
A Requirements Model for Composite and
Distributed Web Mashups

Vincent Tietz, Oliver Mroß, Andreas Rümpel,
Carsten Radeck and Klaus Meißner

Technische Universität Dresden,
Faculty of Computer Science, Germany
{vincent.tietz,oliver.mross,andreas.ruempel,

carsten.radeck,klaus.meissner}@tu-dresden.de

Abstract—Mashups have recently become popular due to
visual composition metaphors and loosely coupled widgets that
encourage the fast implementation of situational web-based
applications. However, the mashup development process is still
challenging for end-users, since they are compelled to retrieve and
combine adequate components for their requirements manually.
Therefore, we propose a novel model-based requirements-driven
mashup design and composition method. It benefits from the
use of semantics-based domain vocabulary accompanying the
whole mashup development process. In this paper, we present an
ontology for specifying requirements for web mashups, which is
suitable for deployment in multi-user and multi-device scenarios.
To this end, we employ a distributed multi-user scenario and
outline the proposal’s benefits in a model-driven web mashup
composition process.

Keywords—Web Engineering, Requirements Modeling, Mashup
Engineering, Mashups

I. INTRODUCTION

Presentation-oriented mashups have evolved from sim-
ple data-driven aggregation of feeds to complex applications
composing Web- and UI-based building parts. Compared to
other software systems, mashups are rather small applications
providing rich user interfaces. Regarding mashup development,
simplicity and re-usability are important demands. Therefore,
technical details are usually hidden by black-box components
providing declarative externalization of their functionality.
However, in many of current mashup development environ-
ments, the composition is mainly driven by manual selection of
components and low-level assembly by connecting events and
operations. With the increasing number of Web-based services
and components, the development of applications with current
mashup platforms becomes a cumbersome task, especially for
end-users [1].

Moreover, in modern application scenarios, the context of
use is not limited to a single platform or user [2]. People
collaborate via their personal devices in a mobile and ad-
hoc manner. To achieve abstraction from platforms and service
implementations, there is a need for model-based integration
concepts, such as provided by CRUISe [3]. These composite
mashups provide the basis for realizing platform-independent
mashup composition as well as distributed and collaborative
scenarios that need to be considered in new development
methods. Therefore, we argue that requirements-oriented de-
velopment is needed to cope with such complex scenarios and
to abstract from such composition details [4]. Since, a formal

requirements specification for mashups is still not available [1],
we propose a task-based requirements model as the founda-
tion for stuctured, semi-automatic mashup development and
human-centered design of mashup requirements.

The remaining paper is structured as follows. In Sec-
tion II, we introduce a collaborative travel planning scenario
to motivate the need for the representation of distribution and
collaboration requirements. Since we propose an extended task
metamodel, related work in the field of task-based modeling is
discussed in Section III. In Section IV, we present our require-
ments model for mashups, and its semantic representation. In
Section V, we outline the benefits for the mashup develop-
ment process. Finally, we discuss our results and provide an
overview about the implementation of the requirements model
as well as transformation process in Section VI and conclude
the paper in Section VII.

II. COLLABORATIVE TRAVEL PLANNING SCENARIO

To illustrate the modeling approach, we introduce a so-
cial travel planning scenario, wherein several participants can
synchronously vote for a list of travel offers in a distributed co-
located multi-device environment. The result is a shared list of
rated offers, which is calculated based on the vote from each
planning participant. As illustrated in Figure 1, the abstract
task tree consists of two phases: the personal offer research
(left) and the collaborative rating phase (right). In the first
phase, each planning participant creates a personal list of travel
offers. This implies the selection of destination locations, e. g.,
using a geographical map UI component, and one or more
offers provided in this region, e. g., using a list component. For
example, a participant could choose a bicycle tour in Ireland
or an adventure trip to New Zealand.

In the second phase, each participant shares the personal
list of offers with all relevant personal devices (smartphone,
tablet PC) and shared devices (Smart TV) in a collaborative
setting. Next, each device merges the lists in order to visualize
the entries and to enable each participant to rate and rank all
offer candidates in a synchronous and collaborative manner. To
create a common idea of the ranking result, another subtask
of the main ranking task – the shared ranking visualization
– is executed in the context of a public Smart TV (shared
device in the meeting room). After a participant has ranked an
entry of the shared list via his personal device, the ranking is
synchronized with the shared ranking visualization using the
Smart TV.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

