
Solving the Virtual Machine Placement Problem as a
Multiple Multidimensional Knapsack Problem

Ricardo Stegh Camati, Alcides Calsavara, Luiz Lima Jr.
Programa de Pós-Graduação em Informática – PPGIa
Pontifícia Universidade Católica do Paraná – PUCPR

Curitiba, Brazil
rcamati@ppgia.pucpr.br, alcides@ppgia.pucpr.br, laplimpa@ppgia.pucpr.br

Abstract—Effective placement of virtual machines in a cluster
of physical machines is essential for optimizing the use of
computational resources and reducing the probability of
virtual machine reallocation. Many of previous works treat
virtual machine placement as an instance of the bin packing
problem, as they aim at saving energy. Alternatively, we
propose an approach based on the multiple multidimensional
knapsack problem, where the main concern is to maximize
placement ratio. Several traditionally employed placement
algorithms were re-implemented and new algorithms were
defined by using such an approach. The algorithms were
evaluated with respect to placement ratio, by employing a
novel evaluation method that contemplates variation of
computational resources heterogeneity in multiple dimensions
and also variation of placement density. The experimental
results showed that heterogeneity of resources among physical
machines impairs the placement ratio, while heterogeneity of
resources among virtual machines benefits it. It was also
possible to observe that increase of density placement up to a
certain point benefits the placement ratio.

Keywords- cloud computing; virtual machine placement;

knapsack problem; evaluation method;

I. INTRODUCTION
The client-server model widely used in modern

computing implies that the demand for computer resources
(e.g., processing power, memory, storage, and network
bandwidth) in a given application can vary significantly over
time; the demand may increase or diminish depending on
certain days and determined schedules [1]. The cloud
computing computation model emerged as a solution to this
problem, by permitting elasticity of computer resources [2]
[10]. Such elasticity is typically implemented through
hardware virtualization [3], a technique known since the
1960s decade. It appeared with the time-shared operating
systems [4] [9] and its aim was to partition hardware to
isolate users and applications in a mainframe. During the
1980s and 1990s decades, hardware virtualization was
practically forgotten despite the fact that virtualization was
used in other abstractions such as Java Virtual Machine
(JVM). More recently, the original concept of virtualization
has been employed again, not only to isolate applications and
users, but also to permit data centers (large clusters of hosts)
to achieve a more dynamic and rapid deployment [5]. Thus,
the basic service provided by a data center is the instantiation
of virtual machines required by its clients.

There are many benefits for both data center provider and
client. In general, a provider is able to sell computer
resources to a large number of clients. In addition, the
amount of computer resources sold can be higher than the
amount actually available, by assuming that, at any given
time, the amount of resources actually required by clients is
lower than the contracted amount. On the other hand, a client
is able to buy computer resources for lower costs, when
compared to the costs of keeping a private infrastructure
(hardware, software, and personnel). Moreover, since the
demands for computer resources may vary over time, a client
should pay just for what is actually used, thus reducing costs
even further.

The intrinsic complexity of the cloud computing
computation model poses a difficult problem regarding
resource management. Basically, a data center provider aims
at maximizing profits. That implies reducing the deployed
computer resources as much as possible, i.e., within each
time slot, the amount of computer resources available to
clients should be the minimum necessary, according to the
corresponding expected demand. However, it should be
noticed that the provider must honor the contracts established
with clients, whereby quality-of-service requirements,
including performance requirements, are specified. In other
words, the so-called Service-Level Agreement (SLA) must
be fulfilled. As a rule of thumb, the number of hosts
(physical machines) in a data center should be augmented
gradually, as more client contracts are established. Such a
measure for cost reduction is further improved by keeping
active only a minimal subset of hosts that fulfills the demand
for resources within each time slot, mainly to save energy. In
the literature, this problem is referred to as virtual machine
consolidation.

The critical issues in the design of a virtual machine
consolidation mechanism include the choice of algorithms
for virtual machine placement and migration. A virtual
machine placement is the action of instantiating it as required
by a client in a properly chosen host, while a virtual machine
migration is the action of moving a virtual machine from one
host to another. The reason for migration is that the original
host becomes either overloaded or under loaded, according
to some criteria. A virtual machine is moved away from an
overloaded host to guarantee that computer resource
demands and performance requirements are accomplished.
On the other hand, it is moved away from an under loaded

253Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

host to be able to deactivate such host, thus saving energy.
However, migration itself can introduce both some
performance degradation and some extra energy
consumption, so it should be employed carefully and avoided
as much as possible. Unfortunately, virtual machine
migration cannot be fully prevented because they are
intrinsically dynamic with respect to computer resource
demand, a property known as elasticity. Nevertheless, a
proper initial placement can help to minimize the probability
of host overload, consequently reducing migration.

