching them

to SThs like Arduinos or other devices equipped with

sensors. The devices send information to the attached

channels using private keys that are generated by the

website. The website receives information from the attached

resources to monitor the states of devices or entities that the

resources represent. These websites provide RESTful

services (GET, PUT, UPDATE, DELETE) [28] for

uploading and accessing reading feeds. Moreover, the

values (sensor readings) are visualized for users.

The services and design of the aforementioned websites

is similar to our proposed testbed environment. However,

these websites are limited by available service usage and

formats of the responses, which are hardcoded and

embedded within website code or at least not exposed to

users. The proposed testbed architecture, which is built

specially for testing WoT, provides more general services,

such as monitoring live information fed from attached SThs,

visualizing sensor readings and states of EoIs over time,

controlling actuators, triggering action events, and periodic

sensor reporting.

C. Services Architecture for WoT

Web services are considered as the main method for

accessing WoT devices [15]. Mayer et al. [14] propose a

hierarchical infrastructure for building WoT to enhance the

performance of the searching service. Nodes receive queries

then pass them to the right nodes in the network to answer

the queries. The searching scenario starts by getting a list of

sensors that can answer a query according to their static

properties and predicted values. After that, the identified

sensors are queried to check their current values, which are

used for ranking the search results. The searching scenario

is integrated into the proposed testbed.

Mayer and Guinard [10] and Mayer [29] provide a

method for solving the problem of using multiple formats

(e.g., microformat and microdata) in the WoT. They

propose to add multiple strategies for parsing and producing

information in the intended format. However, their work

does not result in a dataset. They implemented an algorithm

[10], called extensible discovery service, as a Web

application that asks users about sensor page URL and

retrieves information about devices if and only if the page is

written in one of a set of pre-defined formats. Our proposed

testbed allows such an algorithm to be tested to measure its

performance. The required dataset contains sensor

information written in different formats so that the

algorithm is tested in parsing and retrieving information

about sensors and entities.

To summarize, none of the datasets or testbeds used in

the literature fulfills the full requirements for testing and

evaluating the Web search process in the WoT as mentioned

in Section ‎II. Our proposed testbed environment aims at

filling this gap. It is not the main focus of this paper to

propose a new WSN testbed. Our main goal is to integrate

WoT features above the layer of the IoT for visualizing

things and entities, retrofitting on the benefits of existing

physical testbeds.

IV. TESTBED ARCHITECTURE

The proposed testbed architecture transforms the

physical control of devices in a surrounding physical

environment to an emulated control for those devices

keeping the same sense of events and features that existed in

the physical environment. These events and features are

embedded in datasets that can be later replayed. The

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

proposed architecture has two modes of operation: online

and offline (Figure 1 (c)). In online mode, datasets are

generated, “real” physical information is recorded, and a

Web application offers WoT services by accessing the real

devices for monitoring and controlling them. In offline

mode, the Web application accesses the datasets to replay

the events monitoring information.

The testbed architecture, shown in Figure 1 (b), is

divided into five parts, as follows.

An IoT infrastructure (e.g., modeling a smart home).

To build the IoT [12], the steps are briefly as follows. First,

things are converted to SThs by attaching smart equipment

(e.g., sensors and actuators), as shown in Figure 1 (a).

Second, the static and dynamic information of SThs is

described. SThs representation specifies URLs to invoke

SThs services and their parameters and response format

[29]. Third, RESTful APIs for accessing the SThs are built.

Fourth, communication protocols between SThs and

gateways are developed. Fifth, the SThs are connected to the

Internet using physical and virtual gateways. SThs

integration is done in the form of (1) direct integration, for

SThs that support IP address for connection or (2) indirect

integration using gateways, for SThs that use low-level

protocols [13] [30].

Network setup software, after building IoT, a program is

built for configuring the IoT network. It assigns locations to

SThs in the hierarchical structure of the simulated building

or environment shown in Figure 2. This allows for using the

generated logical path as attributes for the STh.

Web services for each device are used for executing WoT

services directly and for feeding back users with

information about SThs, such as indicated in Figure 1 (a).

The web services are hosted on machines that support IP

connection, either the STh itself or a physical gateway for

accessing SThs that use low-level protocols.

A Web application offers WoT services like monitoring

and controlling. The application loads information by

calling web services, which pull information from devices

(online mode) or from WoT dataset files (offline mode), as

shown in Figure 1 (c).

The dataset collector discovers all available gateways and

list of devices connected on each one, sets rules by which

Figure 1. Testbed Architecture: (a) Integrating smart things (SThs) in the IoT - (b) Testbed environment architecture for simulating a physical environment

- (c) Web services fetch data from real devices and gateways (online mode), or from dataset files (offline mode).

Figure 2. WoT graph for locating devices at specific paths in the
hierarchical structure of a building.

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

data are collected from them, and sets the format by which

the datasets are generated.

V. TESTBED IMPLEMENTATION

According to the testbed architecture presented in the

previous section, testbed implementation was done along

four axes.

A. Building the IoT infrastructure

This step will be executed the first time around; but, if a

dataset that is generated by this testbed exists, then building

WoT begins from the next step by attaching the dataset with

the web application to work in offline mode.

Building IoT was done in a simple way [31] using

widely-available components. The SECE server [23] gets

information from the IoT according to events and actions

that happen in the environment. It offers the collected

information in a friendly user interface. A testbed

environment for the WoT is built using these connections.

Building the IoT infrastructure was done in three steps:

(1) connecting devices, (2) building the network setup

software, and (3) implementing device communication

protocols. Whereas it is desirable to build IoT using devices

that support direct IP connection rather than devices that

support only low-level protocols, the latter devices needed

gateways for integrating them into the IoT. The IoT

infrastructure was built using Arduinos, on which sensors

and actuators were connected. Arduino has two interfaces: a

Serial Peripheral Interface (SPI) bus and an Internal

Integrated Circuit (I2C), which allows modules, like

Ethernet and Secure Digital (SD) cards, to communicate

with the microcontroller [32]. The Arduinos connected more

than one device using digital and analog pins. In a sense, the

Arduinos acted as physical gateways and IP addresses were

set for them. They were attached to the network using

Ethernet or XBee [33] connections.

Network setup software was written in C# for locating,

managing and configuring resources for each virtual

gateway. A virtual gateway represents a location, such as

floor_100 and floor_200. For example, Figure 3 shows the

process of adding a new device to the testbed using the

software. Logical paths in the building hierarchical structure

are very important for accessing devices.

The protocols, written in Arduino Sketches [24], were

used to get and set the state of devices that are connected to

the Arduinos, whereby get and set requests were sent within

the body of the protocol messages. When the special symbol

„#‟ is found within the body of the message, as shown in

Figure 4, the spider gets the current device‟s states. The

crawling case involved only getting information, not

controlling or changing device states.

B. From IoT to WoT
Building Web pages in the testbed followed standard

features for dealing with dynamic information. The common

way for developing dynamic websites depends on AJAX.

AJAX is used for live update of some parts in the sensor‟s

pages. The dynamic parts typically include SThs readings or

entity states, which indirectly depend on sensor readings

[25][27].

However, pages with dynamic content built using AJAX

cannot be crawled by traditional search engine crawlers.

Some search engines, such as Google, suggest practical

solutions for optimizing the crawling process [34] of

dynamic content. Alternative URLs that lead to pages with

static information are indexed by default or instead of pages

that contain dynamic information. According to Google

optimization rules, Web sites in our testbed use AJAX in

some parts in device‟s web page but for crawling,

corresponding Web services are accessed instead to get

current STh value or EoI state, in addition to all possible

states with corresponding occurrence probabilities. Another

technique not implemented in our testbed is to render pages

on the fly (i.e., crawlers have browsing processes embedded

in their code [35]). Still, it is difficult to crawl pages that

need to send some data first before loading their content.

Moreover, the time consumed by the crawling process itself

becomes high and the crawling process needs to be done

Figure 3. Locating and configuring a fan device at logical path

‘floor_100\room_102.’

void loop(){

...
else if(strcmp(buffer,"GET# ") == 0)

 send_sr_get(client);

else if(strcmp(buffer,"POST# ") == 0)
 send_sr_post(client);

... }

void send_sr_get (EthernetClient client) {
 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");
 client.print("Value of ");

 client.print(default_Dpin);

 client.print(" is ");
 client.print(digitalRead(default_Dpin));

 ... }

Figure 4. Device network protocol for handling incoming requests of

monitoring, controlling, and crawling services (RESTful service).

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

frequently; information in WoT may be updated in less than

a minute.

Using Ethernet, RESTful APIs can access Arduino

components. Devices are programmed as clients to push

sensor data to some services and as services to enable

remote control of devices over the Web. Because it is

desirable to have a Web page for each device and because

Arduino acts as a gateway for managing at least one

component, a website is built and can be hosted on an SD

card connected to the Arduino. The website is accessed

using an IP address, assigned to the Arduino. Another

alternative is to host the website on a different server for

adding more capabilities like storage capacity. In the latter

case, Arduinos are accessed using RESTful APIs. The

selection of either alternative is determined by the amount

of information that needs to be stored and accessed over

time.

Two steps were done to add WoT layer to the testbed.

First, a Web application was written in Asp.Net (Figure 6).

The main services of the Web application are monitoring

sensors, controlling actuators, triggering action events, and

periodic sensor reporting [12][23][30]. The WoT application

was built according to the building hierarchical structure

configured by the network setup software. The homepage

shows general information and allows users to perform

general tasks, such as monitoring room status. The user

selects a logical path to browse, then, for each room, a list of

devices and their states appear. The user selects a device to

access. The device page loads the RESTful services

dynamically (using WSDL [36]) according to the Arduino

IP and selected device ID. Second, a set of Web services

were written in C#. The Web application loads the available

RESTful services dynamically for each device. A special tag

‘GET#’ is added as an additional service that is executed by

default for the device webpage. The crawling process

returns the current sensor value or the state of the device and

all possible states with their probabilities.

C. Dataset Collector (DsC)

In Figure 5 (a), using Zigbee connection, the WoT

coordinator (gateway that acts as a base station) discovers

all available gateways, getting a list of connected devices on

each gateway. The dataset collector (DsC) program

generates files written in different formats for the static

information of the IoT testbed including the building

hierarchy and the devices located in the hierarchy (Figure 5

(b)). The dynamic information is collected using a set of

rules, as in Figure 5 (c). The rules instruct the gateways to

send back specific information about a specific list of

devices according to a specific action or event done by

other devices. The gateways feed the DsC with device

readings according to these rules. If the rule „ChangesOnly‟

is selected, the DsC stores only changes on device state. If

the rule „TimeSlot‟ was selected, the DsC stores periodical

feeds of device state. One of the most important rules is that

if a certain device type is selected for analysis of device

readings and making decisions according to the analysis

results, rules can be set to collect data from all devices of

that type across all the gateways in WoT.

Figure 5. Dataset collector software: (a) Dataset collector program discovers gateways in WoT loading a list of devices connected on them. (b) Static

information about the IoT testbed are generated in different formats. (c) Rules are defined to control the way gateways send dynamic information (readings).

Figure 6. Web pages of virtual gateways get their information from a
database server. Sensor Web pages get their information either from direct

access to devices or from the offline dataset.

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

D. Generated Dataset Files

A simple dataset was generated by the testbed according

to the rules: (1) „every_2500 msc‟ for updating dataset every

2500 millisecond (i.e., DsC pulls information from the

network), it could be replaced by rule „ChangesOnly‟ for

storing changes on devices‟ states only (i.e., devices push

information to DsC), (2) „All_Network‟ for pulling

information from all discovered gateways in the network,

(3) „All_types‟ means all devices on selected gateways, (4)

„2014-12-1-h0_to_2015-1-1-h0‟ for storing dataset from

„1/12/2014‟ to „1/1/2015‟, and (5) „TD‟ for triggering all

dependences related to selected devices. The dataset

generated according to limited time slot (date and time) by

DsC, as shown in Figure 5 (b), contains static information

about IoT infrastructure and dynamic information about

sensing and actuating activities.

The static information of each device, such as logical

path and device type, is stored in a file named using the

device ID, the EoI ID, and device name (e.g., 22_9_Fan).

Static information about a fan written in microformat is

shown in Figure 7.

The dynamic information, such as sensor readings, is

stored in a file named using the collection-rule title and the

date and time of collection (e.g., Network_Time_All_2014-

12-1-h0). This file contains readings collected from all

devices in the WoT testbed. A subset of data stored in that

file would look like Table 1, where monitoring is set to rule

„time only’.

As mentioned before, sensor definition contains

information about sensor so that it can be accessed easily

through built web application that simulate the WoT. In

sensor definition: „Xlamp2(2/5:9/1)‟, X is sensor‟s brand

name, lamp2 is sensor title, (2/5) is the virual location

sensor id and hosting room id, and (9/1) is the physical

location where 9 is pin number and 1 is gateway id. Column

„Time‟ is the response time. Arduinos support 5 Voltages as

maximum; they convert voltage range (0:5V) to be (0:255)

using built in analog to digital converter. Values recored for

each sensor definition, are current voltages consumed by

that sensor (0 : 255).

TABLE 1. SAMPLE READINGS GENERATED FROM ALL SENSORS OF TYPE

'LAMP' IN THE ENTIRE NETWORK AS A TIME SERIES. CONSUMED VOLTAGES

ARE MAPPED FROM (0:5) TO (0:255).

Time XLamp2

(2/5:9/1)
XLamp3

(3/6:10/1)
XLamp4

(4/7:11/1)
XLamp5

(8/8:12/1)
03:01 PM 66 77 83 71

03:02 PM 66 80 83 68

03:04 PM 66 68 65 69

03:06 PM 67 71 69 67

03:08 PM 68 80 85 70

03:10 PM 69 81 86 70

… … … … …

10:12 PM 65 80 85 70

VI. CASE STUDY

In this section, a case study of the proposed WoT

testbed is described.

A. Using WoT Dataset for information analysis

Using the generated dataset, researchers can analyze

sensor data collected using multiple controlled scenarios. A

lot of experiment scenarios can be achieved on the testbed,

such as comparing the state of devices on certain gateways

(e.g., gateways of a room), comparing state of devices on all

gateways (e.g., all gateways of a building), getting live time

of each device and high level power consumption in daily

live to provide suggestions related to energy efficiency

achievement (i.e., Energy awareness through interactive

user feedback). Figure 8 shows a comparison between

devices of type „Lamp‟ for analysis of power consumption.

Y-axis represents consumed voltages percent and X-axis

represents time. Estimation on timing accuracy of the data

hasn‟t been measured yet, but after enlarging WoT scale,

DsC can estimate timing accuracy by calculating request

and receive time for each device. In general, such a dataset,

especially composed of dynamic information, will be helful

for computing Fuzzy-based sensor similarity [15], and for

running prediction algorithms on real information that are

used in searching about SThs and EoIs in the WoT.

<div class ="hproduct ">

 22_Fan
 ,

 Fan Sfan123

 0

 Fan

 Brand Name

 characterized by …

 Fan

 <a href =http://www.XXX.com/?s=wsn
 class =" URL">

 More information about this device.

</div>

Figure 7. Static information about a fan written in microformat.

Figure 8. A graph generated out of a dynamic data file collected from

devices of the same type (lamp in this graph). Voltages consumed by

devices are represented in percentage at Y axis.

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

Providing information about SThs and EoIs in multiple

formats with additional attributes like logical paths expands

experimental work in this area.

B. Browsing WoT

Building simple and physical WoT (offline or online)

will be helpful and more accurate than using simulators.

Figure 1 (c) shows a scenario of calling RESTful web

services for pulling information about buildings and their

devices from the generated dataset (offline). Sensor pages

call Web services that fetch information from a dataset file

‘Network_Time_All_2014-12-14-h17.xlsx’ using command

of type OleDbCommand. Web services called in the testbed

(Figure 1 (c)) execute the command string shown in Figure

9. ‘Device_Header’ and ‘Sheet_Title’ were sent by calling

pages to the Web service monitoring. The special character

@ before variables ‘Date_1’ and ‘Date_2’ means that they

are initiated within the Web service.

C. Reusing Testbed for Different IoT

The proposed testbed architecture allows the

implementation of different purposes in the WoT. If

someone has to operate the testbed for a certain environment

(for example, energy saving of smart home, detect

something unacceptable happening at a shopping mall, etc.),

and because the proposed testbed operates in two modes

(online and offline), then reusing this testbed is restricted

with operation mode; For online mode, new IoT

infrastructure, which is built by attaching resources support

information about measuring physical phenomena and

actuating EoIs, is replaced by the IoT part shown in Figure 1

(b) and registered by Network setup software. New IoT

should speak the same language as the DsC (gateways make

it easy for supporting heterogeneity in devices); But for

offline mode, such as shown in Figure 10, because the

dataset represents the IoT itself where it hosts information

about SThs, EoIs, and sensing and actuating processes, then

IoT part will be replaced by that dataset to be accessed by

web services as indicated in Figure 1 (c), so Offline mode

could be used for retesting previously built IoT.

VII. CONCLUSION AND FUTURE WORK

WoT has become one of the most trendy research

directions due to facilities and services provided in many

domains. Sensors can provide great benefits if their readings

are presented in a meaningful and friendly way to users and

machines. Searching for SThs and EoIs is one of the most

important services in the WoT. But, most of the work in this

area focuses on searching in a single environment. In other

words, the WoT is built using single formatting and network

infrastructure. In this work, a WoT testbed is proposed to be

built in a simple way with readily-available physical

components. The proposed testbed allows capturing - and

maintaining for offline usage - the sense of events and

actions in the environment under test. The testbed allows for

building a WoT environment according to a hierarchical

architecture, providing description for components in a way

that gives search engine spiders the ability to crawl them in

addition to the ability given to users to perform live

monitoring of their environment. The dataset generated

from the testbed is expected to help research on the

crawling, indexing, and searching processes in WoT in

general.

The problem of searching about SThs depends on the

standardization of formats used for representing SThs

(properties and services they offer). So, providing semantic

discovery services based on application of multiple

discovery strategies [10] and enriching SThs metadata may

enhance results of searching and lookup services in the

WoT. Creating standardized RESTful service description

embedded in HTML representation using microdata is

feasible and desirable [29]. Still a few important questions

remain here: what is the timing accuracy of the data, what

information needs to be indexed, and how to index WoT

data streams.

REFERENCES

[1] M. Blockstrand, T. Holm, L.-Ö. Kling, R. Skog, and B.

Wallin, "Operator opportunities in the internet of things –

getting closer to the vision of more than 50 billion connected

devices," [Online] Feb. 2011,

http://www.ericsson.com/news/110211_edcp_244188811_c,

,(accessed: 10 Feb. 2015)

[2] L. Coetzee and J. Eksteen, "The Internet of Things – Promise

for the Future ? An Introduction," in IST-Africa Conference,

Gaborone, May 2011, pp. 1-9.

Select [Device_Header]

From [Sheet_Title]
Where [RecDateTime] = (Select min ([RecDateTime])

 From [Sheet_Title]

 Where [RecDateTime]

 Between @Date_1 and @Date_2)

Figure 9. Accessing dataset files using web services (offline mode):

Selecting column ‘Device_Header’ from sheet ‘Sheet Title’ where its time
= current system time (hours and minutes) using OleDbCommand.

Figure 10. Testbed is running in offline mode (attaching IoT dataset).

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

[3] Ch. Lerche, "WS4D-uDPWS - The Devices Profile for Web

Services (DPWS) for highly resource-constrained devices,"

WS4D Initiative, [Online] Aug. 2010,

http://code.google.com/p/udpws/wiki/IntroductionGeneral,

(Accessed: 10 April 2015).

[4] G. Werner-Allen, P. Swieskowski, and M. Welsh, "MoteLab:

A Wireless Sensor Network Testbed," in Information

Processing in Sensor Networks, 2005. IPSN 2005. Fourth

International Symposium on, Boise, ID, USA, 2005, pp. 483-

488.

[5] H. Sundani, H. Li, V. K. Devabhaktuni, M. Alam, and P.

Bhattacharya, "Wireless Sensor Network Simulators - A

Survey and Comparisons," International Journal Of Computer

Networks (IJCN), vol. 2, no. 6, pp. 249-265, Feb. 2011.

[6] I. Muhammad, A. Md Said, and H. Hasbulla, "A Survey of

Simulators, Emulators and Testbeds for Wireless Sensor

Networks," in nformation Technology (ITSim), 2010

International Symposium in, vol. 2, Kuala Lumpur, June

2010, pp. 897-902.

[7] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.

Razafindralambo, "A Survey on Facilities for Experimental

Internet of Things Research.," IEEE Communications

Magazine, Institute of Electrical and Electronics Engineers

(IEEE), no. <10.1109/MCOM.2011.6069710>. <inria-

00630092>, pp. 58-67, 2011, 49 (11).

[8] B. Ostermaier, B. M. Elahi, K. Römer, M. Fahrmair, and W.

Kellerer, "A Real-Time Search Engine for the Web of

Things," in The 2nd IEEE International Conference on the

Internet of Things (IoT), Tokyo,Japan, Nov. 2010., pp. 1-8.

[9] Shodan, "The search engine for the Internet of Things, "

[Online] 2015, https://www.shodan.io/, (Accessed: 10 April

2015).

[10] S. Mayer and D. Guinard, "An Extensible Discovery Service

for Smart Things," in Proceedings of the 2nd International

Workshop on the Web of Things (WoT 2011), ACM, San

Francisco, CA, USA, June 2011, pp. 7-12.

[11] S. Haller, "The Things in the Internet of Things," Poster at

the (IoT 2010). Tokyo, Japan, vol. 5, no. 26, p. 4, Nov. 2010.

[12] D. Guinard, "A Web of Things Application Architecture -

Integrating the Real-World into the Web," PhD Thesis,

Computer Science, Eidgenössische Technische Hochschule

ETH Zürich, Zürich, 2011.

[13] D. Guinard, V. Trifa, S. Karnouskos, and D. Savio,

"Interacting with the SOA-Based Internet of Things:

Discovery, Query, Selection, and On-Demand Provisioning

of Web Services," Services Computing, IEEE Transactions

on, vol. 3, no. 3, pp. 223-235, Sep. 2010.

[14] S. Mayer, D. Guinard, and V. Trifa, "Searching in a Web-

based Infrastructure for Smart Things," in Proceedings of the

3rd International Conference on .,the Internet of Things (IoT

2012),IEEE, Wuxi, China, October 2012, pp. 119-126.

[15] C. Truong, K. Romer, and K. Chen, "Sensor Similarity

Search in the Web of Things," in In World of Wireless,

Mobile and Multimedia Networks (WoWMoM), 2012 IEEE

International Symposium, San Francisco, CA, June 2012, pp.

1-6.

[16] J. Miloš , N. Zogović, and G. Dimić, "Evaluation of Wireless

Sensor Network Simulators," in the 17th

Telecommunications Forum (TELFOR 2009), Belgrade,

Serbia, 2009, pp. 1303-1306.

[17] P. Bodik, C. Guestrin, W. Hong, S. Madden, M. Paskin, and

R. Thibaux. "Intel Lab Data," [Online] Apr. 2004,

http://www.select.cs.cmu.edu/data/labapp3/index.html,

(Accessed: 10 April 2015).

[18] D. Gay, P. Levis, D. Culler, E. Brewer, M. Welsh, and R. von

Behren, "The nesC language: A holistic approach to

networked embedded systems," in PLDI '03 Proceedings of

the ACM SIGPLAN 2003 conference on Programming

language design and implementation, New York, NY, USA,

May 2003, pp. 1-11.

[19] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.

Whitehouse, and A. Woo, "TinyOS: An Operating System for

Sensor Networks," in Ambient Intelligence, W. Weber, J. M.

Rabaey, and E. Aarts, Eds. Springer Berlin Heidelberg, 2005,

ch. 2, pp. 115-148.

[20] Hosted by Thingsquare, "Contiki: The Open Source OS for

the Internet of Things, " [Online] 2012, http://www.contiki-

os.org/, (Accessed: 10 April 2015).

[21] M. Nati, A. Gluhak, H. Abangar, and W. Headley,

"SmartCampus: A user-centric testbed for Internet of Things

experimentation," in Wireless Personal Multimedia

Communications (WPMC), 2013 16th International

Symposium on, Atlantic City, NJ, June 2013, pp. 1-6.

[22] G. Mujica, V. Rosello, J. Portilla, and T. Riesgo, "Hardware-

Software Integration Platform for a WSN Testbed Based on

Cookies Nodes," in IECON 2012 - 38th Annual Conference

on IEEE Industrial Electronics Society , Montreal, QC,

October. 2012, pp. 6013-6018.

[23] H. Nam, J. Janak, and H. Schulzrinne, "Connecting the

Physical World with Arduino in SECE," Computer Science

Technical Reports, Department of Computer Science,

Columbia University, New York, Technical Reporting

CUCS-013-13, 2013.

[24] Arduino, "Arduino," [Online] 2015, http://www.arduino.cc/,

(Accessed: 10 April 2015).

[25] LogMeIn, Inc., "Xively," [Online] 2014,

http://www.Xively.com, (Accessed: 10 April 2015).

[26] XMPro, "Intelligent Business Operations Suite For The

Digital Enterprise," [Online] 2015, http://xmpro.com/xmpro-

iot/, (Accessed: 10 April 2015).

[27] IoBridge, "ThingSpeak- The open data platform for the

Internet of Things," [Online] 2015.

http://www.thingspeak.com, (Accessed: 10 April 2015).

[28] M. Elkstein, "Learn REST: A Tutorial," [Online] 2008.

http://rest.elkstein.org/2008/02/what-is-rest.html, (Accessed:

10 April 2015).

[29] S. Mayer, "Service Integration - A Web of Things

Perspective," in W3C Workshop on Data and Services

Integration, Citeseer, Bedford, MA, USA, October 2011, pp.

1-5.

[30] D. Guinard and V. Trifa, "Towards the Web of Things: Web

mashups for embedded devices," in in Workshop on

Mashups, Enterprise Mashups and Lightweight Composition

on the Web (MEM 2009), in proceedings of WWW

(International World Wide Web Conferences), Madrid,

Spain, 2009, p. 15.

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

[31] C. Pfister, "The Internet of Things," in Getting Started with

the Internet of Things: Connecting Sensors and

Microcontrollers to the Cloud, B. Jepson, Ed. United States

of America.: O‟Reilly Media, Inc., 2011, ch. 4, pp. 29-41.

[32] A. McEwen and H. Cassimally, "Designing the Internet of

Things," 1st ed., C. Hutchinson, Ed. John Wiley & Sons,

ISBN: 1118430638;9781118430637, November 2013,

https://books.google.com.eg/books?id=oflQAQAAQBAJ,

(Accessed: 10 April 2015).

[33] Digi International Inc., "Official XBee website- Connect

Devices to the Cloud," [Online] 2015.

http://www.digi.com/xbee, (Accessed: 10 April 2015).

[34] Google, "Search Engine Optimization (SEO) - Starter

Guide," Jan. 2010.

[35] P. Suganthan G C, "AJAX Crawler," in Data Science &

Engineering (ICDSE), 2012 International Conference on.

IEEE, Cochin, Kerala, July 2012, pp. 27-30.

[36] wikipedia, "Web Services Description Language," [Online]

Apr. 2015,

http://en.wikipedia.org/wiki/Web_Services_Description_Lan

guage , (Accessed: 10 April 2015).

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-404-6

ICNS 2015 : The Eleventh International Conference on Networking and Services

https://books.google.com.eg/books?id=oflQAQAAQBAJ