>>

>> >>

>>

>>

Browse
offers

Browse
offers

View offer
details

View offer
details

Add offer
to list

Add offer
to list

Save personal
offers list

Save personal
offers list

Select
offer

Select
offer

Specify destination
location

Specify destination
location

Search and add
offers by destination

SEQ Q

Search and add
offers by destination

SEQ Q

>>

>>

>> >> >>

Search and
add offers

SEQ Q

Search and
add offers

SEQ Q

Create personal
offers list

SEQ

Create personal
offers list

SEQ

Share
personal list

SEQ

Share
personal list

SEQ

Load
personal list

Load
personal list

Create rated shared list
SEQ

Create rated shared list
SEQ

Visualize
ratings

Visualize
ratings

Rate offers
SEQ Q

Rate offers
SEQ Q

Select
offer

Select
offer

Rate
offer

Rate
offer

Rate and
visualize offers

SEQ Q

Rate and
visualize offers

SEQ Q

View offer
details

View offer
details

Finish
Sharing

Finish
Sharing

Send and
Receive

Send and
Receive

>>

Combine
ratings

Combine
ratings

>>

Figure 1. Collaborative multi-device rating scenario

The scenario demonstrates that collaborative tasks are exe-
cuted in close relation to each other, but in different execution
contexts. To create a collaborative application from the task
model, additional information and conditions, such as the
number of role instances, i. e., collaborators, of the required
execution context, is needed. Hence, in the remainder of this
paper we present methods to formalize these requirements
that we need to determine the binding between a task and
its execution context.

III. RELATED WORK

Like in traditional software development, requirements
models in the field of Web engineering are, among others,
mainly represented by use cases, business process models and
task models [5], [6]. Use cases define interaction scenarios
between a role and a system in order to achieve a goal,
but collaboration and participation among actors cannot be
distinguished in UML use case diagrams. Pre- and post-
conditions, for example, also need to be added in a tex-
tual manner [7]. However, natural language is not suitable
to provide a computable requirements model. Further, flow-
oriented business process models such as BPMN are well
suited for representing workflow requirements. However, both
focus on data and system integration and are not suitable to
specify individual user requirements [8]. Instead, task models
such as ConcurTaskTrees (CTT) [9] are designed for the
human-centered specification of user requirements. Because
mashup components can be considered as self-contained enti-
ties solving user tasks, we argue that task modeling provides
both a basis for user-centered requirements modeling and the
seamless integration into a model-driven mashup development
process.

In the past, several task meta models and notations have
emerged with different purposes and degree of formalization
and expressiveness. For example, the early Hierarchical Task
Analysis (HTA) [10] focuses the hierarchical decomposition
of human activities and can be considered as the basis for
any subsequent task model. However, tasks are structured
by informal plans, goals and actions can be defined on any

level of decomposition. GroupWare Task Analysis (GTA) [11]
focuses on the collaborative aspect with roles and agents
with clear distinction between tasks and actions adopting the
activity theory [12]. However, explicit concepts for modeling
of distribution are missing. K-MAD [13] is similar to GTA but
extends object modeling by supporting abstract and concrete
objects. However, their semantics can not be defined. The
most prominent task modeling approach is CTT [9] that is
used as a starting point in many model-based user interface
development (MBUID) approaches. CTT allows the definition
of cooperation and communication tasks, which are modeled
in collaboration task trees. However, as in all mentioned
approaches, distributed and simultaneously performed tasks
cannot be expressed explicitly. Finally, there is a lack of
semantics and continuous application development, since pre-
sentation objects, which are in our case mashup components,
need to be selected and integrated manually.

The provision of ontology-based modeling is mainly con-
sidered in the field of semantic web services. For example,
OWL-S [14] provides an ontology-based specification of web
services and templates to initiate automatic search and com-
position. Similar to that, OWL-T [15] is supposed to support
task-based description and discovery. However, the focus is
on technical web services with search profiles, grounding
facilities, process definitions and result modeling. We adopt
some principles such as ontology modeling and semantic
matching, but in contrast, we strive for lightweight and user-
centered requirements specification focusing on presentation-
oriented mashup components.

To generate an application from collaborative task models,
several sub models are needed to describe the execution
context of the corresponding task. Pribeanu et al. [16] present
a hybrid approach to describe context-sensitive and context-
insensitive tasks in a single task model. Thereby, CTT is
combined with additional model elements such as decision
graph nodes and arcs that describe the context of use of
each subtask. However, this approach focuses only on how
context information can be integrated into the task model, but
it does not clarify the context information that is relevant to

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

hasOutput
Object

hasExpression:String

hasCategory subClassOf

hasChildTask

hasGrouping

hasID:String

hasInput
Object

hasPostCondition

hasPreCondition

hasContextCondition

Task

AtomicTask CompositeTask

subClassOf

hasName:String

hasDescription:String

TaskDescription

hasTaskCategory

hasID:String

hasName:String

hasDescription:String

Abstract

System

User

Interaction

oneOf Grouping
Seq.

Ar. Seq.

Choice

Parallel

oneOf

Datatype Property

oneOf Instance

Object Property

Inheritance

Class

Instance

Condition

hasID:String

hasAction

DO

AO

AO Action Ontology

DO Domain Ontology

hasNextTask

RO Role Ontology

hasRole

RO

hasMinIteration:Integer

hasMaxIteration:Integer

hasMinOwners:Integer

hasMaxOwners:Integer

BoolExpression
hasBoolExpression

hasID:String

hasURI:URI
ModelReference

hasValue:String

...

