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Abstract—Effective placement of virtual machines in a cluster 
of physical machines is essential for optimizing the use of 
computational resources and reducing the probability of 
virtual machine reallocation. Many of previous works treat 
virtual machine placement as an instance of the bin packing 
problem, as they aim at saving energy. Alternatively, we 
propose an approach based on the multiple multidimensional 
knapsack problem, where the main concern is to maximize 
placement ratio. Several traditionally employed placement 
algorithms were re-implemented and new algorithms were 
defined by using such an approach. The algorithms were 
evaluated with respect to placement ratio, by employing a 
novel evaluation method that contemplates variation of 
computational resources heterogeneity in multiple dimensions 
and also variation of placement density. The experimental 
results showed that heterogeneity of resources among physical 
machines impairs the placement ratio, while heterogeneity of 
resources among virtual machines benefits it. It was also 
possible to observe that increase of density placement up to a 
certain point benefits the placement ratio. 
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I. INTRODUCTION 
The client-server model widely used in modern 

computing implies that the demand for computer resources 
(e.g., processing power, memory, storage, and network 
bandwidth) in a given application can vary significantly over 
time; the demand may increase or diminish depending on 
certain days and determined schedules [1]. The cloud 
computing computation model emerged as a solution to this 
problem, by permitting elasticity of computer resources [2] 
[10]. Such elasticity is typically implemented through 
hardware virtualization [3], a technique known since the 
1960s decade. It appeared with the time-shared operating 
systems [4] [9] and its aim was to partition hardware to 
isolate users and applications in a mainframe. During the 
1980s and 1990s decades, hardware virtualization was 
practically forgotten despite the fact that virtualization was 
used in other abstractions such as Java Virtual Machine 
(JVM). More recently, the original concept of virtualization 
has been employed again, not only to isolate applications and 
users, but also to permit data centers (large clusters of hosts) 
to achieve a more dynamic and rapid deployment [5]. Thus, 
the basic service provided by a data center is the instantiation 
of virtual machines required by its clients. 

There are many benefits for both data center provider and 
client. In general, a provider is able to sell computer 
resources to a large number of clients. In addition, the 
amount of computer resources sold can be higher than the 
amount actually available, by assuming that, at any given 
time, the amount of resources actually required by clients is 
lower than the contracted amount. On the other hand, a client 
is able to buy computer resources for lower costs, when 
compared to the costs of keeping a private infrastructure 
(hardware, software, and personnel). Moreover, since the 
demands for computer resources may vary over time, a client 
should pay just for what is actually used, thus reducing costs 
even further.  

The intrinsic complexity of the cloud computing 
computation model poses a difficult problem regarding 
resource management. Basically, a data center provider aims 
at maximizing profits. That implies reducing the deployed 
computer resources as much as possible, i.e., within each 
time slot, the amount of computer resources available to 
clients should be the minimum necessary, according to the 
corresponding expected demand. However, it should be 
noticed that the provider must honor the contracts established 
with clients, whereby quality-of-service requirements, 
including performance requirements, are specified. In other 
words, the so-called Service-Level Agreement (SLA) must 
be fulfilled. As a rule of thumb, the number of hosts 
(physical machines) in a data center should be augmented 
gradually, as more client contracts are established. Such a 
measure for cost reduction is further improved by keeping 
active only a minimal subset of hosts that fulfills the demand 
for resources within each time slot, mainly to save energy. In 
the literature, this problem is referred to as virtual machine 
consolidation. 

The critical issues in the design of a virtual machine 
consolidation mechanism include the choice of algorithms 
for virtual machine placement and migration. A virtual 
machine placement is the action of instantiating it as required 
by a client in a properly chosen host, while a virtual machine 
migration is the action of moving a virtual machine from one 
host to another. The reason for migration is that the original 
host becomes either overloaded or under loaded, according 
to some criteria. A virtual machine is moved away from an 
overloaded host to guarantee that computer resource 
demands and performance requirements are accomplished. 
On the other hand, it is moved away from an under loaded 
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host to be able to deactivate such host, thus saving energy. 
However, migration itself can introduce both some 
performance degradation and some extra energy 
consumption, so it should be employed carefully and avoided 
as much as possible. Unfortunately, virtual machine 
migration cannot be fully prevented because they are 
intrinsically dynamic with respect to computer resource 
demand, a property known as elasticity. Nevertheless, a 
proper initial placement can help to minimize the probability 
of host overload, consequently reducing migration. 