A virtual machine placement algorithm should provide a
trade-off between energy savings and overall system
performance. If a placement algorithm’s objective is solely
energy savings, it is likely to happen that hosts become
overloaded more often, and clients may experience some
performance degradation caused by virtual machine
migration. In spite of that, the typical approach employed in
real-world data centers is based on the Bin Packing Problem
and a corresponding rather simple solution: the First Fit
Algorithm. Within this approach, only the minimal necessary
hosts are kept active at all times and only one is candidate
(normally, the least occupied host) for virtual machine
placement. Some proposals [8] [11] try to improve that
solution by reordering the virtual machine request queue
according to some criteria before their actual placement;
those are referred to as First Fit Decreasing Algorithms.
Other proposals [16] [17] [18] [19] are based on the Multiple
Knapsack Problem and a corresponding Best Fit Algorithm.
Within this approach, hosts are less occupied in average and
several of them are the candidates for virtual machine
placement at once. As a consequence, less migration is
expected at the cost of some extra energy consumption. Also,
a new issue emerges regarding the number of computer
resource types considered in making a choice between the
candidates. Most solutions consider just one resource type,
typically processing power. Other solutions consider a
combination of resource types, such as processing power,
memory, storage, network bandwidth, and so forth. For
simplicity, each resource type is referred to as a machine
dimension, so such a solution is based on the
Multidimensional Multiple Knapsack Problem.

Some characteristics of real-world data centers can make
the virtual machine placement problem even more complex.
One such characteristic is machine heterogeneity, i.e.,
machines present different amounts for a given dimension.
Another characteristic is the average density of virtual
machines per host. Such characteristics may profoundly
impact on the behaviour of placement algorithms, and that
can be very hard to measure.

In this paper, the multidimensional multiple knapsack
approach to the virtual machine placement problem is
explored in several ways. Firstly, two variants of the First Fit
Decreasing Algorithm that are normally employed in the bin
packing approach, namely the Dot Product Algorithm and
Volume Algorithm, were adapted to the multiple knapsack
approach. Secondly, two novel algorithms are proposed,
namely the Best Dimension Algorithm and the Osmosis
Algorithm. Thirdly, a novel evaluation method for virtual
machine placement algorithms is proposed in order to

accomplish multiple machine dimensions, heterogeneity of
machines and distinct densities of virtual machines per host.

The remaining of this paper is organized as follows.
Section II discusses the virtual machine placement problem
in deep. Section III describes the normally employed virtual
machine placement algorithms. Section IV presents the novel
evaluation method. Section V presents some experimental
results. Finally, Section VI makes some concluding remarks.

II. PLACEMENT PROBLEM
Given a data center composed of a set of hosts (physical

machines) and a corresponding queue of client requests for
virtual machine instantiation, the virtual machine placement
problem consists in determining a host of the data center to
place (actually, instantiate) each virtual machine in the
queue, aiming at least at one of the following objectives:

i. To minimize the electric energy consumed by the
data center [13] [14]. According to [7], the costs of
powering and cooling accounts for 53% of the total
operational expenditure of datacenters;

ii. To maximize the placement ratio, i.e., the quotient
between the number of placed virtual machines	
 and
the total number of requests in the queue;

iii. To minimize the overall systems performance
degradation caused by virtual machine migration
[6][20] that is triggered by elasticity.

The virtual machine placement problem encompasses

several issues, as detailed in the sequel.

A. Machine Dimension
 A typical virtual machine requires resources of different
types, such as processing power (usually measured in
MIPS), memory, storage, and network bandwidth [19]. Each
resource type is referred to as a machine dimension, or
simply dimension, since it applies to both virtual machine
and host. The demand in a certain dimension can vary over
time within each virtual machine, and it not known a priori.
For simplicity, it is assumed that a demand initially defined
is actually an upper bound. Naturally, a virtual machine
must be placed in a host that can provide enough resources
in all dimensions. However, the criterion to choose a host
where to place a virtual machine can be based on either a
single dimension or a combination of any number of
dimensions. For instance, one may decide according to
processing power only, such that a virtual machine is placed
in the host where the processing power dimension is mostly
available, as long as the resources available in the other
dimensions are enough too. As another example, one may
make a placement decision based on some ranking which is
determined according to the available resources in the above
four dimensions. While a single-dimension criterion is
simple to implement, a multi-dimension criterion may help
to increase the balance between resource usages, and
placement ratio as well.

254Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

B. Delivery Mode
 Although requests for virtual machine placement arrive
continuously at a data center, their corresponding delivery,
that is, their actual placement on hosts can be performed in
two distinct modes: (i) single delivery mode: the first virtual
machine in the queue is popped out and placed on a host,
that is, virtual machines are necessarily delivered in the
same order of arrival of requests; (ii) group delivery mode: a
number of virtual machine requests in the beginning of the
queue are popped out and placed on a host. That allows
reordering the group of virtual machines before placement.
The single delivery mode is simple to implement, it respects
requests arrival order, and it causes no additional delay in
virtual machine placement delivery. The group delivery
mode, on the other hand, has a potential to increase the
virtual machine placement ratio since virtual machine
requests can be reordered in an attempt to optimize resource
usage.

C. Heterogeneity
The set of hosts in a data center can vary with respect to

the resources they provide. In the same fashion, the set of
virtual machines to place can vary with respect to the
resources they require. In other words, both set of hosts and
set of virtual machines are heterogeneous with respect to
machine dimensions. Such heterogeneity adds complexity to
the virtual machine placement problem. On the other hand,
it can be exploited to reach the defined objectives.

D. Virtual Machine Life Cycle
 Once a virtual machine is instantiated (placed on an
initial host), it can change its resource demands over time
(elasticity), it can migrate from one host to another, and it
terminates eventually. Such behavior may affect the
system’s performance, energy consumption and resource
availability. Hence, it has to be considered during virtual
machine placement. It should be noticed that virtual
machines are not pre-allocated, i.e., each instantiation
request implies creating a new virtual machine.

III. PLACEMENT ALGORITHMS
In this section, traditionally employed virtual machine

placement algorithms are explained, along with two new
such algorithms are proposed, namely the Best Dimension
Algorithm and the Osmosis Algorithm.

A. First Fit Algorithm
 The classic Bin Packing Problem [11] is often adapted to
the context of virtual machine placement in the following
way: a whole set of virtual machines (objects) of different
sizes should be placed into a series of hosts (bins) such that
the minimum number of hosts are employed to place all
virtual machines, thus saving energy. The First Fit
Algorithm [8][11] accomplishes that by activating a single
host at a time as they get filled up with virtual machines.
Each virtual machine is placed in the first host where it fits,

according to a predefined order between active hosts. In
addition, just one virtual machine – the first one in the
queue – is taken at a time, and then placed on a host. For
that reason, the First Fit Algorithm is suitable for the single
delivery mode.

B. First Fit Decreasing Algorithm
 When the group delivery mode (as described in Section
II.B) is employed, the First Fit Decreasing Algorithm
[8][11] – a variant of the First Fit Algorithm – can reduce
even further the average number of active hosts. The
primary difference is that the set of virtual machines in the
queue is ordered according to some criteria before
placement. In a simple model, where just one dimension is
considered (typically, CPU usage), virtual machines are
ordered according to their demand for the corresponding
resource. In a more sophisticated model, several dimensions
can be considered to establish a ranking amongst the virtual
machines. One way to defining the rank of each virtual
machine is to employ the volume method whereby the
volume of a virtual machine is calculated by multiplying its
demands in all dimensions.
 In a different approach, the rank of each virtual machine
can be determined with respect to a reference host witch is,
normally, the least occupied active host or the last one to be
activated. In this approach, at least during rank calculation,
the virtual machine placement problem can be modeled as
an instance of the 0-1, or Binary, Knapsack Problem [12],
as follows. Given a set (group) of virtual machines (objects)
where each virtual machine has an associated value, a subset
must be selected and associated to a single host (knapsack)
such that the profit is maximized. An example of an
algorithm that takes this approach is one that employs the
dot product method. The dot product of a virtual machine is
calculated as the sum of a series of products, where each
product corresponds to a dimension, and is obtained by
multiplying the virtual machine demand by the reference
host availability in that dimension.
 For simplicity, the First Fit Decreasing Algorithm based
on the volume method is referred to as Volume Algorithm
[15], while the First Fit Decreasing Algorithm based on the
dot product method is referred to as Dot Product Algorithm
[8].