AlgebraicOperation

Term

Literal

subClassOf

Figure 2. Task ontology

perform context-sensitive tasks in a collaborative fashion. The
MBUID approach CODAMOS [17] extends DynaMo-AID by
an environment model that classifies each available comput-
ing device as an interaction resource with input and output
channels. The corresponding environment ontology contains
concepts that are referenced by the task model. Finally, so-
called modality interaction constraints are used to map tasks
to a set of potential interaction resources. However, as in all
MBUID approaches relying on the CAMELEON reference
framework [18], additional abstract user interface (UI) descrip-
tions are required to transform the task model into a dialog and
presentation model. We argue that the mashup paradigm allows
us to create web applications with sophisticated UI in a more
flexible way. In contrast, we focus on the dynamic mapping
of task model entities to black box mashup UI components to
reduce the development complexity.

Overall, the lack of degree of formalization regarding data
and activity modeling as well as the missing expressiveness
regarding the execution context impede the use of traditional
requirements modeling approaches in distributed mashups.
Hence, we introduce an ontology-based task model in the next
section to provide a basis for requirements specification and
model-based mappings and transformations.

IV. REQUIREMENTS MODEL FOR WEB MASHUPS

We consider task models as a basis for the specification of
mashups because of the intuitive representation of composite
user goals and tasks [9], the correlation of tasks and mashup
components as tools for solving specific user tasks [19] and
the correlation between task models and business processes
to represent work structure [20]. Further, we follow [2] by
extending task models with context modeling facilities to
support collaborative and distributed task design. To show how
the mapping from task models to mashup applications works,
we refer to Section V. In this section, we describe the main
concepts of our task model, which is illustrated in Figure 2
and incorporates such context requirements.

A. Modeling Activities

The structuring of human activities is one major goal of
task modeling. In general, this is realized by the decomposition
of high level tasks to more fine-grained sub tasks. Although
the decomposition is provided by all task models, the under-
standing about the main concepts such as tasks, actions and
operations seems to be rather different [12]. Therefore, we
propose to apply the activity theory [21] to structure terms
and relations in the task modeling domain. Therein, a human
activity hierarchy is proposed, consisting of activity, action and
operation. An activity is directed to a motive and is performed
within a context of environment, other activities or humans.
This corresponds to our Task concept.

A task, respectively an activity, consists of actions, describ-
ing what needs to be performed in order to reach the goal of
the activity. In terms of mashups, actions reflect the required
functionality of a component to fulfill a specific task. In our
task model, this is represented by Action that is associated
to each Task. In contrast to other task models we provide
a classification of actions [22] based on literature from the
field human-interaction and visualization such as [23], [24]
and [25]. According to the systems theory we classify each
action as a subclass of input, transform and output actions.
A visual representation of a part of this classification is
shown in Figure 3. It is notable, that none of the actions is
bound to a concrete interaction type or application. Thus, this
classification is intended to be an upper ontology for rather
domain specific actions. However, all actions can be potentially
performed by humans, by components or by both.

Since mashups support interactive and non-interactive
tasks, we use the concept Category to denote the interaction
type, such as in [9]. System tasks are exclusively performed by
components. For example, “Combine ratings” is modelled as
a system task in our previous scenario in Section II. Whereas,
interaction indicates that an interaction of humans and a UI
is required such as “Specify destination location”. User tasks
require no interaction with the system, e. g., fetching a sheet of
paper. An abstract task groups heterogeneous subtasks, e. g.,
“Rate and visualize offers”. Task decomposition is realized by

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

the concept Composite Task, which consists of at least two
subtasks (hasChildTask). Atomic Tasks represent the leaves
of the task tree. To define the workflow, respectively the
temporal relations between child tasks, we use the concept
Grouping consisting of sequence, arbitrary sequence, choice
and parallel. To define the order of tasks in sequences, the
following task is defined by hasNextTask.

Figure 3. Action ontology

Actions can be very general and usually represent a trans-
formation of a physical or non-physical entity [11]. This is
represented by inputs (hasInputObject) and outputs (hasOut-
putObject). The ModelReference allows the definition of a data
type with the help of a hasURI, of a value (hasValue) and
the instance identification by hasID. This also enables the
modeling of data flow, wherein output objects of one task can
be defined as input objects of another task. In our case, actions,
data objects and roles refer to this kind of semantic resources
within an action and domain ontology.

Finally, according to the activity theory, operations describe
how actions are realized. These reflect the very low-level and
modality-dependent interactions of a user such as pressing
a key as well as operations of components that need to be
performed to provide a needed functionality. However, because
we strive for task-based mashup composition and abstraction
of implementation details, we do not consider this level of
detail in our task model.

B. Modeling Context

To describe the task execution context, we utilize a platform
classification that can be used to define context conditions in
the task model. It allows the formalization of requirements to
perform a task in a specific execution context. We define a
platform as a composite of device-, software- and common
aspects-specific concepts. To express platform conditions on
different abstraction layers we use a vocabulary based on exist-
ing classifications such as the W3C Delivery Context Ontology
(DCO) [26]. Further, we extend the existing modality concept

with an additional medium and mode class that are specified
as part of the W3C Extensible MultiModal Annotation Markup
Language (EMMA) [27]. This allows us to characterize the
nature of a modality in a detailed fashion, e. g., the description
of a TactileInputModality with mode Touch expresses the
necessity of a touch sensitive input device like a multi-touch
display or touch-pad.