A virtual machine placement algorithm should provide a 
trade-off between energy savings and overall system 
performance. If a placement algorithm’s objective is solely 
energy savings, it is likely to happen that hosts become 
overloaded more often, and clients may experience some 
performance degradation caused by virtual machine 
migration. In spite of that, the typical approach employed in 
real-world data centers is based on the Bin Packing Problem 
and a corresponding rather simple solution: the First Fit 
Algorithm. Within this approach, only the minimal necessary 
hosts are kept active at all times and only one is candidate 
(normally, the least occupied host) for virtual machine 
placement. Some proposals [8] [11] try to improve that 
solution by reordering the virtual machine request queue 
according to some criteria before their actual placement; 
those are referred to as First Fit Decreasing Algorithms. 
Other proposals [16] [17] [18] [19] are based on the Multiple 
Knapsack Problem and a corresponding Best Fit Algorithm. 
Within this approach, hosts are less occupied in average and 
several of them are the candidates for virtual machine 
placement at once. As a consequence, less migration is 
expected at the cost of some extra energy consumption. Also, 
a new issue emerges regarding the number of computer 
resource types considered in making a choice between the 
candidates. Most solutions consider just one resource type, 
typically processing power. Other solutions consider a 
combination of resource types, such as processing power, 
memory, storage, network bandwidth, and so forth. For 
simplicity, each resource type is referred to as a machine 
dimension, so such a solution is based on the 
Multidimensional Multiple Knapsack Problem. 

Some characteristics of real-world data centers can make 
the virtual machine placement problem even more complex.  
One such characteristic is machine heterogeneity, i.e., 
machines present different amounts for a given dimension. 
Another characteristic is the average density of virtual 
machines per host. Such characteristics may profoundly 
impact on the behaviour of placement algorithms, and that 
can be very hard to measure.  

In this paper, the multidimensional multiple knapsack 
approach to the virtual machine placement problem is 
explored in several ways. Firstly, two variants of the First Fit 
Decreasing Algorithm that are normally employed in the bin 
packing approach, namely the Dot Product Algorithm and 
Volume Algorithm, were adapted to the multiple knapsack 
approach. Secondly, two novel algorithms are proposed, 
namely the Best Dimension Algorithm and the Osmosis 
Algorithm. Thirdly, a novel evaluation method for virtual 
machine placement algorithms is proposed in order to 

accomplish multiple machine dimensions, heterogeneity of 
machines and distinct densities of virtual machines per host. 

The remaining of this paper is organized as follows. 
Section II discusses the virtual machine placement problem 
in deep. Section III describes the normally employed virtual 
machine placement algorithms. Section IV presents the novel 
evaluation method. Section V presents some experimental 
results. Finally, Section VI makes some concluding remarks. 
 

II. PLACEMENT PROBLEM 
Given a data center composed of a set of hosts (physical 

machines) and a corresponding queue of client requests for 
virtual machine instantiation, the virtual machine placement 
problem consists in determining a host of the data center to 
place (actually, instantiate) each virtual machine in the 
queue, aiming at least at one of the following objectives: 

i. To minimize the electric energy consumed by the 
data center [13] [14]. According to [7], the costs of 
powering and cooling accounts for 53% of the total 
operational expenditure of datacenters; 

ii. To maximize the placement ratio, i.e., the quotient 
between the number of placed virtual machines	
  and 
the total number of requests in the queue; 

iii. To minimize the overall systems performance 
degradation caused by virtual machine migration 
[6][20] that is triggered by elasticity.  

 
The virtual machine placement problem encompasses 

several issues, as detailed in the sequel. 

A. Machine Dimension 
 A typical virtual machine requires resources of different 
types, such as processing power (usually measured in 
MIPS), memory, storage, and network bandwidth [19]. Each 
resource type is referred to as a machine dimension, or 
simply dimension, since it applies to both virtual machine 
and host. The demand in a certain dimension can vary over 
time within each virtual machine, and it not known a priori. 
For simplicity, it is assumed that a demand initially defined 
is actually an upper bound. Naturally, a virtual machine 
must be placed in a host that can provide enough resources 
in all dimensions. However, the criterion to choose a host 
where to place a virtual machine can be based on either a 
single dimension or a combination of any number of 
dimensions. For instance, one may decide according to 
processing power only, such that a virtual machine is placed 
in the host where the processing power dimension is mostly 
available, as long as the resources available in the other 
dimensions are enough too. As another example, one may 
make a placement decision based on some ranking which is 
determined according to the available resources in the above 
four dimensions. While a single-dimension criterion is 
simple to implement, a multi-dimension criterion may help 
to increase the balance between resource usages, and 
placement ratio as well. 
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B. Delivery Mode 
 Although requests for virtual machine placement arrive 
continuously at a data center, their corresponding delivery, 
that is, their actual placement on hosts can be performed in 
two distinct modes: (i) single delivery mode: the first virtual 
machine in the queue is popped out and placed on a host, 
that is, virtual machines are necessarily delivered in the 
same order of arrival of requests; (ii) group delivery mode: a 
number of virtual machine requests in the beginning of the 
queue are popped out and placed on a host. That allows 
reordering the group of virtual machines before placement. 
The single delivery mode is simple to implement, it respects 
requests arrival order, and it causes no additional delay in 
virtual machine placement delivery. The group delivery 
mode, on the other hand, has a potential to increase the 
virtual machine placement ratio since virtual machine 
requests can be reordered in an attempt to optimize resource 
usage. 