C. Best Fit Algorithm
 Besides saving energy, a data center should to take
measures to fulfill all Service-Level Agreement (SLA)
requirements, including virtual machine placement ratio
(which is equivalent to establishing a maximum time for
virtual machine placement), virtual machine performance
and virtual machine elasticity.
 The Best Fit Algorithm keeps active a set of hosts at all
times (instead of activating a single host at time) and places
each virtual machine where it best fits to achieve load
balance amongst the active hosts. A proper load balance
should increase the probability of success in virtual machine

255Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

placements. Moreover, it should increase the probability of
having enough resources at a given host to fulfill the needs
due to a virtual machine expansion. As a consequence,
virtual machine migration should be reduced, thus
preventing systems performance degradation.
 Basically, the problem solved by the Best Fit Algorithm
can be seen as an instance of the Multiple Knapsack
Problem: given an initial set of virtual machines (objects) of
different sizes and values, a subset of it should be selected,
and then placed into a set of hosts (knapsacks) such that the
aggregate value is maximized. Moreover, when multiple
dimensions are considered, the problem is an instance of the
Multiple Multidimensional Knapsack Problem [16][17][18]
[19]. Particularly, if all virtual machines are assumed to hold
a unique value, the Best Fit Algorithm maximizes the
quantity of virtual machines that are placed. The remaining
issue concerns the delivery mode, as discussed in the sequel.

1) Single delivery mode

Since just one virtual machine – the first one in the
queue – is taken at a time, and then placed on a host, there is
no actual virtual machine selection in the single delivery
mode. Such a reference virtual machine will be simply
either placed or discarded (actually, it can be reinserted at
the end of the queue), depending on the resource availability
on the active hosts. Nevertheless, the analogy with the
Multiple Knapsack Problem holds if the whole queue of
virtual machines (built within a certain period of time) is
considered as the initial set of objects. In this case, the
selected virtual machines are the ones that are placed, i.e.,
the ones that are not discarded. Thus, the purpose of the
Best Fit Algorithm is to discard virtual machines the least as
possible. In other words, the purpose is to maximize
placement ratio in the long run. The actual issue, hence, is to
determine the host, if there is any, where the reference
virtual machine fits best. That requires ordering the set of
active hosts according to some criteria, before placing the
reference virtual machine. Similar to the First Fit
Decreasing Algorithm (described in Section III.B), both
volume and dot product methods can be employed in this
case. If the volume technique is employed, host are sorted in
decreasing order by their free volume, which is calculated as
the product of available resource in each dimension. If the
dot product is employed, the rank of each host is calculated
as the sum of a series of products, where each product
corresponds to a dimension, and is obtained by multiplying
the reference virtual machine demand by the host
availability in that dimension. A slightly different version of
the dot product method is the best dimension method,
proposed here, by which the product for each dimension is
calculated in the same fashion as in the dot product method,
but the rank of each host is set simply as the highest
product. For simplicity, the Best Fit Algorithm based on the
best dimension method is referred to as Best Dimension
Algorithm.

2) Group delivery mode
The analogy with the Multiple Knapsack Problem is

direct in the case of the group delivery mode, since it
permits a selection of the virtual machines that best fit the
set of active hosts, before placement. Actually, there are two
kinds of selection that can be exploited in any form by a
placement algorithm: a selection of virtual machines and a
selection of active hosts.
 An algorithm that employs only a virtual machine
selection method should order the set of virtual machines
according to some criteria, and then place each virtual
machine in any active host. For example, an algorithm may
order the virtual machines according to their required
processing power. If more dimensions should be considered,
they can be ordered according to the required volume.
 An algorithm that employs only a host selection method
should order the set of active hosts according to some
criteria before placing each virtual machine that is simply
popped out from the queue. For example, the set of active
hosts can be ordered according to the proximity between
their level of free processing power and the average
processing power required by the all virtual machines in the
group. It should be noticed that such an algorithm differs
from an algorithm employed for the single delivery mode
because its host selection method uses attribute values of all
virtual machines in the group, instead of attribute values of
just the first virtual machine in the queue.
 An algorithm that employs both selection methods
simultaneously actually employs a match method between
virtual machines and active hosts. For example, a simple
match method is to associate virtual machines that require
higher processing power with hosts with higher level of free
processing power.
 The Osmosis Algorithm, proposed here, employs the
host selection method only, albeit it can be easily extended
to employ the virtual machine selection method as well is
straightforward. The Osmosis Algorithm attempts to
preserve resources that are scarce in the data center with
respect to the current demand. Its host selection method
consists in ordering the set of active hosts according to their
availability of relatively least available resources. Hosts that
hold resources whose usage levels are less critical in the
data center are used first. The first step is to determine
which resources present more critical levels of usage. That
is achieved by determining the weight of each dimension as
the quotient between its total demand and its total
availability. The total demand of a dimension is defined by
the sum of all demands required the virtual machines in the
group, while the total availability of a dimension is the sum
of free resource in all the active hosts. Once the weight of
each dimension has been determined, the rank of each active
host must be calculated with respect to the first virtual
machine in the queue – the reference virtual machine – as
follows. For each host, the weighted offer ratio of a
dimension is defined as the product between the weight of
that dimension and the corresponding offer ratio, which is

256Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

defined as the quotient between the host availability and the
reference virtual machine demand for that dimension.
Finally, the rank of each host is calculated as the sum of its
weighted offer ratios, in all dimensions.

D. Discussion
 The First Fit Algorithm and its variants make it possible
for a data center to save energy, since only hosts that
contain some virtual machine need to be on. However,
because host resource usage levels tend to be close to the
maximum, virtual machine migration is more likely to
happen in the presence of elasticity (when, within an already
running virtual machine, the demand for a given resource
increases), thus degrading performance, besides consuming
some extra energy.
 On the other hand, the Best Fit Algorithm and its
variants should improve placement ratio, which brings
benefits for both data center provider and client, thus
justifying the extra energy cost. In addition, virtual machine
migration caused by host overload is less likely to happen,
hence improving the overall systems performance.
 In the following sections, an evaluation of the different
placement algorithms, with respect to placement ratio, is
presented, while evaluation of issues regarding elasticity,
migration, performance and energy consumption are left as
future work.

IV. EVALUATION METHOD

A new method to evaluate virtual machine placement
algorithms is proposed here in order to take into account
multidimensional machines, and to investigate the impact of
machine heterogeneity and virtual machine density on
placement ratio. Basically, the method consists in
determining a set of virtual machines to place on a set of
hosts, and applying several placement algorithms in order to
compare their behavior with respect to placement ratio.
Every machine (either host or virtual machine) is assumed
to have a number of dimensions, where each dimension
corresponds to a certain type of resource. The set of hosts is
assumed to be heterogeneous with respect to the resource
capacity and, for each dimension, each host may have a
different capacity. In the same way, the set of virtual
machines should present a certain degree of heterogeneity.

The virtual machine placement problem can be
formalized as follows.

Be:

• H ={h1,...,hm} : a set of m hosts

• V ={v1,...,vn}: a set of n virtual machines

•

D ={d1,...,dg} : a set of g dimensions

•

Tj : the arrival time of

v j ∈V such that

∀vi ,v j : i < j ⇔ Ti < Tj

•

wj ,k : the demand of

v j ∈V in dimension k

•

ci,k

: the total capacity of hi ∈H in dimension k

•

Li,k (Tj) : the free capacity of dimension k in hi ∈H

at

Tj

•

xi, j ∈{0,1}, 1≤ i ≤ m, 1≤ j ≤ n

o

xi, j = 1⇔ v j ∈V is placed in hi ∈H

o

xi, j = 1⇒ xk , j = 0,∀k ≠ i

Maximize

xi, j
j=1

n

∑
i=1

m

∑

Subject to:

(i)

xi, j .wj ,k ≤ ci, j
k=1

g

∑
j=1

n

∑
i=1

m

∑

(ii)

∀v j ∈V , ∃ S ⊆ H , S ≠ ∅ | ∀hi ∈S , ∀dk ∈D,

Li,k (Tj) ≥ wj ,k ⇒ xt , j = 1, ht ∈s

 The analysis of the effects of heterogeneity on
placement ratio employs an ideal scenario as a starting
point. In such a scenario, hosts and virtual machines are
assumed to be homogeneous, and their capacities are such
that all virtual machines are placed and, also, no resource is
left in any host. For a given set of hosts, the number of
virtual machines is determined by according to an arbitrarily
fixed virtual machine density; if distinct values of virtual
machine density are employed, then the number of virtual
machines is determined accordingly. In the same fashion,
for each machine dimension, the corresponding capacity in
each host and the demand of each virtual machine are
determined according to virtual machine density. Hence, the
ideal scenario for a given set of hosts and a given virtual
machine density includes the number of virtual machines to
place, and the capacity of hosts and the demand of virtual
machines for each machine dimension.
 After having established an ideal scenario, other
scenarios can be devised by introducing some degree of
heterogeneity in both set of hosts and set of virtual
machines. In such a scenario, for any given dimension and a
set of machines, there is a specific range that includes all
corresponding dimension values. A range can be defined by
a minimum, a maximum and a corresponding median that is
determined according to the ideal scenario (host capacity or
virtual machine demand). The relative variation of
dimension values with respect to the median is called the

257Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

amplitude of that dimension with respect to that set of
machines.
 Formally, given a range [minimum, maximum] of values
of a dimension d in a set of M of machines, the amplitude of
d with respect to M – denoted as

AM ,d – is defined in (1).

AM ,d = 100 (maximum-median)/median (1)

 In a set of M of machines where each machine has n
dimensions that are labeled from 1 to n, the tuple containing
the amplitudes for all dimensions – denoted as

A*

M ,d – is
defined in (2).

A*

M ,d =

(AM ,1,..., AM ,n) (2)

 Given a set V of virtual machines that should be placed,
let P ⊆V be the set of virtual machines actually placed after
applying a certain algorithm, v be the number of machines
in V, and p be the number of machines in P. The
corresponding placement ratio -- denoted as τ -- is defined
in (3).

τ = p

v
 (3)

 The ideal scenario is one such that τ = 1, i.e., the whole
set of virtual machines is successfully placed, and also all
host resources are fully occupied. Such a scenario can be
easily synthesized when there are v virtual machines to
place on h hosts, by assuming that:

(i) All	
 amplitude	
 values	
 are	
 zero,	
 for	
 both	
 hosts	
 and	

virtual	
 machines.	
 In	
 other	
 words,	
 hosts	
 and	

virtual	
 machines	
 are	
 homogeneous.	

(ii) For	
 each	
 machine	
 dimension,	
 let	
 k	
 be	
 the	

corresponding	
 capacity	
 in	
 each	
 host,	
 and	
 t	
 be	

the	
 corresponding	
 demand	
 of	
 each	
 virtual	

machine.	
 Then,	
 k	
 mod	
 t	
 =	
 0	
 (there	
 is	
 no	
 resource	

left	
 in	
 each	
 host)	
 and	
 h k	
 =	
 v t	
 (there	
 is	
 no	

resource	
 left	
 in	
 the	
 data	
 center).	

 Given a set of h hosts and a set of v virtual machines, the
average number of virtual machines that should be placed
per host – denoted as ρ – is simply defined in (4).

ρ = v

h
 (4)

 In the ideal scenario,

ρ = k

t
 for any machine dimension.

V. EXPERIMENTS
 The algorithms described in Section III were
experimentally evaluated with respect to placement ratio,
according to the method described in Section IV. The
experiments were based on simulation by employing a
custom simulator (available for download at
http://www.ppgia.pucpr.br/~alcides/PSim) written in Python
language, and they were divided into seven scenarios that
correspond to distinct degrees of machine heterogeneity,
and distinct densities of virtual machines, as well. The
number of hosts is fixed to 100 for all scenarios, except for
Scenario VI, where this number is ten due to simulation
time constraints. For most scenarios, virtual machine
density is fixed to ten virtual machines per host, which is a
typical density for small instances in data centers. The
number of dimensions is fixed to four since the most
commonly considered resources are processing power,
memory, storage, and network bandwidth. Consequently,
the amplitude tuples contain four values corresponding to
heterogeneity of those resources. For simplicity, in the
experimental results shown above, a host amplitude tuple is
denoted as δ , while a virtual machine amplitude tuple is
denoted as π .

In scenarios I and II, host amplitude is fixed in order to
analyze the impact of the virtual machine amplitude
variation, while, in scenarios III and IV, virtual machine
amplitude is fixed in order to analyze the impact of the host
amplitude variation. Also, in scenarios I and III, the machine
amplitude variation increases evenly, while it increases non-
uniformly in scenarios II and IV.

According to Fig. 1 and Fig. 2, increasing virtual machine
amplitude either evenly or non-uniformly favors all
algorithms. The Dot Product Algorithm was the best
performer, achieving a placement ratio from 2% to 10%
better than the First Fit Algorithm.

