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Abstract—Adaptive Noise Cancellation (ANC) belongs to 
the interference cancellation class. It employs an adaptive filter 
to estimate a perturbation signal, which corrupts a primary 
acoustic source. In most of the corresponding applications, the 
goal is to imitate an original speech signal. This paper proposes 
the use of a low complexity recursive least-squares (RLS) 
adaptive algorithm for the ANC procedure. The combination 
between the RLS method and the dichotomous coordinate 
descent (DCD) iterations offers good performance with 
acceptable arithmetic costs. Simulation results are provided in 
order to demonstrate the validity of the ANC system based on 
the RLS-DCD adaptive algorithm. 

Keywords: adaptive noise cancellation; recursive least-
squares; dichotomous coordinate descent. 

I.  INTRODUCTION  
 

Modern technology allows the deployment of 
telecommunication networks in problematic environments, 
which frequently introduce strong acoustic interference. The 
high quality communication performed in extremely noisy 
surroundings, such as airplane cockpits or social gatherings, 
requires the real-time estimation of corrupted acoustic 
signals (usually speech sequences). 

With the development of adaptive algorithms, the field of 
Adaptive Noise Cancellation (ANC) has also been the 
subject of intensive study [1][2]. The workhorse of signal 
processing systems employing adaptive methods is the Least 
Mean Squares (LMS) family [1]-[5]. Although the classical 
LMS adaptive algorithms were improved to a certain degree, 
their performances are limited when working with highly 
correlated signals. A new generation of efficiently 
implementable adaptive systems is required to increase the 
noise cancellation capabilities. 

The standard recursive least-squares (RLS) adaptive 
methods have attractive convergence properties [1]-[5]. 
However, the classical solutions for directly solving the 
corresponding matrix inversion problem have high 
arithmetic complexities and require large amounts of 
computational resources. Moreover, the implementations 
employing the traditional RLS algorithms suffer from 
occasional numeric instability caused by higher order 
arithmetical operations, such as divisions. Although the Fast 
RLS (FRLS) [4] considerably reduces the arithmetic effort, it 

is not stable when working with nonstationary signals, such 
as speech. 

In [6]-[8], the prohibitive nature of the RLS methods was 
approached using the combination with the dichotomous 
coordinate descent (DCD) iterations. The DCD portion of the 
algorithm replaces the classical matrix inversion problem 
with an auxiliary system of equations, which is solved using 
only additions and bit-shifts. The solution is based on the 
statistical properties of the input signals and reduces the 
overall arithmetic complexity to a value proportional to L, 
which is used to denote the adaptive filter’s length. The 
resulting RLS-DCD algorithm is a numerically stable 
alternative, offering comparable results in terms of 
adaptation speed and precision, with a considerably reduced 
computational effort [6]-[10]. By comparison, the classical 
RLS method has a complexity of O(L3), which can be 
reduced using Woodburry’s identity to O(L2) – both methods 
are considered prohibitive for practical applications [1][4]. 

The original RLS-DCD solution was rarely tested with 
colored signals, such as speech sequences [7][8]. It was later 
successfully applied for stereophonic acoustic echo 
cancelation (SAEC) setups requiring the estimation of 
multiple unknown systems [9]. This paper proposes the use 
of the RLS-DCD method for ANC systems employed in 
real-time recovery of speech signals. A theoretical model is 
presented and tested using different types of acoustic 
interference, with low Signal-to-Noise Ratio (SNR). 
Although the number of adaptive filter coefficients 
associated with ANC applications is lower than the case of 
acoustic echo cancellation (AEC) scenarios, the reduction in 
terms of computational workload (in comparison to the 
classical RLS) is valuable for mobile devices (i.e., 
headphones, mobile phones, etc.). As a consequence, the 
compromise between arithmetic complexity and performance 
is analyzed, and a comparison is performed with the classical 
RLS. 