C. Heterogeneity 
The set of hosts in a data center can vary with respect to 

the resources they provide. In the same fashion, the set of 
virtual machines to place can vary with respect to the 
resources they require. In other words, both set of hosts and 
set of virtual machines are heterogeneous with respect to 
machine dimensions. Such heterogeneity adds complexity to 
the virtual machine placement problem. On the other hand, 
it can be exploited to reach the defined objectives. 

D. Virtual Machine Life Cycle 
 Once a virtual machine is instantiated (placed on an 
initial host), it can change its resource demands over time 
(elasticity), it can migrate from one host to another, and it 
terminates eventually. Such behavior may affect the 
system’s performance, energy consumption and resource 
availability. Hence, it has to be considered during virtual 
machine placement. It should be noticed that virtual 
machines are not pre-allocated, i.e., each instantiation 
request implies creating a new virtual machine. 

III. PLACEMENT ALGORITHMS 
In this section, traditionally employed virtual machine 

placement algorithms are explained, along with two new 
such algorithms are proposed, namely the Best Dimension 
Algorithm and the Osmosis Algorithm. 

A. First Fit Algorithm 
    The classic Bin Packing Problem [11] is often adapted to 
the context of virtual machine placement in the following 
way: a whole set of virtual machines (objects) of different 
sizes should be placed into a series of hosts (bins) such that 
the minimum number of hosts are employed to place all 
virtual machines, thus saving energy. The First Fit 
Algorithm [8][11] accomplishes that by activating a single 
host at a time as they get filled up with virtual machines. 
Each virtual machine is placed in the first host where it fits, 

according to a predefined order between active hosts. In 
addition, just one virtual machine – the first one in the 
queue – is taken at a time, and then placed on a host. For 
that reason, the First Fit Algorithm is suitable for the single 
delivery mode. 

B. First Fit Decreasing Algorithm 
     When the group delivery mode (as described in Section 
II.B) is employed, the First Fit Decreasing Algorithm 
[8][11] – a variant of the First Fit Algorithm – can reduce 
even further the average number of active hosts. The 
primary difference is that the set of virtual machines in the 
queue is ordered according to some criteria before 
placement. In a simple model, where just one dimension is 
considered (typically, CPU usage), virtual machines are 
ordered according to their demand for the corresponding 
resource. In a more sophisticated model, several dimensions 
can be considered to establish a ranking amongst the virtual 
machines. One way to defining the rank of each virtual 
machine is to employ the volume method whereby the 
volume of a virtual machine is calculated by multiplying its 
demands in all dimensions. 
 In a different approach, the rank of each virtual machine 
can be determined with respect to a reference host witch is, 
normally, the least occupied active host or the last one to be 
activated. In this approach, at least during rank calculation, 
the virtual machine placement problem can be modeled as 
an instance of the 0-1, or Binary, Knapsack Problem [12], 
as follows. Given a set (group) of virtual machines (objects) 
where each virtual machine has an associated value, a subset 
must be selected and associated to a single host (knapsack) 
such that the profit is maximized. An example of an 
algorithm that takes this approach is one that employs the 
dot product method. The dot product of a virtual machine is 
calculated as the sum of a series of products, where each 
product corresponds to a dimension, and is obtained by 
multiplying the virtual machine demand by the reference 
host availability in that dimension. 
 For simplicity, the First Fit Decreasing Algorithm based 
on the volume method is referred to as Volume Algorithm 
[15], while the First Fit Decreasing Algorithm based on the 
dot product method is referred to as Dot Product Algorithm 
[8]. 