According to Fig. 3 and Fig. 4, increasing the host
amplitude variation either evenly or non-uniformly impairs
the performance of all algorithms. The Dot Product
Algorithm shows the best overall performance, achieving
from 6% to 19% more performance than the First Fit
Algorithm.

In scenarios V and VI, the impact of virtual machine
density is analyzed. In this case, host amplitude and virtual
machine amplitude are fixed. While Scenario V considers
virtual machines that have a monolithic operation system as
guest, the Scenario VI considers very small virtual machines
that have a microkernel operational system as guest [21]. The
results shown in Fig. 5 are quite interesting. Increasing the
virtual machine density favors all algorithms. The Osmosis
Algorithm was the best solution for very small virtual
machine density (from 2 to 3), performing from 5% to 9%
better than the Volume Algorithm, the worst performer. With
a density higher than 3, once more the Dot Product
Algorithm was the best performer, achieving a placement
ratio from 3% to 12% higher than the First Fist, the worst
performer in this range.

258Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

Figure 1. Increasing virtual machine amplitude variation evenly.

Figure 2. Increasing virtual machine amplitude variation non-uniformly.

Figure 3. Increasing host amplitude variation evenly.

Figure 4. Increasing host amplitude variation non-uniformly.

 According to Fig. 6, increasing density is beneficial for
all algorithms, at least up to a certain point. As expected, the
Dot Product Algorithm proved to be superior to all other
algorithms, being from 6% to 9% more efficient than the
First Fit Algorithm and the Volume Algorithm.
 In Scenario VII, placement ration of the Dot Product
Algorithm is analyzed by varying both host amplitude and
virtual machine amplitude, simultaneously. The choice of
the algorithm is due to its higher performance, as verified in
previous scenarios. In this scenario, virtual machine density
is fixed as 10, as well. In Fig. 7, it can be noticed there are
several depressions caused by increasing host amplitude
variation and also by the decreasing virtual machine
amplitude variation. It can be noticed that virtual machine
heterogeneity tends to improve placement ratio, while host
heterogeneity tends to degrade it.

Figure 5. Increasing virtual machine density in a monolithic approach.

Figure 6. Increasing virtual machine density in a microkernel approach.

Figure 7. Increasing both host amplitude variation evenly and virtual

machine amplitude variation non-uniformly

259Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

 In conclusion, the Dot Product Algorithm seems to be
the best solution in most cases. The Best Dimension
Algorithm and the Osmosis Algorithm, proposed in this
paper, showed a median performance. While Best
Dimension has a better overall performance than Osmosis,
Osmosis is the best choice in the case of very low virtual
machine density, surpassing even the Dot Product
Algorithm. A real world scenario with 2 or 3 virtual
machines per host is a very common with large instances, as
an example a LAMP (Linux, Apache, MySQL, PHP)
Application. The First Fit Algorithm and the Volume
Algorithm are very low performers. On the other hand, as
they are simple to implement, they can be appropriate when
there is a performance bottleneck in the virtual machine
placement system.

VI. CONCLUSION
 This work has shown that the multidimensional multiple
knapsack approach can be more effective than the bin
packing approach to the virtual machine placement problem;
in general, the First Fit Algorithm was the worst performer
in our experiments. The proposed evaluation method
permitted to represent critical real-world data center
characteristic, and it proved to be easy to use. The
experiments have shown that virtual machine heterogeneity
plays a favorable role in virtual machine placement, while
host heterogeneity has the opposite effect. Also, in general,
high virtual machine density favors virtual machine
placement ratio. Finally, algorithms that use properties of
virtual machines (Dot Product, Best Dimension and
Osmosis Algorithm) tend to have a better performance.
 The proposed evaluation method can be extended to
include energy consumption, elasticity, migration, and
termination. More future works include the evaluation of
other types (genetic, ant colony, etc.) of placement
algorithms, and experimentation with more fixed values for
virtual machine density. Also, the costs of running each
placement algorithm should be computed to verify its
feasibility in large-scale scenarios, and to verify if the
corresponding gain in placement ratio is worthwhile. Other
issues regarding SLA, such as services response time and
security are left as future work as well.

REFERENCES
[1] H. Liu and S. Wee, “Web Server Famrm in Cloud:

Performance Evaluation and Dynamic Architecture”,
Proceedings of the First International Conference on Cloud
Computing, Technology and Science, Berlin and Heidelberg,
Springer Verlag, 2009, pp. 369-380.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing”, Technical Report, Gaithersburg, 2011, National
Institute of Technology Special Publication 800 – 145.