To allow the description of software-specific requirements
in relation to the execution context of a task, the platform
model contains corresponding concept elements. The following
example will illustrate this. As part of the previous scenario
in Section 1, the domain expert defines the atomic task
“View offer details” for presenting detail information of a
selected travel destination. The UI component should include
a video element to visualize the beauty and the richness of the
landscape and travel opportunities. To influence the component
selection and its distribution (video playing capable device) the
domain expert requires a vocabulary to describe the need of
the video player capability.

Listing 1 shows an example of a conditional platform
statement in SPARQL format [28] to present the expressiveness
of our task model. The condition defines constraints for the
execution device of a task such as it is capable to play a
video. As a consequence, we can use reasoning techniques to
improve the quality of the result set during the task-component
matching procedure.

1 <owl:NamedIndividual rdf:about="
sample:MobileDeviceCondition">

2 <rdf:type rdf:resource="task:Condition"/>
3 <task:hasExpression rdf:datatype="xs:string">
4 PREFIX p: <http://example.org/platform#>
5 SELECT ?platform
6 WHERE {
7 ?platform p:executedOn ?device.
8 ?platform p:enablesAspect

p:BidirectionalCommunication.
9 ?device p:embeds ?display; p:isMobile true.
10 ?display p:supportsModality ?modality.
11 ?modality a p:VisualOutputModality.
12 ?modality p:hasMode p:Image; p:hasMode

p:Video.
13 ?display p:hasResolution p:HVGA.
14 }
15 </task:hasExpression>
16 </owl:NamedIndividual>

Listing 1. RDF/XML representation of a platform task condition

Besides device- and software-specific concepts, we added
a common aspect class, e. g., providing a communication
classification. In our scenario, the sharing subtask implies a
mashup component that should present all traveling planner’s
ratings in a visual manner (e. g., a list of shared ratings
per each travel opportunity). To execute the shared rating
list component, the component’s platform should provide the
capability to receive each favorites list and synchronize with
updates from other traveling planner’s devices. The collabora-
tion aspect is represented by the role assignment in each task
(hasRole) and specification how many owners the task might
have (hasMinOnwers and maxOwners).

V. LEVERAGING THE REQUIREMENTS MODEL

Due to the degree of formalization, the proposed task model
is an appropriate basis for further mappings and transfor-
mations within a model-driven mashup development process

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

as already outlined in [4]. For this, we rely on a semantic
component model as well as a distributed mashup runtime
environment. The main concepts for this purpose stem from
the model-based mashup composition approach provided by
CRUISe [29], [30]. Therein, mashup components and their
interfaces are described by the Semantic Mashup Description
Language (SMCDL) that enables the semantic annotation of
component’s meta-data and their interfaces. Figure 4 shows the
parts of the SMCDL as well as their relations to functional and
data semantics that are defined in domain models. This is the
foundation for the universal and semantic description of any
web resource such as UI widgets or RESTful web services.
Therefore, the SMCDL is the basis for the derivation of an
executable mashup application from the requirements defined
in our task model.

SMCDLSMCDL

interface

operationz

eventy

binding

propertyx

meta data

domain models

NFP

property type
(data)

meta data concepts
(non-functional)

component semantics
(functional)

parameter types
(data) and

event/operation
functionality

transformation
(JS,<XSLT>, …)

functional
dependency

user

interaction

travel

geo

...

standard
groundings (XSD)

92

Figure 4. Semantic annotations used in SMCDL [30]

The transition consists of two parts: (1) the discovery of
adequate components for each task in the task tree, and (2)
the generation of a composition model that can be executed
by the CRUISe runtime. The matching algorithm is already
described in detail in [19], and is therefore not in the scope
of this paper. However, possible mappings for a part of our
travel planning scenario are shown in Figure 5. The matching
algorithm returns a set of rated mashup components for each
leaf of the task tree. In our case, the task “Specify destination
location” is mapped to a map component (a), whereas “Browse
offers” (b) and “Select offer” (c) to one list component, since
it is possible that one component supports more than one task.
Further, the task “View offer details” could require additional
components to work such as an image database to show further
pictures (d). Finally, it is possible that no component can be
found for the tasks in the task tree. Unfortunately, this implies
either the re-design of the task model or the implementation
of new components.

To build a mashup from the component proposals, we
adhere to the platform-independent composition model [29].
The composition model consists of five main parts: (1) the
conceptual model that contains mashup components to be
integrated, (2) the communication model that interconnects
components with the help of communication channels, (3) the
layout model that describe the arrangement of components on
the screen, (4) the state model (previously called screenflow
model) that describes the relation of components and screens,
and finally (5) the adaptivity model that describes adaptation
aspects. The adaptation model is omitted so far, because
adaptation aspects affect only composition aspects such as
component’s reconfiguration, component mediation and layout

Browse
offers

Browse
offers

View offer
details

View offer
details

Add offer
to list

Add offer
to list

Select
offer

Select
offer

Specify destination
location

Specify destination
location

Search and add
offers by destination

SEQ

Search and add
offers by destination

SEQ

(a) (b) (c) (d)

Figure 5. Mapping of tasks and components

adaptation according to the width and height of the screen.
However, the task model is of higher abstraction and is not
intended to consider such runtime-specific aspects.