C. Best Fit Algorithm 
 Besides saving energy, a data center should to take 
measures to fulfill all Service-Level Agreement (SLA) 
requirements, including virtual machine placement ratio 
(which is equivalent to establishing a maximum time for 
virtual machine placement), virtual machine performance 
and virtual machine elasticity.  
 The Best Fit Algorithm keeps active a set of hosts at all 
times (instead of activating a single host at time) and places 
each virtual machine where it best fits to achieve load 
balance amongst the active hosts. A proper load balance 
should increase the probability of success in virtual machine 
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placements. Moreover, it should increase the probability of 
having enough resources at a given host to fulfill the needs 
due to a virtual machine expansion. As a consequence, 
virtual machine migration should be reduced, thus 
preventing systems performance degradation. 
 Basically, the problem solved by the Best Fit Algorithm 
can be seen as an instance of the Multiple Knapsack 
Problem: given an initial set of virtual machines (objects) of 
different sizes and values, a subset of it should be selected, 
and then placed into a set of hosts (knapsacks) such that the 
aggregate value is maximized. Moreover, when multiple 
dimensions are considered, the problem is an instance of the 
Multiple Multidimensional Knapsack Problem [16][17][18] 
[19]. Particularly, if all virtual machines are assumed to hold 
a unique value, the Best Fit Algorithm maximizes the 
quantity of virtual machines that are placed. The remaining 
issue concerns the delivery mode, as discussed in the sequel. 
 
1) Single delivery mode 

Since just one virtual machine – the first one in the 
queue – is taken at a time, and then placed on a host, there is 
no actual virtual machine selection in the single delivery 
mode. Such a reference virtual machine will be simply 
either placed or discarded (actually, it can be reinserted at 
the end of the queue), depending on the resource availability 
on the active hosts. Nevertheless, the analogy with the 
Multiple Knapsack Problem holds if the whole queue of 
virtual machines (built within a certain period of time) is 
considered as the initial set of objects. In this case, the 
selected virtual machines are the ones that are placed, i.e., 
the ones that are not discarded. Thus, the purpose of the 
Best Fit Algorithm is to discard virtual machines the least as 
possible. In other words, the purpose is to maximize 
placement ratio in the long run. The actual issue, hence, is to 
determine the host, if there is any, where the reference 
virtual machine fits best. That requires ordering the set of 
active hosts according to some criteria, before placing the 
reference virtual machine. Similar to the First Fit 
Decreasing Algorithm (described in Section III.B), both 
volume and dot product methods can be employed in this 
case. If the volume technique is employed, host are sorted in 
decreasing order by their free volume, which is calculated as 
the product of available resource in each dimension. If the 
dot product is employed, the rank of each host is calculated 
as the sum of a series of products, where each product 
corresponds to a dimension, and is obtained by multiplying 
the reference virtual machine demand by the host 
availability in that dimension. A slightly different version of 
the dot product method is the best dimension method, 
proposed here, by which the product for each dimension is 
calculated in the same fashion as in the dot product method, 
but the rank of each host is set simply as the highest 
product. For simplicity, the Best Fit Algorithm based on the 
best dimension method is referred to as Best Dimension 
Algorithm. 
 

2) Group delivery mode 
The analogy with the Multiple Knapsack Problem is 

direct in the case of the group delivery mode, since it 
permits a selection of the virtual machines that best fit the 
set of active hosts, before placement. Actually, there are two 
kinds of selection that can be exploited in any form by a 
placement algorithm: a selection of virtual machines and a 
selection of active hosts. 
 An algorithm that employs only a virtual machine 
selection method should order the set of virtual machines 
according to some criteria, and then place each virtual 
machine in any active host. For example, an algorithm may 
order the virtual machines according to their required 
processing power. If more dimensions should be considered, 
they can be ordered according to the required volume. 
 An algorithm that employs only a host selection method 
should order the set of active hosts according to some 
criteria before placing each virtual machine that is simply 
popped out from the queue. For example, the set of active 
hosts can be ordered according to the proximity between 
their level of free processing power and the average 
processing power required by the all virtual machines in the 
group. It should be noticed that such an algorithm differs 
from an algorithm employed for the single delivery mode 
because its host selection method uses attribute values of all 
virtual machines in the group, instead of attribute values of 
just the first virtual machine in the queue. 
 An algorithm that employs both selection methods 
simultaneously actually employs a match method between 
virtual machines and active hosts. For example, a simple 
match method is to associate virtual machines that require 
higher processing power with hosts with higher level of free 
processing power. 
 The Osmosis Algorithm, proposed here, employs the 
host selection method only, albeit it can be easily extended 
to employ the virtual machine selection method as well is 
straightforward. The Osmosis Algorithm attempts to 
preserve resources that are scarce in the data center with 
respect to the current demand. Its host selection method 
consists in ordering the set of active hosts according to their 
availability of relatively least available resources. Hosts that 
hold resources whose usage levels are less critical in the 
data center are used first. The first step is to determine 
which resources present more critical levels of usage. That 
is achieved by determining the weight of each dimension as 
the quotient between its total demand and its total 
availability. The total demand of a dimension is defined by 
the sum of all demands required the virtual machines in the 
group, while the total availability of a dimension is the sum 
of free resource in all the active hosts. Once the weight of 
each dimension has been determined, the rank of each active 
host must be calculated with respect to the first virtual 
machine in the queue – the reference virtual machine – as 
follows. For each host, the weighted offer ratio of a 
dimension is defined as the product between the weight of 
that dimension and the corresponding offer ratio, which is 
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defined as the quotient between the host availability and the 
reference virtual machine demand for that dimension. 
Finally, the rank of each host is calculated as the sum of its 
weighted offer ratios, in all dimensions. 