The paper is organized as follows. In Section II, the 
theoretical model of the ANC setup is defined. Section III 
describes a low complexity RLS-type adaptive algorithm 
which is suitable for the ANC procedure. The performances 
of the proposed adaptive method are demonstrated using 
simulations in Section IV. The classical RLS adaptive 
algorithm is employed as a reference. Finally, in Section V, a 
few conclusions are stated regarding the compromise 
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between arithmetic complexity and the performance of the 
ANC system using a low complexity RLS method. 

 

II. THEORETICAL MODEL 
 

Figure 1 illustrates the ANC scheme. We denote by 
ˆ ( )nh the L x 1 vector comprising the adaptive filter’s 

variable coefficients at time index n, i.e.: 
 

 0 1 1
ˆ ( ) ( ), ( ), ..., ( ) ,T

Ln h n h n h nh             (1) 
  

 
where T is the transpose of a matrix. The desired signal d(n) 
is the combination between the relevant signal s(n) and the 
corrupting sequence q(n) (also called the interference signal). 
The input of the adaptive algorithm x(n) is a reference signal, 
which is linearly correlated with the interference q(n). The 
theoretical model of the adaptive algorithm is completed 
with the L dimensional vector ( )nx  formed with the most 
recent L input samples:  
 

 ( ) ( ), ( 1), ..., ( 1) .Tn x n x n x n L   x           (2) 
 
In literature, the relation between x(n) and q(n) is usually 

modelled through a finite impulse response (FIR) filter, 
which generates q(n) using x(n) as the input. In practical 
ANC applications, the samples corresponding to x(n) and 
d(n) are available through microphones [2]. The influence of 
the physical distance between the two acoustic sensors is 
represented in Figure 1 through the delay factor D, 
associated with the length of the mentioned FIR filter.  

The purpose of the ANC system is to output an estimate 
y(n) of q(n) and subtract it from the desired signal. 
Consequently, the error signal e(n) is an estimate of s(n), i.e. 
e(n) → s(n). The error of the adaptive algorithm is used to 
adjust the coefficients of the adaptive filter in order to 
minimize the noise interference. In an optimal situation, e(n) 
is composed of the signal s(n), free of the noise interference 
q(n).  

 
III. THE RLS-DCD ADAPTIVE METHOD 

 
The core of the ANC system presented in Figure 1 is the 

adaptive algorithm. The usual methods employed for the 
update of ˆ ( )nh are the LMS-type adaptive algorithms, which 
have reduced performance when working with highly 
correlated input signals. In the ANC case, the samples of 
input signal x(n) can be associated with speech, music, 
engine noise or other (usually highly correlated) acoustic 
signals. In such circumstances, the RLS-based systems can 
generate superior performance through their de-correlation 
properties. Despite the attractive features of the RLS 
algorithms, the classical versions use direct methods for 
computing  the  corresponding matrix inverse and solving the  

 
Figure 1. The ANC scheme 

 
associated system of equations. Consequently, prohibitive 
workloads are imposed on signal processing chips, which 
usually handle multiple tasks.  

The RLS-DCD adaptive algorithm was proposed as a 
stable alternative for other low-complexity RLS versions 
(such as the FRLS). Initially, the method was mostly 
employed for processing weakly correlated signals and later 
for the identification of long unknown acoustic systems (e.g., 
the AEC/SAEC scenarios). We propose to use the method 
for real time retrieval of speech signals in ANC scenarios. 
Table 1 illustrates the RLS-DCD adaptive algorithm [6]-[9], 
where we denote by  0 1    the forgetting factor 
associated with the memory of the algorithm [1]. The L x L 
correlation matrix ( )x nR 

  has the transpose property, i.e. 
( ) ( ).T

x xn nR R 
   It can be updated by copying the upper-left 

L-1 x L-1 block of ( 1)x n R 
  to the lower-right L-1 x L-1 

submatrix of ( ),x nR 
  and by computing only the first 

corresponding column [7][9]. The main diagonal of ( )x nR 
  

is initialized using the identity matrix LI  and the constant 
value  ,  in order to avoid processing a singular matrix in 
the initial stages of the adaption course. The statistical 
properties of the matrix allow a significant reduction of 
complexity in step 1, to a value proportional to the adaptive 
filter’s length. 