Since, the transformation process cannot be explained in
detail here, we just provide a brief overview that is illustrated
in Figure 6. Therein, a task model is represented by the tasks
T1 to T5 that are connected by model references, such as
Hotels as output of T3 and input of T4, and their grouping,
e. g., parallel or sequential. Further, conditions could be defined
in the task model. The creation of the composition model is
then performed as follows.

Layout ModelState Model

T2

T4

T5

C1

C2

...

best rank C3

...

C4

...

Conceptual
Model

Communication Model

C1

C3

EV1(Hotels)

OP1(Hotels)

Link

C4

C1 C3

C4

C1 C3

C4

pre-condition

T1

SEQ

PAR

Hotels

T3

Figure 6. Overview of the transformation process

The conceptual model is created with the help of each
component description that is returned by the matching al-
gorithm. Further, the components are reviewed, if they can be
connected with each other, i. e., that their semantic descriptions
are compatible. This is determined by a matching degree of the
parameters of the events and operations. If no matching can be
found, it is required to look for further components to make the
composition work. For example, additional service components
could be needed to fetch some information from external

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

databases. To fill this gap, the semantics-based discovery of
CRUISe and mediation techniques [30] are utilized. When the
components are identified, they are collected in the conceptual
model to build any of the subsequent model parts. In Figure 6
the selected components are C1, C3 and C4.

Based on the previous results of matching of events and
operation, the communication model is derived by both the
task model and the component descriptions. First, from the
correlation of components to tasks and the definitions of input
and output references in the task model, we derive which
components need to communicate with each other. Second,
the annotation of events and operations allows us the mapping
to the interface signatures. For example, in Figure 6, the model
reference Hotel will result in a channel between component C1
and C3 because C1 is related to the task T3 which has a model
reference to task T4. Finally, the component C3 is related
to T4. Therefore, both components should have a common
communication channel.

The state model is derived by the grouping attribute of par-
ent tasks and available conditions. For example, the sequence
attribute denotes that subsequent components can only be
activated if the current component provides the data according
to the definition task so that the task can be considered as
finished. However, parallel tasks denote that the components
are visible and active all the time. For example, C1 and C3
work in parallel, but since T5 is a subsequent task, the related
component C4 is only activated if C1 and C3 finished their
computation. In fact this means, that related events provide the
required data during the mashup runtime.

Finally, the layout model is derived by the allocation of
tasks in task tree and the relation of components regarding
their tasks. For example, components that correlate with task
neighbors are placed nearby on the screen. However, the
algorithm can only provide proposals for the layout and the
user is afterwards able to configure this as he or she likes.
Further, we introduce a card and a tab layout to hide or
disable components according to the grouping definition (e. g.,
sequence, choice and parallel) and the provided conditions in
the task tree.

To consider the platform requirements, we extended the
composition model by query-based declarative entities (com-
ponent distribution description). Each define a mapping be-
tween the associated component instance and it’s platform
condition as shown in Listing 1. The quantity of task owners
as well as the role definition (hasRole) is also considered.
However, if necessary, the definition of capabilities per role
needs to be done manually after the generation process, since
these information is usually not available in the role ontology.
The concrete number of distributed component instances is
derived from the quantity of task owners that perform a task
simultaneously. Details about their communication behavior
are derived from the communication model, but can be config-
ured by the composer too, such as the synchronization interval
threshold or their communication direction. It depends on the
application scenario and can not be discussed in more detail
at this point.

When the composition model has been finished by the
composer and validated, the application is finally deployed.
The model is directly interpreted by a distributed runtime

environment that integrates all referenced components from the
repository within the execution context of different client-side
runtime environments. Further, it handles and coordinates the
component’s life cycle, communication and their distributed
execution. A part of the resulting application (executed in
the “personal offer research” according to our scenario in
Section II) is shown in Figure 7.

Figure 7. A partial mashup from the scenario

VI. IMPLEMENTATION AND DISCUSSION

In this section, we sketch some implementation details of
the requirements model and the transformation process, and
finally, we discuss our findings.

A. Implementation

1) The Requirements Model: We implemented the require-
ments ontology in OWL and published an initial version of
the proposed meta model on the Web [31]. Listing 2 shows
a simple instance of the “Share personal list” task (Figure 1)
as an extract in Terse RDF Triple Language (Turtle) syntax.
The full example is also available in the Web [32]. The
first task is an OWL individual of CompositeTask, which
encompasses two atomic child tasks “Send and recieve” and
“Finish sharing” (lines 8-9). The task has an input object
that references the semantic concept favorites list. Further, the
hasInputObject relation indicates the count of inbound data
channels. Besides the input object, the resulting data of the
task is represented by the output object. A context condition
is defined in line 10. It refers to the condition that is defined in
Listing 1. The collaborative aspect is modeled by the use of the
hasMinOwners and hasMaxOwners properties. The task and its
subtasks should be performed in parallel by maximal four and
minimal two task owners (travel planners) in the context of
their personal mobile devices (lines 16-17).