D. Discussion 
 The First Fit Algorithm and its variants make it possible 
for a data center to save energy, since only hosts that 
contain some virtual machine need to be on. However, 
because host resource usage levels tend to be close to the 
maximum, virtual machine migration is more likely to 
happen in the presence of elasticity (when, within an already 
running virtual machine, the demand for a given resource 
increases), thus degrading performance, besides consuming 
some extra energy. 
 On the other hand, the Best Fit Algorithm and its 
variants should improve placement ratio, which brings 
benefits for both data center provider and client, thus 
justifying the extra energy cost. In addition, virtual machine 
migration caused by host overload is less likely to happen, 
hence improving the overall systems performance. 
 In the following sections, an evaluation of the different 
placement algorithms, with respect to placement ratio, is 
presented, while evaluation of issues regarding elasticity, 
migration, performance and energy consumption are left as 
future work. 

IV. EVALUATION METHOD 
 

A new method to evaluate virtual machine placement 
algorithms is proposed here in order to take into account 
multidimensional machines, and to investigate the impact of 
machine heterogeneity and virtual machine density on 
placement ratio. Basically, the method consists in 
determining a set of virtual machines to place on a set of 
hosts, and applying several placement algorithms in order to 
compare their behavior with respect to placement ratio. 
Every machine (either host or virtual machine) is assumed 
to have a number of dimensions, where each dimension 
corresponds to a certain type of resource. The set of hosts is 
assumed to be heterogeneous with respect to the resource 
capacity and, for each dimension, each host may have a 
different capacity. In the same way, the set of virtual 
machines should present a certain degree of heterogeneity. 

The virtual machine placement problem can be 
formalized as follows. 

Be: 

•   H ={h1,...,hm} : a set of m hosts  

•   V ={v1,...,vn}: a set of n virtual machines  

• 
  
D ={d1,...,dg} : a set of g dimensions 

• 
 
Tj : the arrival time of 

 
v j ∈V such that 

  
∀vi ,v j : i < j ⇔ Ti < Tj  

• 
  
wj ,k  : the demand of 

 
v j ∈V in dimension k 

• 
  
ci,k

: the total capacity of hi ∈H  in dimension k 

• 
  
Li,k (Tj ) : the free capacity of dimension k in hi ∈H  

at 
 
Tj  

• 
  
xi, j ∈{0,1}, 1≤ i ≤ m, 1≤ j ≤ n  

o 
  
xi, j = 1⇔ v j  ∈V is placed in hi ∈H  

o 
  
xi, j = 1⇒ xk , j = 0,∀k ≠ i  

Maximize 
  

xi, j
j=1

n

∑
i=1

m

∑
 

Subject to: 

(i)
   

xi, j .wj ,k ≤ ci, j
k=1

g

∑
j=1

n

∑
i=1

m

∑
 

  

(ii) 
  

∀v j ∈V , ∃ S ⊆ H , S ≠ ∅ | ∀hi ∈S , ∀dk ∈D,

Li,k (Tj ) ≥ wj ,k ⇒ xt , j = 1, ht ∈s
 

 
 The analysis of the effects of heterogeneity on 
placement ratio employs an ideal scenario as a starting 
point. In such a scenario, hosts and virtual machines are 
assumed to be homogeneous, and their capacities are such 
that all virtual machines are placed and, also, no resource is 
left in any host. For a given set of hosts, the number of 
virtual machines is determined by according to an arbitrarily 
fixed virtual machine density; if distinct values of virtual 
machine density are employed, then the number of virtual 
machines is determined accordingly. In the same fashion, 
for each machine dimension, the corresponding capacity in 
each host and the demand of each virtual machine are 
determined according to virtual machine density. Hence, the 
ideal scenario for a given set of hosts and a given virtual 
machine density includes the number of virtual machines to 
place, and the capacity of hosts and the demand of virtual 
machines for each machine dimension. 
 After having established an ideal scenario, other 
scenarios can be devised by introducing some degree of 
heterogeneity in both set of hosts and set of virtual 
machines. In such a scenario, for any given dimension and a 
set of machines, there is a specific range that includes all 
corresponding dimension values. A range can be defined by 
a minimum, a maximum and a corresponding median that is 
determined according to the ideal scenario (host capacity or 
virtual machine demand). The relative variation of 
dimension values with respect to the median is called the 
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amplitude of that dimension with respect to that set of 
machines. 
 Formally, given a range [minimum, maximum] of values 
of a dimension d in a set of M of machines, the amplitude of 
d with respect to M – denoted as 

  
AM ,d  – is defined in (1). 