The RLS-DCD method exploits the statistical properties 
of the input signals and solves an auxiliary system of 
equations using only additions and bit-shifts of the operands, 
therefore completely eliminating divisions. In steps 3 and 4, 
the DCD portion of the adaptive algorithm takes into account 
the results obtained at time index n-1 and generates, using a 
limited number of updates, the solution vector ˆ ( )nh (with 
values represented in the numerical interval [-H, H] using Mb 
bits). The updates are conditioned by the comparisons 
performed between the values comprising the residual vector 

( )nr and the values positioned on the main diagonal of 
( )x nR 

 [6]-[9]. It was demonstrated in [10] that the vector 
( )nr becomes almost null, as the adaptive filter reaches 

convergence state. Correspondingly, the vector values 
oscillate in a large dynamic range in the adaptation stages. 
The  arithmetic  complexity  associated  with  step 4  is upper  
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TABLE I.  THE RLS-DCD ALGORITHM 

Step Computations 
Init 

LIRr0h x  )0(,0)0(,)0(ˆ ~    
          For n = 1, 2, … 

1 )()()1(ˆ)(ˆ )1(
~

)1(
~ nnxnλn xRR xx   

2 )()1(ˆ)()( nnndne T xh   
3 )()()1()( nnenλn xrr   
4  

{DCD method} 
)(),(ˆ)()(ˆ)(ˆ ~ nnnnn rhrhR x   

5 )(ˆ)1(ˆ)(ˆ nnn hhh   

 
limited by 2NuL possible additions, where Nu is the number 
of successful iterations (or solution vector updates) 
performed  by  the  DCD  (usually  Nu<10;  one iteration uses 
only additions and bit-shifts) [7][9]. The value of Nu is 
usually low and represents a sufficient number of successful 
DCD iterations performed for the computation of ˆ ( )nh in 
order to achieve good RLS-DCD performance. The 
algorithm also updates ˆ ( 1)n h  in step 5, through an 
addition to ˆ ( ).nh   

The overall complexity of the RLS-DCD can be reduced 
by choosing the forgetting factor as 1 1/ ( ),KL    where K 
and   the   filter length L are powers of 2.  Therefore, any 
multiplication with  can be replaced by a bit-shift and one 
subtraction.   The   total   amount   of   arithmetic   operations 
corresponding to the algorithm described in Table I is 
represented by 3L multiplications and less than 6L+2NuL 
additions for every time index n [8]. We notice that the value 
of Mb has no direct influence on the number of arithmetic 
operations (the parameter is relevant only for their 
complexity).  
 

IV. SIMULATIONS 
 

Simulations results are presented for the context 
illustrated in Figure 1, using the RLS-DCD and RLS 
adaptive algorithms. The performance of the ANC system is 
analyzed using spectrogram plots with 256 points Fourier 
Transforms for the generated error signals. 

The acoustic test signals are sampled with a frequency of 
8 kHz, using 16 bits/sample. The goal is to recover 
interference-free speech sequences available in the s(n) 
waveforms [11]. The desired signal is generated by filtering 
the interference x(n) with a Matlab fir1 12th order low-pass 
impulse response and adding the output q(n) to s(n). 