1 :SharePersonalList
2 a activity-tasks:CompositeTask, owl:NamedIndividual ;
3 activity-tasks:hasID "SharePersonalList"ˆˆxsd:string ;
4 activity-tasks:hasName "Share Personal List"ˆˆxsd:string

;
5

6 activity-tasks:hasChildTask

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

7 :FinishSharing ,
8 :SendAndReceive ;
9

10 activity-tasks:hasContextCondition
11 :sample:MobileDeviceCondition ;
12

13 activity-tasks:hasGrouping
14 activity-tasks:Sequence ;
15

16 activity-tasks:hasMaxOwners 4 ;
17 activity-tasks:hasMinOwners 2 ;
18

19 activity-tasks:hasInputObject :Favorites ;
20 activity-tasks:hasOutputObject :Favorites.

Listing 2. Turtle representation of the modeled sharing task

The OWL model is mainly for storing and reasoning
purposes. It is obvious that end-users will not create such
models without appropriate tool support within the mashup
environment. For now, we also created an EMF Ecore [33]
representation that allows us to specify a domain specific
language (DSL) with the help of EMFText [34]. To provide an
example, the same task in Listing 2 is also shown in Listing 3,
but using task modeling DSL. The DSL is a more convenient
way, and allows the faster creation of text-based task models
for testing purposes. Since, the expressiveness required by our
task model can be provided by OWL as well as Ecore, the
DSL and the OWL representation can be easily transformed
into each other.

1 TaskModel TM "Travel planning scenario"
2

3 Tasks
4 Interaction Task SharePersonalList "Share Personal

List" {
5 action Share
6 input Favorites
7 output Favorites
8 minOwners 2
9 maxOwners 4

10 Sequence
11 Interaction Task FinishSharing "Finish

Sharing" {...}
12 System Task SendAndReceive "Send and Receive"

{...}
13 }
14

15 References
16 Reference Share URI "actions.owl#Share"
17 Reference Favorites URI "travel.owl#FavoritesList"

Listing 3. The sharing task as DSL

2) The mashup composition process: The instances of the
task model are managed by a Java-based Task Repository
(TaRe) that provides a service interface to store and load
task models. It imports RDF/XML as well as DSL-based
task models. Further, the TaRe interacts with the CRUISe
component repository to find and rate mashup components.
The TaRe is also responsible for the generation of mashup
composition proposals as described before. Task models are
represented internally by an ontology model, facilitating the
semantic web framework Jena [35] which allows us to apply
SPARQL queries and reasoning techniques.

B. Discussion

As depicted with the previous examples, our task model
is applicable to describe simple, more complex and even
collaborative scenarios. Besides the travel planning scenario,
we also modelled other applications, such as a stock exchange

mashup and business trip requests. Further, we evaluated the
expressiveness of the task model with the help of the basic
workflow patterns [36] and conclude that most of them are
supported to model relevant aspects of work. Since we derived
the task model from traditional task modeling approaches, we
consider that our task model has at least the same expres-
siveness. Moreover, since the clear semantics provided by the
task and action ontology, we are confident of the opportunities
for model-driven mashup development. Finally, we showed
that a transformation process from a task model requirements
specification is feasible.

However, determining the optimal components for single
tasks and finding the optimal glue code with respect to inter-
face compatibility and to the task model is of high algorithmic
complexity. Although the provided transformation process can
produce a draft of the composition model, there are still options
and alternatives which might be preferred differently by the
other users. Therefore, the user also needs to be able to explore
these alternatives and to control the transformation process.
Further, composition details such as layout and styles are not
covered by the task model explicitly. This is not very surprising
as the task model is intended to be an requirements model that
abstracts from composition details. Therefore, the user should
be able to refine the resulting model manually. To enhance
the generation process, we plan to store compositions resulting
from a task model and to let users rate them. Based on this, we
will be able to generate more detailed composition proposals.
Finally, our experience is that the component matching and
the composition process is time consuming, depending on the
amount of tasks and components. Therefore, we propose to
save matching results for later reuse to save calculation time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an ontology-based task meta-
model for composite mashups with special aptitude to require-
ments specification for distributed and collaborative scenarios.
To this end, a mashup composer can structure the intended be-
havior of the application by decomposing corresponding tasks,
while simultaneously defining conditions on the distribution,
platform or devices. In contrast to other existing approaches,
our task models are able to provide clear semantics regarding
the actions to be performed within tasks, data objects and
conditions. We illustrated the applicability of the presented
metamodel by instantiating it for a social decision support
scenario.

Future work includes the evaluation of the transition pro-
cess from a task model to the mashup composition model
with the help of a user study. In order to do this, we are
currently working on a Web-based task model editor to provide
an abstract view on ontology-based task modeling, making
it feasible for developers without RDF/XML knowledge or
advanced programming skills. Since task modeling activities
depend on the application domain, constraints regarding the
execution of mashups and their components such as time-out
conditions or other quality requirements may be also specified
along the task definitions. Conclusively, we claim that task-
based mashup development will bring the mashup application
building paradigm to a broader audience. Task-based mashup
development implies new opportunities for the usage of task

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

knowledge during the composition and runtime, e. g., in order
to optimize tasks and dynamic component integration.

ACKNOWLEDGEMENT

The work of Vincent Tietz is granted by the European
Social Fund (ESF), Free State of Saxony and Saxonia Sys-
tems AG (Germany, Dresden) within the project eScience,
contract no. ESF-080951807. The work of Oliver Mroß is
granted by the ESF, Free State of Saxony, contract no. ESF-
080951831. Same applies for Carsten Radeck who is funded
under the contract no. ESF-080951805.

REFERENCES

[1] V. Tietz, A. Rümpel, C. Liebing, and K. Meißner, “Towards re-
quirements engineering for mashups: State of the art and research
challenges,” in Proceedings of the 7th International Conference on
Internet and Web Applications and Services (ICIW2012), Stuttgart,
Germany, 2012.

[2] J. Vanderdonckt, “Distributed user interfaces: how to distribute user
interface elements across users, platforms, and environments,” Proc.
of XIth Congreso Internacional de Interacción Persona-Ordenador
Interacción, pp. 3–14, 2010.

[3] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing, M. Pohle, and
K. Meißner, “A metamodel for context-aware component-based mashup
applications,” in Proc. of the 12th Intl. Conf. on Information Integration
and Web-based Applications & Service (iiWAS’10), 2010, pp. 413–420.

[4] V. Tietz, S. Pietschmann, G. Blichmann, K. Meißner, A. Casall, and
B. Grams, “Towards task-based development of enterprise mashups,”
in Proc. of the 13th Intl. Conf. on Information Integration and Web-
based Applications & Services, 2011.

[5] J. Escalona and N. Koch, “Requirements engineering for web applica-
tions – a comparative study,” Journal of Web Engineering, vol. 2, no. 3,
pp. 193–212, 2004.

[6] P. Valderas and V. Pelechano, “A survey of requirements specification
in model-driven development of web applications,” ACM Trans. on the
Web, vol. 5, no. 2, pp. 1–51, May 2011.

[7] G. Génova, J. Llorens, P. Metz, R. Prieto-Dı́az, and H. Astudillo, “Open
issues in industrial use case modeling,” in UML Modeling Languages
and Applications, ser. Lecture Notes in Computer Science. Springer,
2005, vol. 3297, pp. 52–61.

[8] K. Sousa, “Model-driven approach for user interface: business align-
ment,” in EICS ’09: Proceedings of the 1st ACM SIGCHI symposium
on Engineering interactive computing systems. New York, NY, USA:
ACM, 2009, pp. 325–328.

[9] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A dia-
grammatic notation for specifying task models.” Chapman & Hall,
1997, pp. 362–369.

[10] J. Annett and K. Duncan, “Task analysis and training design,” Hull
Univ. (England). Dept. of Psychology., 1967.

[11] M. van Welie, G. C. van der Veer, and A. Eliëns, “An ontology for
task world models,” in 5th Int. Worksh. on Design, Specification, and
Verification of Interactive Systems (DSV-IS), 1998.

[12] Q. Limbourg and J. Vanderdonckt, “Comparing task models for user
interface design,” in The handbook of task analysis for human-computer
interaction. Lawrence Erlbaum Associates, 2003, pp. 135–154.

[13] S. Caffiau, D. L. Scapin, P. Girard, M. Baron, and F. Jambon, “Increas-
ing the expressive power of task analysis: Systematic comparison and
empirical assessment of tool-supported task models,” Interacting with
Computers, vol. 22, no. 6, pp. 569–593, 2010.

[14] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. N. M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. (2004, November) Owl-s: Semantic
markup for web services. W3C. [Accessed: 2013-04-16]. [Online].
Available: http://www.w3.org/Submission/OWL-S/

[15] V. X. Tran and H. Tsuji, “Owl-t: An ontology-based task template
language for modeling business processes,” in Software Engineering
Research, Management Applications, 2007. SERA 2007. 5th ACIS
International Conference on, 2007, pp. 101 –108.

[16] C. Pribeanu, Q. Limbourg, and J. Vanderdonckt, “Task modelling
for context-sensitive user interfaces.” in DSV-IS, ser. Lecture Notes
in Computer Science, C. Johnson, Ed., vol. 2220. Springer, 2001,
pp. 49–68. [Online]. Available: http://dblp.uni-trier.de/db/conf/dsvis/
dsvis2001.html#PribeanuLV01

[17] T. Clerckx, C. Vandervelpen, and K. Coninx, “Task-based design and
runtime support for multimodal user interface distribution,” in Engi-
neering Interactive Systems, ser. LNCS. Springer Berlin / Heidelberg,
2008, vol. 4940, pp. 89–105.

[18] L. Balme, R. Demeure, N. Barralon, J. Coutaz, G. Calvary, and U. J.
Fourier, “CAMELEON-RT: A software architecture reference model
for distributed, migratable, and plastic user interfaces,” in EUSAI.
Springer-Verlag, 2004, pp. 291–302.

[19] V. Tietz, G. Blichmann, S. Pietschmann, and K. Meißner, “Task-based
recommendation of mashup components,” in Proc. of the 3rd Interna-
tional Workshop on Lightweight Integration on the Web. Springer, Jun.
2011.

[20] H. Trætteberg, “Modeling work: Workflow and task modeling,” in
CADUI, 1999.

[21] V. Kaptelinin, Context and Consciousness: Activity Theory and Human-
Computer Interaction. The MIT Press, 1996, ch. Activity Theory:
Implications for Human-Computer Interaction, pp. 103–116.

[22] V. Tietz. (2011, June) Actions Ontology. Faculty of Computer Science,
Technische Universität Dresden. [Accessed: 2013-04-16]. [Online].
Available: http://mmt.inf.tu-dresden.de/models/1.11/actions.owl

[23] R. Springmeyer, M. Blattner, and N. Max, “A characterization of the
scientific data analysis process,” in Proceedings of the 3rd conference
on Visualization’92. IEEE Computer Society Press, 1992, pp. 235–242.

[24] D. Gotz and M. X. Zhou, “Characterizing users’ visual analytic activity
for insight provenance,” Information Visualization, vol. 8, pp. 42–55,
2009.

[25] G. Mori, F. Paternò, and C. Santoro, “CTTE: Support for developing
and analyzing task models for interactive system design,” IEEE Trans.
Software Eng., vol. 28, no. 8, 2002.

[26] R. Lewis and J. M. C. Fonseca, “Delivery context ontology,” World
Wide Web Consortium, Working Draft WD-dcontology-20080415,
April 2008.

[27] M. Johnston, P. Baggia, D. C. Burnett, J. Carter, D. A. Dahl,
G. McCobb, and D. Raggett, “EMMA: Extensible MultiModal
Annotation Markup Language,” W3C Recommendation, 2009. [Online].
Available: http://www.w3.org/TR/emma/

[28] E. Prud’hommeaux and A. Seaborne, “SPARQL query language
for rdf,” W3C Recommendation, vol. 4, pp. 1–106, 2008. [Online].
Available: http://www.w3.org/TR/rdf-sparql-query/

[29] S. Pietschmann, “A model-driven development process and runtime
platform for adaptive composite web applications,” Intl. Journal On
Advances in Internet Technology (IntTech), vol. 4, no. 1, pp. 277–288,
2010.

[30] S. Pietschmann, C. Radeck, and K. Meißner, “Semantics-based dis-
covery, selection and mediation for presentation-oriented mashups,” in
Proc. of the 5th International Workshop on Web APIs and Service
Mashups (Mashups 2011). ACM, 2011.

[31] V. Tietz and O. Mroß. (2012, June) Requirements Ontology. Faculty
of Computer Science, Technische Universität Dresden. [Accessed:
2013-04-16]. [Online]. Available: http://mmt.inf.tu-dresden.de/models/
1.11/requirements-model.owl

[32] O. Mroß. (2012, June) Sample Travel Planning Scenario Ontology.
Faculty of Computer Science, Technische Universität Dresden.
[Accessed: 2013-04-16]. [Online]. Available: http://mmt.inf.tu-dresden.
de/models/1.11/distribution-scenario.owl

[33] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed., E. Gamma, L. Nackman, and
J. Wiegand, Eds. Addison-Wesley Professional, 2009.

[34] EMFText: Concrete Syntax Mapper. DevBoost. [Accessed: 2013-04-
16]. [Online]. Available: http://www.emftext.org/index.php/EMFText

[35] Apache Jena. The Apache Software Foundation. [Accessed: 2013-04-
16]. [Online]. Available: http://jena.apache.org/

[36] N. Russell, A. H. M. T. Hofstede, and N. Mulyar, “Workflow con-
trolflow patterns: A revised view,” BPMcenter.org, Tech. Rep., 2006,
bPM Center Report BPM-06-22.

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

http://www.w3.org/Submission/OWL-S/
http://dblp.uni-trier.de/db/conf/dsvis/dsvis2001.html#PribeanuLV01
http://dblp.uni-trier.de/db/conf/dsvis/dsvis2001.html#PribeanuLV01
http://mmt.inf.tu-dresden.de/models/1.11/actions.owl
http://www.w3.org/TR/emma/
http://www.w3.org/TR/rdf-sparql-query/
http://mmt.inf.tu-dresden.de/models/1.11/requirements-model.owl
http://mmt.inf.tu-dresden.de/models/1.11/requirements-model.owl
http://mmt.inf.tu-dresden.de/models/1.11/distribution-scenario.owl
http://mmt.inf.tu-dresden.de/models/1.11/distribution-scenario.owl
http://www.emftext.org/index.php/EMFText
http://jena.apache.org/

	Introduction
	Collaborative Travel Planning Scenario
	Related Work
	Requirements Model for Web Mashups
	Modeling Activities
	Modeling Context

	Leveraging the Requirements Model
	Implementation and Discussion
	Implementation
	The Requirements Model
	The mashup composition process

	Discussion

	Conclusion and Future Work
	References