 

  
AM ,d  = 100 (maximum-median)/median             (1) 

 
 In a set of M of machines where each machine has n 
dimensions that are labeled from 1 to n, the tuple containing 
the amplitudes for all dimensions – denoted as 

  
A*

M ,d – is 
defined in (2). 
 

  
A*

M ,d =
  
( AM ,1,..., AM ,n )                           (2) 

 
 Given a set V of virtual machines that should be placed, 
let P ⊆V  be the set of virtual machines actually placed after 
applying a certain algorithm, v be the number of machines 
in V, and p be the number of machines in P. The 
corresponding placement ratio -- denoted as τ  -- is defined 
in (3). 
 

 
τ = p

v
                                        (3) 

 
 The ideal scenario is one such that τ = 1, i.e., the whole 
set of virtual machines is successfully placed, and also all 
host resources are fully occupied. Such a scenario can be 
easily synthesized when there are v virtual machines to 
place on h hosts, by assuming that: 

(i) All	
  amplitude	
  values	
  are	
  zero,	
  for	
  both	
  hosts	
  and	
  
virtual	
   machines.	
   In	
   other	
   words,	
   hosts	
   and	
  
virtual	
  machines	
  are	
  homogeneous.	
  

(ii) For	
   each	
   machine	
   dimension,	
   let	
   k	
   be	
   the	
  
corresponding	
   capacity	
   in	
   each	
   host,	
   and	
   t	
   be	
  
the	
   corresponding	
   demand	
   of	
   each	
   virtual	
  
machine.	
  Then,	
  k	
  mod	
  t	
  =	
  0	
  (there	
  is	
  no	
  resource	
  
left	
   in	
   each	
   host)	
   and	
   h k	
   =	
   v t	
   (there	
   is	
   no	
  
resource	
  left	
  in	
  the	
  data	
  center).	
  

 
 Given a set of h hosts and a set of v virtual machines, the 
average number of virtual machines that should be placed 
per host – denoted as ρ  – is simply defined in (4). 

 
ρ = v

h
                                         (4) 

 

 In the ideal scenario, 
 
ρ = k

t
 for any machine dimension. 

V. EXPERIMENTS 
 The algorithms described in Section III were 
experimentally evaluated with respect to placement ratio, 
according to the method described in Section IV. The 
experiments were based on simulation by employing a 
custom simulator (available for download at 
http://www.ppgia.pucpr.br/~alcides/PSim) written in Python 
language, and they were divided into seven scenarios that 
correspond to distinct degrees of machine heterogeneity, 
and distinct densities of virtual machines, as well. The 
number of hosts is fixed to 100 for all scenarios, except for 
Scenario VI, where this number is ten due to simulation 
time constraints. For most scenarios, virtual machine 
density is fixed to ten virtual machines per host, which is a 
typical density for small instances in data centers. The 
number of dimensions is fixed to four since the most 
commonly considered resources are processing power, 
memory, storage, and network bandwidth. Consequently, 
the amplitude tuples contain four values corresponding to 
heterogeneity of those resources. For simplicity, in the 
experimental results shown above, a host amplitude tuple is 
denoted as δ , while a virtual machine amplitude tuple is 
denoted as π . 

In scenarios I and II, host amplitude is fixed in order to 
analyze the impact of the virtual machine amplitude 
variation, while, in scenarios III and IV, virtual machine 
amplitude is fixed in order to analyze the impact of the host 
amplitude variation. Also, in scenarios I and III, the machine 
amplitude variation increases evenly, while it increases non-
uniformly in scenarios II and IV.  

According to Fig. 1 and Fig. 2, increasing virtual machine 
amplitude either evenly or non-uniformly favors all 
algorithms. The Dot Product Algorithm was the best 
performer, achieving a placement ratio from 2% to 10% 
better than the First Fit Algorithm. 

According to Fig. 3 and Fig. 4, increasing the host 
amplitude variation either evenly or non-uniformly impairs 
the performance of all algorithms. The Dot Product 
Algorithm shows the best overall performance, achieving 
from 6% to 19% more performance than the First Fit 
Algorithm. 