[3] E. J. Smith and R. Nair, “The Architecture of Virtual
Machines”, Computer, vol.38(5), May. 2005, pp. 32-38.

[4] V. Melinda, “VM and the VM Community: Past, Present and
Future”, Office of Computing and Information Technology,

Princeton University, Share 89 Sessions 9059-9061, 1997, pp.
1-68.

[5] M. Rosenblum, “The Reincarnation of Virtual Machines.
Virtual Machines”, Virtual Machines, vol.2(5), Aug. 2004,
pp. 34-40.

[6] M. R. Hinnes, U. Deshpande, and K. Gopalan, “Post Copy
Live Migration of Virtual Machines”, ACM SIGOPS
Operating System Review, vol.43(3), 2009, pp. 14-26.

[7] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing:
State of Art and Research Challenges”, Journal of Internet
Services and Applications,vol. 1(1), Apr. 2010, pp. 17-18.

[8] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wider, “Heuristics
for Vector Bin Packing”, Microsoft’s VMM Product Group,
Microsoft Research Sillicon Valley, 2011.

[9] R. J. Creasy, “The Origin of VM/370 Time-Sharing System”,
IBM Journal of Research and Development, vol. 25(5), pp.
483-490.

[10] T. P. Endo, E. G. Gonçalves, J. Kelner, and H. D. F. Sadok,
“A Survey on Open-Source Cloud Computing Solutions”,
Proceedings of the XXVII Brazilian Simposium of Computer
Networks and Distribuited Systems, VII Workshop in Cloud
Computing, Porto Alegre, Brazil, 2010, pp. 3-16.

[11] B. Xia and Z. Tan, “Tigther bounds of the First Fit Algorithm
for the Bin-Packing Problem”, Elsevier, Hangzhou, vol.
158(15), Aug. 2010, pp. 1668-1675.

[12] D. Pisinger, “Algorithms for Knapsack Problems”,
Department of Computer Science of University of
Copenhagen, Copenhagen, Feb. 1995.

[13] Y. Wu, M. Tang, and W. Fraser, “A Simulated Annealing
Algorithm for Energy Efficient Virtual Machine Placement”,
Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, Seoul, Oct. 2012, pp. 14-17.

[14] J. Xu and J. A. B. Fortes, “Multi-Objective Virtual Machine
Placement in Virtualized Data Center Enviroments”,
Proceedings of the 2010 IEEE/ACM Int’l Conference on
Green Computing and Communications & Int’l Conference
on Cyber, Pysical and Social Computing, Washington, 2010,
pp. 179-188.

[15] D. Bonde, “Techniques for Virtual Machine Placement in
Clouds”, Departament of Computer Science and Engineering
- MPT Stage I Report on the Indian Institute of Technology,
Bombay, 2010, ROLL No:08305910.

[16] S. Fidanova, “Heuristics for Multiple Knapsacks Problem”,
Proceeding of the IADIS International Conference on Applied
Computing, Algarve, 2005, pp. 225-260.

[17] Y. Song, C. Zhang, and Y. Fang, “Multiple Multidimensional
Knapsack Problem and it’s Applications in Cognitive Radio
Networks”, Military Communications Conference, San Diego,
Nov. 2008, pp. 1-7.

[18] A. Singh, M. Korupolu, and D. Mohapata, Server-Storage
Virtualization: Integration and Load Balance in Data Centers,
International Conference for High performance Computing,
Network, Storage and Analyses, pp. 1-12.

[19] E. Mohamadi, M. Karimi, and S. R. Heikalabad, “A Novel
Virtual Placement in Virtual Computing”, Australian Journal
of Basic and Applied Scienes, Australia, vol. 5(10), 2011, pp.
1149-1555.

[20] D. Magalhães, J. M. Soares, and D. G. Gomes, “Virtual
Machine Migration Impact Analysis in a Virtualized
Computer Enviroment”, Proceedings of the XXIX Brazilian
Symposium on Computer Networks and Distributed Systems,
Campo Grande, 2011, pp. 235-248.

[21] A. Whiteaker, M. Shaw, and S. T. Gribble, “Denali: A
Scalable Isolation Kernel”, Proceedings of the 10th Workshop
on ACM SIGOPS European Workshop, New York, 2002, pp.
10-15.

260Copyright (c) IARIA, 2014. ISBN: 978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks

