ICNS 2011 : The Seventh International Conference on Networking and Services

Network Interface Grouping in the Linux Kernel

Vlad Dogaru, Octavian Purdild, Nicolae Tapus
Automatic Control and Computers Faculty
Politehnica University of Bucharest
Emails: {vlad.dogaru,tavi,nicolae.tapus} @cs.pub.ro

Abstract—The Linux kernel is a prime field for implementing
experiments, many of which are related to networking. In this
work we tackle a part of the network scalability issues of
the kernel. More specifically, we devise a means of efficiently
manipulating large numbers of network interfaces. Currently, the
only approach to handling multiple interfaces is through repeated
userspace calls, which add significant overhead. We propose
the concept of network device groups, which are completely
transparent to the majority of the networking subsystem. These
serve for simple manipulation of large number of interfaces
through a single userspace command, which greatly improves re-
sponsiveness. Changes are proposed both in kernel and userspace,
using the iproute2 software package as support. Improvements
in speed are visible, with changing parameters of thousands
of interfaces taking less than a second, as opposed to over 10
seconds using a conventional approach. Implementation is simple,
unintrusive and, most importantly, user-defined. This leaves room
for future improvements which use the group infrastructure,
some of which have already been proposed by third parties.

Index Terms—Linux, Kernel, network, device, scalability,
grouping, iproute2

I. INTRODUCTION

Computer networking poses interesting problems, both in
the design of new protocols and techniques and in improving
the scalability of existing concepts. It is particularly interest-
ing to see what happens when the quantity of networking
equipment, rather than the number of clients, grows. More
specifically, we study the performance of the Linux kernel
when dealing with thousands or tens of thousands of network
interfaces. Because these cannot be physically fitted into a
single machine, virtual interfaces are used.

Linux already offers a kernel module that emulates network
interfaces. Before we can measure performance of these in-
terfaces, a means of efficiently manipulating them is needed.
The simple way to do this would be to repeatedly use an
administrative tool for every interface. However, when dealing
with a large number of interfaces, this proves inefficient. The
creation of a new process for each of the interfaces offsets the
useful work which is done. Moreover, even if the entire work
could be done in a single process, communicating to the kernel
that each interface is to be modified becomes a bottleneck.
What is needed is an kernel API for specifying that a number
of interfaces need to be modified in an identical manner. This
includes activating or deactivating the interfaces, setting their
MTU and other link-level parameters.

We propose a solution that introduces the concept of net-
work interface group. A group is nothing but a simple integer
tag; no relationship is implied between the devices in the same

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

group. Their parameters can be modified either individually
or collectively, thus no flexibility is lost. Because there is
no intrinsic relationship between members of a group, group
membership and policy is entirely defined by the administrator,
not forced by the kernel. In many ways, the concept of an
interface group is similar to that of a packet mark. It is used
exclusively from userspace and its meaning is flexible.

By introducing network interface grouping, both of the
factors slowing down interface manipulation are addressed.
The administrator can use a single command to modify the
parameters of a large number of interfaces; thus, scheduler
overhead is eliminated. Further, userspace can address all the
members of a group using a single request to the kernel, thus
minimizing message transfers and system calls.

The solution described has been fully implemented using
Linux and the iproute2 software package as support. The
changes to existing code are unintrusive, with respect to both
performance and code complexity. The code has undergone
several rounds of review from the community and is, at
the time of this writing, pending inclusion in the upstream
kernel. This enables continued development in the area of
network interface grouping and collective configuration. It also
provides guaranteed maintenance from the community.

Performance tests feature a virtual machine setup. This
enables harmless recovery from kernel errors and contained
testing. Moreover, it speeds up the testing process because
rebooting is low-cost. KVM was chosen for the task because,
except for the live boot media, it demands no additional files or
daemons. Additionally, KVM incurs little performance penalty
on the host system (provided the host hardware supports the
Intel VI-x or AMD-V extensions) in comparison to other
virtual machines or emulators. Userspace utilities are provided
by the busybox suite; this enables a full array of Linux utilities,
with minimal dependencies.

Tests have been made featuring the dummy module of the
Linux kernel. This module enables the user to add as many
interfaces as they like by providing a parameter when inserting
the module into the kernel. Because these interfaces have
no physical meaning and are not critical to virtual machine
operation, they are easily the target of tests involving batch
modifications. We have tested two setups: one in which the
user repeatedly calls the iproute2 ip command for each
interface (using a shell script); the other involves using our
proposed solution and changing the parameters of an entire
group of interfaces using a single command. Test results
are consistently orders of magnitude in favor of the latter

131

ICNS 2011 : The Seventh International Conference on Networking and Services

technique, particularly for larger numbers of interfaces.

II. RELATED WORK

It is interesting to note that, while much research has
gone into Linux network scalability, there is little interest
in configuration-time optimization. Most progress is made
towards runtime performance, be it packet handling [4] or
routing performance [1].

III. ARCHITECTURE

Network interface grouping targets the Linux operating
system and, as such, must adhere to the kernel API. Because
the group infrastructure proposed is simple, no additional data
structures or complex algorithms were needed. Changes are
entirely in existing source code files, so no modification was
brought to the build system.

Although Linux supports loadable modules, changes were
deemed sufficiently unintrusive not to warrant the modularity
of the interface grouping routines. The only core data structure
that was modified is struct net_device, which is by
no means a performance-critical element. Thus, cache perfor-
mance was not a problem and the necessary modifications
could be made without resorting to memory profiling.

Kernel-side, the contributions are located in the
net_device structure and in the API that the kernel
provides to manipulate it. Historically, there have been two
choices for modifying network parameters. The first interface
is based on the ioctl system call. This involves creating
a special descriptor and using successive ioctl calls to
modify kernel parameters. It is used by the ifconfig
utility, but both the API and the userspace components are
currently deprecated.

The alternative is Netlink [3], a socket mechanism for
interprocess communication. Netlink can serve as a means
of communication between userspace and the kernel, as well
as between two processes. Unlike other sockets, however,
Netlink only works for a single host. Netlink provides multiple
socket families, corresponding to different operating system
parameters ranging from the neighboring system (ARP) to
firewalling (Netfilter) or IPSec. The one of most interest
to us is NETLINK_ROUTE, which is used to query and
change routing and link information. This socket family is
used by routing protocol implementations such as Quagga, as
well as the iproute2, which we chose as support for our
userspace modifications. Figure 1 shows how Netlink is used
by iproute2.

Meant as a modern network configuration tool, the
iproute? utility is developed in close relation to the Linux
kernel. The development teams are closely related and patches
are sent to the same mailing list for both the kernel networking
subsystem and iproute2. As such, it was the natural choice
for implementing userspace support for network interface
groups. iproute2 is fairly modular in architecture, with
components for link-level, IP addressing, routing, tunneling
and IPSec. Network group logic was added to the lowest-level
component, informally named iplink.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

iproute2

Message containing
interface name and
attributes which should
be changed. This is where
we add a new attribute,
IFLA_GROUP,

Userspace

Kernelspace

Metworking
subsystem

Figure 1. iproute2, a userspace tool, uses a Netlink socket to communicate
with the kernel. We add new attributes to the message so that Netlink will be
group-aware.

IV. IMPLEMENTATION

To have a properly functioning, albeit minimal, device group
infrastructure, the following aspects need to be addresses:

1) A mechanism for grouping devices together.

2) A means of exporting group information to userspace,
as well as a way to filter certain groups. The user can
then view devices from a single group.

3) The possibility to change the group a device belongs to.
We generally avoid referring to this action as moving,
because no copying is required, as we shall see.

4) Finally, a way of specifying that a change affects an
entire group and not just a single device.

The net_device structure has been modified to include
group information in the form of an integer field. Thus,
each network device belongs to a single group, there are
no overlappings between groups. By default, all devices are
created in group 0. The network device structure is not critical
to performance (for instance, it is not used during routing), so
modifying it does not raise cache efficiency problems. Nor is
this structure part of intricate lists and other data, so it is fairly
easy to understand the purpose of all its fields.

Group information is exported from kernel to userspace via
route Netlink. The message format used in communication
consists of a header followed by a variable number of at-
tributes. Every time information is sent to the user, typically
as a response to a RTM_GETLINK message, the group number
is also packed in the message. Because of the flexible nature
of Netlink messages, adding this information was trivial, in
the form of a new attribute type. In turn, userspace unpacks
the message information and interprets the attributes. The
list operation in iproute2 has been modified to accept
a supplementary argument, the devgroup keyword, which

132

ICNS 2011 : The Seventh International Conference on Networking and Services

filters devices that belong to other groups. The user can now
choose information they wish to see by filtering the relevant
group.

The same Netlink attribute, called IFLA_GROUP, is used
to set the group of a device. The sole difference is the
direction of the message — user to kernel — and the type of
message sent, typically RTM_NEWLINK. This type of message
also contains the interface to operate on, specified either
by the internal index number or the device name. Kernel-
side modifications need concern with locking mechanisms,
since the entire Netlink system is already protected by a
lock. By ensuring that, kernel programmers have enabled
future contributions that are less prone to bugs. Changing the
group of a device means simply unpacking the message and
assigning the requested value to the group field of the network
device structure. No costly copying is involved.

Finally, the target of the whole infrastructure is being able
to batch device parameter modifications. The aim is to be
able, using a single Netlink message, to modify many network
interfaces. Initially, another attribute was added, IFLA_-
FILTERGROUP. If this was specified in a user-originated
message, the modifications described by the message were to
be made on all the interfaces in a group, not just on a single
one. However, the community expressed concern over adding
two attributes for a relatively simple task, and a later iteration
of the patch set uses a small hack and a single attribute. More
precisely, if:

1) a userspace request has a negative interface identifier;
normally, interface identifiers in Linux start at 1 and are
all positive;

2) and it has no interface name specified;

3) and it contains a group attribute

then the modifications are to be made on the entire group, not
just a single network device. By using the same attribute both
for setting parameters and filtering devices, we eliminate the
possibility of changing the group of an entire group of devices
in a single request. But this was deemed an unnecessary corner
case by the community in contrast to the API bloat it would
introduce.

V. EXPERIMENTAL SETUP

The initial tests we ran for the patch set have run into
a tricky problem. We could not efficiently test our changes
using many interfaces because of speed issues. More precisely,
creating even only 1024 interfaces took around a minute.
Because of the repetitive nature of testing our patch, we took
the decision to test the setup without including sysfs in
the kernel build. The sysfs filesystem is a modern way
of configuring kernel parameters through a file-like interface,
but, in our case, it was an important obstacle to performance.
Without sysfs, new interface creation dropped from 55
seconds to 7 seconds, for 1024 interfaces. This is an important
improvement for testing, not a real optimization.

Soon after, another performance obstacle had to be ad-
dressed, again not directly. VMWare, which is the de facto
virtual machine in our environment, had a high overhead, not

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

in terms of memory or processor consumption, but with respect
to (re)booting and parameter modification. We migrated to
the Kernel-Based Virtual Machine [2], which provides simple
command-line manipulation, faster startup times, and generally
behaves more like a simple program; for instance, when
closing the KVM window, the virtual machine is stopped
without further user queries. This might corrupt the machines
disks, but we were not concerned about that.

Another aspect of the testing setup is the lack of a hard
disk for the virtual machine. Because the kernel is the main
part being tested and modified, storing it on a hard drive
and copying it through the network to the virtual machine
made little sense. Instead, we booted the machine from a live
medium, generated by an in-house script. The script copies a
few essential programs into an ISO image and bundles them
with a kernel and an initial ramdisk. Aside from the iproute2
suite, scripts to create necessary entries in /dev and a minimal
passwd file are provided. Manual creation of device files is
necessary because the setup does not include Udev.

Basic tools are provided by Busybox [5]. The Busybox
suite, dubbed a swiss army knife for Linux, is a collection
of utilities designed to replace GNU coreutils, with a focus
on small binary size and minimalism. Busybox consists of
a single executable which encompasses the functionality of
many utilities, from filesystem to process and text manipula-
tion. It even contains a small version of vi. When launched,
the Busybox executable looks at either its first parameter or the
name it has at launch; this dictates its behaviour. So, launching
busybox 1s would trigger similar functionality to the 1s
command, while launching the Busybox executable using a
link (symbolic or hard) named vi will have the effect of
a vi clone. Busybox can be statically linked and it often
is, but we chose not to do so. The live medium which we
use to boot already contains the needed libraries. Finally, it
should be noted that Busybox modularity is exemplary; it
has a configuration menu in the spirit of the Linux kernel,
from which the user can choose the modules which should be
included. Configuration detail is surprisingly high — there are,
for instance, options for more advanced vi features.

The final live image for the virtual machine is generated
with genisoimage. The image is made bootable by in-
cluding isolinux, a tool used for booting Linux from ISO
images. The final image — containing a minimal kernel, an
initial ramdisk, iproute2, Busybox, isolinux and the necessary
libraries — amounts to little over 13 megabytes. Booting the
virtual machine takes under 5 seconds, which is a boon to a
generally error-prone testing cycle.

VI. SCENARIOS AND RESULTS

The sole method of testing the improvements is measuring
the time needed to configure interfaces with and without using
network device groups. We used an emerging technology
called perf to profile the operations executed when bring-
ing interfaces up, down, and when changing the Maximum
Transfer Unit (MTU) of a device group. perf is a tool
for manipulating the hardware performance counters of the

133

ICNS 2011 : The Seventh International Conference on Networking and Services

processors, similar in fashion to oprofile. The advantage
of perf is that development is synchronized with the kernel,
so communication between userspace and privileged mode
is always up to date. Furthermore, user interface is much
friendlier, with less complicated syntax and intuitive defaults.

Profiling has yielded expected results, but a bit dispropor-
tionate. It is clear that, by using device groups, modifying
device parameters has a higher throughput, with proportion-
ately less time spent in userspace and more in kernel mode.
This is especially true because, when using device groups,
we only create a single process; previously, a process was
created for each interface. Even if the device manipulation was
a straightforward action, it is important to note that creating
a process, loading a new program into the address space,
scheduling the process to run, and finally waiting for proper
termination and cleanup are all very costly operations.

Indeed, operating system literature recognizes that perfor-
mance critical applications should not create a large number
of processes. This stems from the significant cost of a context
switch. On systems which support virtual memory, which are
virtually all systems nowadays, a specialized cache memory
is employed in order to speed up virtual-to-physical address
translation. The Translation Lookaside Buffer, or TLB, is
an associative memory with pairs of virtual and physical
addresses. When a context switch is triggered, the address
spaces need to be changed, which in turn causes the flushing
of all TLB entries.

Even factoring out userspace time spent, the total time
spent in kernel mode is also significantly lower when using
interface groups. Previously, a Netlink request was constructed
for each interface which needed to be modified. This was
an iterative process, constructing a message, then sending it,
waiting for a reply, all this being done for each interface.
Sending the request and receiving the response are translated
into system calls, which are another recognized source of
latency in the context of operating systems. Interface groups
solve this problem by necessitating a single request for any
number of interfaces, as long as they are in the same group.
System call overhead is thus greatly reduced.

What is, in our view, remarkable about the proposed solution
is that it actually scales better the more interfaces are involved.
Without device grouping, the number of processes created
and system calls is a multiple of the number of interface
manipulated. Conversely, when employing interface grouping,
a single process is created and a single Netlink request is
made, regardless of the interface count. This leads to 50 times
better performance with 1024 interfaces, but 65 times better
with 2048 interfaces. We deem this an encouraging start into
scalable network configuration.

The experiment results are shown in Table I. We timed the
operation of changing the MTU of a number of interfaces, both
traditionally (columns labeled No group) and using the new
group interface (columns labeled Group). Because sysfs in-
troduces a significant overhead, the experiments have been run
on two different kernel configurations: one includes sysfs
and the other does not.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

Without sysfs With sysfs

Interfaces Group No group Group No group
128 0.01 0.49 0.01 0.53

256 0.02 1.11 0.03 1.15

512 0.05 2.57 0.06 2.59

1024 0.17 7.02 0.20 7.51
2048 0.32 21.74 0.36 23.05

Table I

TIMING OF CHANGING INTERFACE MAXIMUM TRANSFER UNIT WITH AND
WITHOUT INTERFACE GROUPING. ALL TIMES ARE IN SECONDS.

VII. CONCLUSION AND FURTHER WORK

The infrastructure implemented so far has proved to be scal-
able and generally accepted by the Linux kernel community.
The patch set has already been through a feedback iteration,
and is currently pending a second one. Valuable lessons in
both design and communication with the kernel ecosystem
have been learned in the process. Particularly, we have seen a
surprising amount of suggestions for further improvement.

Although the patch, as it stands, is simple and generic,
there have been suggestions to transform it into a hierar-
chical approach. The user would be able to define a tree-
like structure, where a group can contain devices and other
groups. Modifying a group would then have the semantic
of modifying its devices and all the groups contained in it.
A slight disadvantage of this would be little applicability,
which is generally a sign of over-engineering. With respect
to code, arborescent groups would require a separate group
data structure, as opposed to a simple filed in the network
device structure.

Another direction towards which the infrastructure can be
developed concerns the handling of related devices, such as
PPPoE (Point-to-Point Protocol over Ethernet) virtual devices
and their supporting Ethernet device. It has been argued that
group membership should be inherited, thus creating large
groups without the need for explicit group changing. For
instance, a PPP (Point-to-Point Protocol) server would add
its relevant interface in group 42, then create hudreds or
thousands of PPPoE interfaces having it as layer 2 support.
These interfaces are implicitly created in group 42 and easily
modifiable using a single command.

Because group membership is internally represented by a
simple data type, an integer, there is no reason it should not be
exported to userspace as such. The sys£s virtual filesystem is
the current manner for the Linux kernel to expose information.
A relatively simple addition would be the presence of the
group tag in the corresponding sysfs directory of each
device. An authorized user can then change the group of a
device by using either iproute?2 or sysfs.

One particular critique of the grouping infrastructure was
that it is not particularly user friendly, specifically that numbers
have little meaning to users. Handling strings in kernel space
is usually frowned upon when fixed-width tags can do better,
so another solution is needed. Luckily, iproute2 already
has a convention in place. In the /etc/iproute2 directory,
the user can store associations between kernel numbers and

134

ICNS 2011 : The Seventh International Conference on Networking and Services

userspace significant names. We intend to add support for such
an association. This remains within the initial self-imposed
restriction of the implementation being simple in the kernel,
but flexible in userspace.

Finally, the real scope of this endeavour is to improve
the scalability of configurating network parameters. So far,
we have treated part of the second level of the stack, but
much work needs to be done for a fully functional interface.
The most difficult problem we face is assigning relevant
addresses to interfaces. That cannot be achieved with the
current implementation, as identical MAC addresses would be
next to useless for any setup. What needs to be implemented is
incremental assigning of layer 2 and 3 addresses. One cannot
efficiently do that in userspace, because it would bring about
the problem of system call saturation discussed earlier. So the
issue remains open, despite it being one of the key points of
the original endeavour.

All in all, interface grouping is a simple, flexible interface
that attempts to open the way to scalable network device
configuration in the Linux kernel. Community feedback to it
was positive, which means we can expect to see it in a future
kernel release. Performance improvements are significant, even
in the simple case of interface activating and deactivating.
Improvement ideas abund, both in extending the existing
structure and in improving the essential idea.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-133-5

ACKNOWLEDGMENT

The authors would like to thank Jamal Hadi Salim for his
initial implementation suggestion and constant feedback. Also,
Réazvan Deaconescu and Laura Gheorghe provided valuable
feedback for this article.

REFERENCES

[1] O. Hagsand, R. Olsson, and B. Gordén. Towards 10gb/s open-source
routing. Linux Kongress, 2008.

[2] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: The linux
virtual machine monitor. In Proceedings of the Linux Symposium, 2007.

[3] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux Netlink as an
IP Services Protocol. RFC 3549 (Informational), July 2003.

[4] J. H. Salim. When NAPI comes to town. Technical report, 2005.

[S] N. Wells. Busybox: a swiss army knife for Linux. Linux Journal, October
2000.

135