In scenarios V and VI, the impact of virtual machine 
density is analyzed. In this case, host amplitude and virtual 
machine amplitude are fixed. While Scenario V considers 
virtual machines that have a monolithic operation system as 
guest, the Scenario VI considers very small virtual machines 
that have a microkernel operational system as guest [21]. The 
results shown in Fig. 5 are quite interesting. Increasing the 
virtual machine density favors all algorithms. The Osmosis 
Algorithm was the best solution for very small virtual 
machine density (from 2 to 3), performing from 5% to 9% 
better than the Volume Algorithm, the worst performer. With 
a density higher than 3, once more the Dot Product 
Algorithm was the best performer, achieving a placement 
ratio from 3% to 12% higher than the First Fist, the worst 
performer in this range. 
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Figure 1. Increasing virtual machine amplitude variation evenly. 
 

 
 

Figure 2. Increasing virtual machine amplitude variation non-uniformly. 
 

  

 
 

Figure 3. Increasing host amplitude variation evenly. 
 

 
 

Figure 4. Increasing host amplitude variation non-uniformly. 

 According to Fig. 6, increasing density is beneficial for 
all algorithms, at least up to a certain point. As expected, the 
Dot Product Algorithm proved to be superior to all other 
algorithms, being from 6% to 9% more efficient than the 
First Fit Algorithm and the Volume Algorithm.  
 In Scenario VII, placement ration of the Dot Product 
Algorithm is analyzed by varying both host amplitude and 
virtual machine amplitude, simultaneously. The choice of 
the algorithm is due to its higher performance, as verified in 
previous scenarios. In this scenario, virtual machine density 
is fixed as 10, as well. In Fig. 7, it can be noticed there are 
several depressions caused by increasing host amplitude 
variation and also by the decreasing virtual machine 
amplitude variation. It can be noticed that virtual machine 
heterogeneity tends to improve placement ratio, while host 
heterogeneity tends to degrade it. 
 

 
 

Figure 5. Increasing virtual machine density in a monolithic approach. 
 

 
 

Figure 6. Increasing virtual machine density in a microkernel approach. 
 

 
Figure 7. Increasing both host amplitude variation evenly and virtual 

machine amplitude variation non-uniformly 
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 In conclusion, the Dot Product Algorithm seems to be 
the best solution in most cases. The Best Dimension 
Algorithm and the Osmosis Algorithm, proposed in this 
paper, showed a median performance. While Best 
Dimension has a better overall performance than Osmosis, 
Osmosis is the best choice in the case of very low virtual 
machine density, surpassing even the Dot Product 
Algorithm. A real world scenario with 2 or 3 virtual 
machines per host is a very common with large instances, as 
an example a LAMP (Linux, Apache, MySQL, PHP) 
Application. The First Fit Algorithm and the Volume 
Algorithm are very low performers. On the other hand, as 
they are simple to implement, they can be appropriate when 
there is a performance bottleneck in the virtual machine 
placement system. 

VI. CONCLUSION 
 This work has shown that the multidimensional multiple 
knapsack approach can be more effective than the bin 
packing approach to the virtual machine placement problem; 
in general, the First Fit Algorithm was the worst performer 
in our experiments. The proposed evaluation method 
permitted to represent critical real-world data center 
characteristic, and it proved to be easy to use. The 
experiments have shown that virtual machine heterogeneity 
plays a favorable role in virtual machine placement, while 
host heterogeneity has the opposite effect. Also, in general, 
high virtual machine density favors virtual machine 
placement ratio. Finally, algorithms that use properties of 
virtual machines (Dot Product, Best Dimension and 
Osmosis Algorithm) tend to have a better performance. 
 The proposed evaluation method can be extended to 
include energy consumption, elasticity, migration, and 
termination. More future works include the evaluation of 
other types (genetic, ant colony, etc.) of placement 
algorithms, and experimentation with more fixed values for 
virtual machine density. Also, the costs of running each 
placement algorithm should be computed to verify its 
feasibility in large-scale scenarios, and to verify if the 
corresponding gain in placement ratio is worthwhile. Other 
issues regarding SLA, such as services response time and 
security are left as future work as well. 
 

REFERENCES 
[1] H. Liu and S. Wee, “Web Server Famrm in Cloud: 

Performance Evaluation and Dynamic Architecture”, 
Proceedings of the First International Conference on Cloud 
Computing, Technology and Science, Berlin and Heidelberg, 
Springer Verlag, 2009, pp. 369-380. 

[2] P. Mell and T. Grance, “The NIST Definition of Cloud 
Computing”, Technical Report, Gaithersburg, 2011, National 
Institute of Technology Special Publication 800 – 145. 

[3] E. J. Smith and R. Nair, “The Architecture of Virtual 
Machines”, Computer, vol.38(5), May. 2005, pp. 32-38. 

[4] V. Melinda, “VM and the VM Community: Past, Present and 
Future”, Office of Computing and Information Technology, 

Princeton University, Share 89 Sessions 9059-9061, 1997, pp. 
1-68. 

[5] M. Rosenblum, “The Reincarnation of Virtual Machines. 
Virtual Machines”, Virtual Machines, vol.2(5), Aug. 2004, 
pp. 34-40.  

[6] M. R. Hinnes, U. Deshpande, and K. Gopalan, “Post Copy 
Live Migration of Virtual Machines”, ACM SIGOPS 
Operating System Review, vol.43(3), 2009, pp. 14-26. 

[7] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: 
State of Art and Research Challenges”, Journal of Internet 
Services and Applications,vol. 1(1), Apr. 2010, pp. 17-18. 

[8] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wider, “Heuristics 
for Vector Bin Packing”, Microsoft’s VMM Product Group, 
Microsoft Research Sillicon Valley, 2011. 

[9] R. J. Creasy, “The Origin of VM/370 Time-Sharing System”, 
IBM Journal of Research and Development, vol. 25(5), pp. 
483-490. 

[10] T. P. Endo, E. G. Gonçalves, J. Kelner, and H. D. F. Sadok, 
“A Survey on Open-Source Cloud Computing Solutions”, 
Proceedings of the XXVII Brazilian Simposium of Computer 
Networks and Distribuited Systems, VII Workshop in Cloud 
Computing, Porto Alegre, Brazil, 2010, pp. 3-16. 

[11] B. Xia and Z. Tan, “Tigther bounds of the First Fit Algorithm 
for the Bin-Packing Problem”, Elsevier, Hangzhou, vol. 
158(15), Aug.  2010, pp. 1668-1675.  

[12] D. Pisinger, “Algorithms for Knapsack Problems”, 
Department of Computer Science of University of 
Copenhagen, Copenhagen, Feb. 1995. 

[13] Y. Wu, M. Tang, and W. Fraser, “A Simulated Annealing 
Algorithm for Energy Efficient Virtual Machine Placement”, 
Proceedings of IEEE International Conference on Systems, 
Man and Cybernetics, Seoul, Oct. 2012, pp. 14-17. 

[14] J. Xu and J. A. B. Fortes, “Multi-Objective Virtual Machine 
Placement in Virtualized Data Center Enviroments”, 
Proceedings of the 2010 IEEE/ACM Int’l Conference on 
Green Computing and Communications & Int’l Conference 
on Cyber, Pysical and Social Computing, Washington, 2010, 
pp. 179-188. 

[15] D. Bonde, “Techniques for Virtual Machine Placement in 
Clouds”, Departament of Computer Science and Engineering 
- MPT Stage I Report on the Indian Institute of Technology, 
Bombay, 2010, ROLL No:08305910. 

[16] S. Fidanova, “Heuristics for Multiple Knapsacks Problem”, 
Proceeding of the IADIS International Conference on Applied 
Computing, Algarve, 2005, pp. 225-260. 

[17] Y. Song, C. Zhang, and Y. Fang, “Multiple Multidimensional 
Knapsack Problem and it’s Applications in Cognitive Radio 
Networks”, Military Communications Conference, San Diego, 
Nov. 2008, pp. 1-7. 

[18] A. Singh, M. Korupolu, and D. Mohapata, Server-Storage 
Virtualization: Integration and Load Balance in Data Centers, 
International Conference for High performance Computing, 
Network, Storage and Analyses, pp. 1-12. 

[19] E. Mohamadi, M. Karimi, and S. R. Heikalabad, “A Novel 
Virtual Placement in Virtual Computing”, Australian Journal 
of Basic and Applied Scienes, Australia, vol. 5(10), 2011, pp. 
1149-1555. 

[20] D. Magalhães, J. M. Soares, and D. G. Gomes, “Virtual 
Machine Migration Impact Analysis in a Virtualized 
Computer Enviroment”, Proceedings of the XXIX Brazilian 
Symposium on Computer Networks and Distributed Systems, 
Campo Grande, 2011, pp. 235-248. 

[21] A. Whiteaker, M. Shaw, and S. T. Gribble, “Denali: A 
Scalable Isolation Kernel”, Proceedings of the 10th Workshop 
on ACM SIGOPS European Workshop, New York, 2002, pp. 
10-15. 

260Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-318-6

ICN 2014 : The Thirteenth International Conference on Networks