The length of the adaptive filter is L=25 and the 
corresponding forgetting factor is set to 1 1/ (16 ).L    
Correspondingly, the L values comprising the RLS-DCD 
solution vector are represented in the numerical interval [-H, 
H]=[-1,1] using Mb bits. The parameter Mb directly 
influences the precision of the adaptive system and is varied 
in order to establish a compromise between the performance 
and   complexity.   Furthermore,  ˆ ( )nh   is   updated   for  a 
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Figure 2. Spectrograms with 256 Fourier Transforms – the interference is 

Gaussian noise (SNR=0 dB): a) The speech sequence to be recovered; 
RLS-DCD error signal with b) Mb=3, c) Mb=6, d) Mb=8, e) Mb=16; f) RLS 

error signal 

maximum number of Nu=4 times per every time index n.  
The first simulation compares the performance of the 

RLS-DCD and RLS algorithms using Gaussian noise as 
acoustic interference. The s(n) and q(n) signals have the 
same power (i.e., the corresponding SNR has the value 0 
dB). It can be noticed in Figure 2 that increasing the number 
of bits used for the representation of the adaptive filter 
coefficients leads to better estimates of interference samples 
and a better reduction in noise level. Additionally, the 
comparison performed with the RLS spectrogram indicates 
that higher values of the parameter Mb provide similar 
performance from the RLS-DCD method, with lower 
arithmetic effort.  

For the second simulation (Figure 3), the interference 
signal x(n) is acoustic engine noise.  The same value is used 
for the SNR (0 dB). In comparison to the previous scenario, 
it can be noticed that the settings Mb=8 and Mb=16 do not 
provide the same performance rating anymore. The 
properties   of  the  second   interference  type   require  more  

104Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-546-3

ICN 2017 : The Sixteenth International Conference on Networks (includes SOFTNETWORKING 2017)



a)

0.5 1 1.5 2 2.5
Time 104

0

0.5

1

Fr
eq

ue
nc

y

b)

0.5 1 1.5 2 2.5
Time 104

0

0.5

1

Fr
eq

ue
nc

y

c)

0.5 1 1.5 2 2.5
Time 104

0

0.5

1

Fr
eq

ue
nc

y

 
d)

0.5 1 1.5 2 2.5
Time 104

0

0.5

1

Fr
eq

ue
nc

y

e)

0.5 1 1.5 2 2.5
Time 104

0

0.5

1

Fr
eq

ue
nc

y

f)

0.5 1 1.5 2 2.5
Time 104

0

0.5

1

Fr
eq

ue
nc

y

 
Figure 3. Spectrograms with 256 Fourier Transforms – the interference is 
engine noise (SNR=0 dB): a) The speech sequence to be recovered; RLS-
DCD error signal with b) Mb=3, c) Mb=6, d) Mb=8, e) Mb=16; f) RLS error 

signal 

precision in order to generate the similar results between the 
RLS-DCD and the RLS methods.  

The spectrograms corresponding to a third experiment 
are illustrated in Figure 4. The speech s(n) is corrupted for 
the first half of the simulation by engine sound, which is 
afterwards replaced by music. The SNR is set to -10 dB for 
the entire scenario. The change in interference produces a 
spike in each error spectrogram and the adaptive algorithms 
require an adaptation period. It can also be noticed that the 
music is harder to eliminate from the desired signal (the 
corresponding interference leaves easier noticeable traces in 
the error signal). As a consequence, the correlation properties 
of the interference signals have an important influence on the 
performance of the adaptive algorithms.  

V. CONCLUSIONS 
In this paper, the low-complexity RLS-DCD adaptive 

algorithm was employed for ANC scenarios with low SNR 
conditions. Simulations were performed in order to analyze 
the behavior of the proposed system, which indicated that the 
RLS-DCD    has    attractive    performance,    computational  
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Figure 4. Spectrograms with 256 Fourier Transforms - the interference is 

engine noise, which changes to music at time index 15000 (SNR=-10 dB):  
a) The speech sequence to be recovered; RLS-DCD error signal with b) 

Mb=3, c) Mb=6, d) Mb=8, e) Mb=16; f) RLS error signal 

efficiency and is suitable for ANC hardware 
implementations.  
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